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Abstract: When impulse responses in dynamic multivariate models such as identified VARs are given economic
interpretations, it is important that reliable statistical inferences be provided. Before probability assessments are
provided, however, the model must be normalized. Contrary to the conventional wisdom, this paper argues that
normalization, a rule of reversing signs of coefficients in equations in a particular way, could considerably affect
the shape of the likelihood and thus probability bands for impulse responses. A new concept called ML distance
normalization is introduced to avoid distorting the shape of the likelihood. Moreover, this paper develops a Monte
Carlo simulation technique for implementing ML distance normalization.
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Normalization, Probability Distribution, and Impulse Responses

1. Introduction

 When dynamic multivariate models such as vector autoregressions (VARs) are used for

policy analysis, economically meaningful restrictions are often placed on individual equations or

blocks of equations and economic interpretations are usually presented by impulse responses.1  It

is well known that these interpretations are not affected by reversing signs of all coefficients in

an equation or equivalently reversing the sign of an identified shock.  Consequently, a traditional

approach is to restrict arbitrarily the value of one non-zero coefficient to be, say, positive.

Textbooks associate this arbitrary approach with formal name “a normalization rule” (e.g., Judge

et al., 1985, p.576).

 In a recent paper, Sims and Zha (1995) avail themselves of such a normalization rule as

though probability bands for impulse responses would also be invariant to how an equation is

normalized.  Unfortunately, such invariant property no longer holds when one makes probability

statements.  This paper shows that probability distributions for impulse responses can be

sensitive to different normalization rules.  It introduces a normalization rule called “ML distance

normalization” and argues from a viewpoint of likelihood principles that this rule avoids false

inferential conclusions by preserving the shape of the likelihood or the posterior distribution.

Moreover, this paper develops a random walk Metropolis algorithm that proves efficient for

identified VAR models and applies this algorithm to an example to highlight practical

importance of ML distance normalization.

                                                

 1 See, for example, Sims (1986), Gordon and Leeper (1994), Leeper, Sims and Zha (1996), and Bernanke, Gertler
and Watson (1997).
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 Section 2 of this paper sets up a general framework of dynamic multivariate models and

shows that reversing signs of coefficients in an equation is equivalent to reversing the sign of an

identified shock in that equation.  Section 3 discusses rigorously the concept of normalization in

a new context, introduces the notion of ML distance normalization, and offers analysis of

different normalization rules and their implications for statistical inferences.  Section 4 develops

a Monte Carlo Bayesian method for computing probability bands for impulse responses and

applies it to an example to show that other rules of normalization, as compared to ML distance

normalization, can yield misleading results in practice.  Section 5 closes this paper with

concluding remarks.

2. General Framework

 This section provides a general framework that summarizes the identified VARs both without

any priors and with proper priors.  Consider dynamic, stochastic models of the form:2

 A L y t C t( ) ( ) ( )+ = ε  , t T= 1,...,  , (1)

 where A L( )  is an n n×  matrix polynomial in lag operator L , y t( )  is an n ×1  vector of

observations of n  variables at time t , C  is an n ×1  vector of  constant terms, and ε( )t  is an

n ×1  vector of i.i.d. innovations so that

 Eε( )t = 0 ,  Eε ε( ) ( )t t
n n

′ =
×
I  ,  all t  . (2)

 Following Sims and Zha (1997), rewrite (1) in the matrix form:

 YA XA E− =+  , (3)
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 2 Although only constant terms are considered here, the analysis can be extended to other sets of exogenous
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 where p  ( > 0 ) is a lag length, k np= +1, A  is an n n×  matrix, and A+  is a k n×  matrix.  Note

that the columns in A  and A+  correspond to the parameters in individual equations.

 Let a= ai i n1 61 2≤ ≤  be a vector in R n2

, formed by stacking the columns of A  so that
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 Similarly, let a+  be a kn ×1 vector formed by stacking the columns of A+ .  Note that M ( )⋅  is

an operation of stacking an n2 1×  vector a  back to the form of an n n×  matrix.  This notation is

frequently used in the formal discussion of normalization in the next section.

 In Bayesian VAR models, prior distributions typically take up the following Gaussian form:3

 a 0 I~ ,N ⊗ Σ2 7  , (4)

 a a I P a I H+ ⊗ ⊗~ ( ) ,N 2 7  , (5)

 where Σ  is an n n×  symmetric, positive definite (SPD) matrix, H  is a k k×  SPD matrix, and

P  is a k n×  matrix.  As shown in Sims and Zha (1997), the joint posterior p.d.f. of ( , )a a+  is of

form p p( ) ( | )a a a+  in which

 p trace
T

( ) exp ( )a A A SA∝ − ′�
��

�
��

1

2
 , (6)

                                                

variables.
 3 See Sims and Zha (1997) for detailed discussion.
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 p( | ) ( ) ;a a I U a I V+ = ⊗ ⊗ϕ1 6  , (7)

 where ϕ( ; )x y  is a normal p.d.f. with mean x  and covariance matrix y , S  is a function of

( , , , )Y X HΣ , U  is a function of ( , , , )Y X P H , and V  is a function of ( , )X H .  Note that if there

is no prior on ( , )a a+  (i.e., a flat prior on ( , )a a+ ), the joint posterior has the same form of

distribution as (6) and (7) except S , U , and V  are now functions of data Y  and X .4

 In the identified VAR literature, some individual equations such as the “monetary policy

equation” have clear economic interpretations.  As in traditional simultaneous equations models,

reversing signs of all coefficients in equations does not change any economic meanings.

Furthermore, because reversing signs of coefficients in an equation is equivalent to the sign

change of an identified shock in that equation, the interpretation of point-estimated impulse

responses is never affected by these sign changes.  To see this argument clearly, consider

coefficients A A⋅ +⋅i i
,3 8  in the i th equation of model (3), where subscript “⋅i ” represents the i th

column of the matrix.  To reverse signs of A A⋅ +⋅i i
,3 8  is equivalent to post-multiplying system (3)

by the diagonal matrix

 R
n n×

= −

�

!

         

"

$

#########

1 0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0 1

O

O

 ,

 where “−1” is the element in the i th row and i th column.  Impulse responses at time s ≥ 1,

denoted by Φ s
n n×

 in matrix form, are A−1  post-multiplied by an n n×  matrix polynomial function
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of reduced-form parameter B  ( = +
−A A 1 ).  Obviously, post-multiplying system (3) by R  has no

effect on the estimated value of B .  Thus, the new impulse responses, after the operation of a

sign reserving, equal RΦ s .  These new responses to the i th shock, represented by the i th row of

RΦ s , simply flip the original impulse responses of variables to the i th shock around the zero

axis.  Suppose that the i th equation is identified as the “monetary policy reaction function” and

that in response to this policy shock, the interest rate rises initially and the price level falls

subsequently.  These responses are interpreted as those to a contractionary policy shock.  When

signs of all estimated coefficients in this equation are reversed, all estimated impulse responses

to this shock are accordingly flipped around the zero axis: the interest rate falls initially and the

price level rises subsequently.  The shock is now interpreted as an “expansionary policy shock”

which is equivalent to reversing the sign of a “contractionary policy shock”.  Nothing is yet

altered in regard to the essence of economic meanings except different labels or names are

attached.  Consequently, the sign of a particular equation can be fixed by arbitrarily restricting

the value of one non-zero coefficient to be positive.

3. Normalization

 The previous section articulates a well-known fact that estimation of identified multivariate

model (3) does not depend on how each equation is normalized.  In other words, the economic

interpretation of the model, usually presented by the point estimates of impulse responses, is

invariant to arbitrary rules of normalization.  This argument, intuitive though it might seem to be,

is no longer valid when a researcher desires to provide probability assessments for estimated

impulse responses.  Normalization can alter conclusions with respect to probability inferences.

To show why this is true, let us follow the identified VAR literature to focus on linear

                                                

 4 See Sims and Zha (1997) and Zha (1997).
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restrictions on contemporaneous coefficient matrix A .  Specifically, assume that there are q

linear restrictions and each restriction applies to parameters in one equation.  Denote the

subspace of R n2

 with such q  linear restrictions by

 = a R a 0∈ =n Q
2> C  ,

 where Q  is a q n× 2  matrix and 0  is a q ×1 vector of 0 ’s.  In the rest of this paper, the

discussion about coefficient matrix A  assumes that a ∈ .5

 To understand the shape of the likelihood, first consider marginal posterior distribution (6).

Since S  is positive definite, p( )a  tends to zero as a  tends to infinity, where ⋅  denotes a usual

Euclidean norm throughout this paper.  Hence, by standard compactness arguments, p( )a  has a

maximum.  Let $a  be a maximum point in .  Since the maximum of conditional posterior p.d.f.

(7) is the same for all a , it must be true that $ , ( ) $a I U a⊗1 6  is a maximum point for the joint

posterior p.d.f. of ( , )a a+ .

 Now, consider reversing signs of coefficients in the i th equation.  This implies reversing

signs of all elements in the i th column of A  as well as in the i th column of A+ .  From (6) and

(7), it can be seen that sign changes in a+  are related to those in a  through transformation

( )I U a⊗ .  Therefore, the value of the joint posterior p.d.f. of ( , )a a+  does not change when such

sign reversing takes place.  There are a total of 2n  possible sign changes.  Consequently, the

joint posterior probability distribution of ( , )A A+  is symmetric around the origin and across the

2n  subspaces.

 Such symmetry makes normalization indispensable for probability inferences of the model’s

                                                

 5 It is easy to see that the posterior p.d.f. of a  in subspace  still has the same form as (6).
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parameters.  Without normalization, there would never exist a unique maximum likelihood (ML)

estimate of ( , )A A+ .6  For instance, if $A  is a maximum point of p.d.f. (6), a matrix obtained by

reversing signs of one or more columns in $A  is also a maximum point.  Thus, there are always at

least 2n  maximum points.

 Since sign changes in a+  are related to those in a  through transformation ( )I U a⊗ , it is

sufficient to discuss normalization only on coefficient vector a  through this paper.  To formalize

the notion of normalization discussed so far, the following definition is in order.

 Definition 1.  For any given a ∈ , F ( )a  is the set of all b ∈  such that M ( )b  can be obtained

by reversing signs of one or more columns of M ( )a .

 Note that there are a total of 2n  distinct elements in F ( )a .  As all points in F a1 6  are

identical up to sign changes, the essence of normalization is to summarize set F a1 6  by a single

point.  The idea of such normalization is now formalized by an intuitive operation as defined

below.7

 Definition 2.  Normalization is a function g: →  with the properties:

 (1) g a a1 6 1 6∈F ;

 (2) b a∈F ( )  implies g gb a1 6 1 6= .

 Clearly, normalization defined in Definition 2 can be intuitively thought of as collapsing set

F a1 6  to single point g( )a .  To see this, let G  be the image of  under function g.  Then the

shape of posterior p.d.f. (6) on G  provides all information about the shape of posterior (6)

                                                

 6 Following DeGroot (1970), this paper uses ML estimates to refer to generalized ML estimates which are maximum
points of the joint posterior p.d.f. of ( , )A A+ .  Note that the likelihood is a posterior under a flat prior.

 7 For readers who are familiar with topology, note that Definition 2 is similar to the idea of using topological
quotient spaces.
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everywhere.

 From the perspective of the likelihood principle, it is desirable to inform readers of the shape

of posterior (6).  This requires that normalization set the boundary of G  farthest away from the

peak of (6) to preserve the shape of the likelihood or the posterior p.d.f.  Such normalization is

called in this paper “ML distance normalization”.

 To set out a practical algorithm for carrying out ML distance normalization, a few notations

and a definition are in order.  Denote the columns of M ( $)a  by $ ,..., $a a1 n  and the columns of

M ( )b  by b b1,..., n , where $a  is a ML estimate.

 Definition 3.  ML distance normalization is normalization g: →  (as defined in Definition 2)

with the property that for any point b R∈ q , g( ) $ $b a b a− ≤ ′ −  for ′ ∈b bF ( ) .

 With Definition 3, the following algorithm carries out ML distance normalization.

 Algorithm 1.  Moving from b to g( )b  involves three steps.  For each i  (= 1,...,n ),

    (a) successively compute $a bj i−  and $a bj i+  for j i i n i= + −, , , , , ,      1 1 1L L ;

    (b) stop at the first j  such that $ $a b a bj i j i+ ≠ − ;

    (c) replace bi  with −bi  if $ $a b a bj i j i+ < −  and leave bi  unchanged otherwise.

 ML distance normalization g( )b  given by Algorithm 1 is well defined because there always

exists stopping time j  in step (b) for b 0≠ .  To see this point, suppose there does not exist a

stopping time, i.e., $ $a b a bj i j i+ = −  for all j .  Such a situation occurs only if b 0i =  because

M ( $ )a  is non-singular.  In this situation, it does not matter whether or not bi  is replaced by −bi .

 Algorithm 1 ensures the mathematical property that ML distance normalization uniquely

determines points on the boundary of G .  These points may or may not belong to G  after
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normalization.  In practice, however, it is sufficient to consider only the interior of G  because

the set of points where $ $a b a bi i i i+ = −  for some i  is a dim( ) −1 dimensional subset of 

and hence has measure zero.  This property is important because, rather than finding the distance

between 2n  points in R q  as required by Algorithm 1, one needs to compute the distance only

between 2n  points in R q .  Specifically, a computationally efficient algorithm is simply to

replace bi  with −bi  if $ $a b a bi i i i+ < −  for each i n= 1,..., .  Such an algorithm is valid

because the distance from b  to $a  is $a bi i
i

n

−
=
∑ 2

1

.

 At this point, it is instructive to present an example with n = 2  and Choleski identification.

Let $ $ $a a a= ′
1 2 , $ $*a a 01 1= ′

, and $ $*a 0 a2 2= ′
.  Suppose restriction a1 2 0( ) =  is implied by

Choleski identification.  As a result, there are only three unrestricted parameters in A .  Clearly,

$ *a1  and $ *a2  are orthogonal to each other and lie on a hyperplane in R 3  (here, = R 3 ).  First,

consider a simple case in which b  is in the linear span of $ *a1  and $ *a2 , which is pictured below.

 Figure 1.  ML Distance Normalization

 

                                $ *a 2                                             $a

                                                 ( )g b

                                                                              $ *a 1

                           b

 The algorithm for ML distance normalization moves b along the dotted lines to element g( )b

that has the shortest distance from $a .  Now, consider a general case which b  may not be lie

completely in the span of $ *a1  and $ *a2 .  In this case, decompose b  into two components: the
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projected part and the perpendicular part.  The projection of b onto the span of $ *a1  and $ *a2  moves

in the manner described in Figure 1; the perpendicular component of b to the span of $ *a1  and $ *a2

remains all the time perpendicular to the span of $ *a1  and $ *a2 .  Thus, the interior of G  is the set of

all points in R 3  that project onto the open first quadrant of the plane spanned by $a1  and $a2 .

 Traditional normalization used in the literature is to change signs of columns of A  or

equivalently signs of columns of M ( )a  so that all diagonal elements are restricted to be positive.

In light of Figure 1, it is easy to see that this normalization is equivalent to distance

normalization described in Algorithm 1 but with ML estimate $a  replaced by vec( )I .  By moving

a  to g( )a  that is closest to vec( )I  rather than ML estimate $a , however, traditional

normalization generates G  that is different from that generated by ML distance normalization.

Thus, the implied shape of the likelihood or the posterior p.d.f. is different.  The difference is

likely to lead to quite different inferences about, say, impulse responses.  To see this argument

clearly, it may help to focus on two equations in an identified system.

 Example 1.  A Heuristic Case

 Consider money supply (MS) and money demand (MD) equations of the

form:

 
MS a R t a M t X t t

MD a R t a M t X t t
s s MS

d d MD

: ( ) ( ) ( ) ( )

: ( ) ( ) ( ) ( )
1 2

3 4

+ + =
+ + =

β ε
β ε

 , (8)

 where R  is the interest rate, M  is the money stock, X s  contains all other

variables in the MS equation, and Xd  contains all other variables in the MD

equation.  For clear exposition, consider a = ′( , , , )a a a a1 2 3 4  exclusively.  Thus,

 A a≡ =
�
! 

"
$#M

a a

a a
( ) 1 3

2 4

.
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 If all other equations in the system are contemporaneously block recursive to the

MS and MD equations in the sense of Zha (1997) (i.e., variables R t( )  and M t( )

do not enter other equations), the matrix of first-period impulse responses of M

and R  to MS and MD shocks is simply the inverse of M ( )a .8  That is to say,

 Φ1
1 4 2 3

1

4 3

2 1

1=
−

−
−

�
! 

"
$#−( )a a a a

a a

a a

 Now suppose the maximum of the posterior p.d.f. occurs at, say, $ $a a2 3 100= =

and $ $ .a a1 4 01= =  with very high probability that a a a a2 3 1 4>> .  Furthermore,

assume (i) the marginal posterior p.d.f.’s of both a3  and a a2 3  tend to zero as

( , )a a2 3  moves away from ML point ( $ , $ )a a2 3  toward zero and (ii) a4 can be either

positive or negative with equal probability.

 

 If the normalization is to restrict all diagonal elements (a1  and a4 ) to be positive for every a

drawn from the posterior, it could induce an artificially large standard error of a3  so that one

may infer that both ML coefficient $a3  and the estimated first-period impulse response of money

M  to shock ε MS , $ ( , )Φ1 1 2 , are statistically “insignificant”.  But this is precisely not the inference

one should make because the shape of the posterior, by assumption, is such that a3  is very

unlikely to be zero and ML coefficient $a3  is sharply estimated, not “insignificant”.  On the other

hand, ML distance normalization will by definition deliver the correct inference: both coefficient

$a3  and impulse response $ ( , )Φ1 1 2  are sharply estimated.

 Although normalization in Definition 2 is a well-defined notion, there exists numerous rules

                                                

 8 For example, Gordon and Leeper (1994) make this block recursive assumption in their 7-variable identified VAR
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or ways of normalization that are consistent with this definition.  Depending on particular

problems, they may or may not preserve the shape of the likelihood as intended by ML distance

normalization.  For instance, instead of normalizing on all diagonal elements of A , one can

normalize on some non-zero off-diagonal elements.  In Example 1, this means that one

alternative rule is to reverse the sign of the first column if a2 0<  and the sign of the second

column if a3 0< .  By Definition 2, this rule is equivalent to moving a  to g( )a  that is closest to

point vec
0 1

1 0

�
��

�
�� .  Such a rule is certainly sensible for the situation presented in Example 1

because it is likely to yield inferences about impulse responses that are not grossly at odds with

inferences derived by ML distance normalization.  In general, however, the rule that normalizes

on off-diagonal elements may distort the shape of the likelihood.

 Another example is the rule that normalizes on the diagonal of A−1  rather than A  itself: if

A 1− ( , )i i  < 0, reverse the sign of the i th column of A .9  The idea behind this rule is that

researchers are sometimes concerned only with impulse responses.10  If the a priori belief is that

a contractionary money supply shock ought to raise the interest rate ( R ) initially, a “good” rule

of normalization should restrict the first-period response of R  to shock ε MS  to be always

positive.  In Example 1, this means to keep the value of a M4 / ( )a  positive by appropriately

reversing the sign of the first column of M ( )a .  Such a rule is valid normalization by Definition

2 because reversing signs of coefficients in the i th equation (i.e., the i th column of A ) is

equivalent to flipping the impulse responses of variables to the i th shock (i.e., the i th row of

A−1 ) around the zero axis.  Obviously, unless A  is restricted to be upper triangular (usually

                                                

model.
 9 The authors thank Chris Sims for this thoughtful suggestion.
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called “Choleksi decomposition” in the literature), this rule is generally different from the rule

that normalizes on the diagonal of A  because it moves a  to g( )a  in the manner that

vec M g( ( ( )))−1 a  is closest to fixed point vec( )I .  For the same reason that applies to the

normalization on the diagonal of A , however, this alternative rule of normalization may still

mislead one to infer that the impulse response of M  to a money supply shock in Example 1 is

“insignificant.”

4. Monte Carlo Method and Results

 The previous section defines the concept of normalization in the identified VAR framework

and argues for ML distance normalization from the perspective of the likelihood principle.  In

this section, a numerical example is given to show that the two popular rules of normalization,

one based on the diagonal of A  and the other on the diagonal of A−1 , can yield misleading

inferences.  Before proceeding with such an example, however, this section first develops an

efficient Monte Carlo method for generating random samples of a  from posterior p.d.f. (6).

 The posterior p.d.f. of a  in (6) is not of any standard distribution.  In general, there is no way

to draw a  directly from this posterior except in some special cases.11  A general method so far

used in the literature is the importance-sampling technique originally recommended by Sims and

Zha (1995).  The basic idea is to approximate true posterior p.d.f. (6) with a Gaussian or t -

distribution.  Unfortunately, as the degree of simultaneity in model (3) increases, the form of

posterior p.d.f. (6) tends to be very non-Gaussian in shape.  As documented by Leeper, Sims, and

Zha (1996, p. 37), “Gaussian approximations to this form are so bad that importance sampling is

prohibitively inefficient.”

                                                

 10 Uhlig (1997) and Faust (1997) explore this idea in different contexts.
 11 See Zha (1997) for detailed discussion.
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 A wide variety of Monte Carlo (MC) methods, in particular Markov Chain simulation

methods, have been discussed extensively in the recent literature (e.g., Geweke (1995) and Chib

and Greenberg (1995)).  One MC method is called a “random walk Metropolis algorithm”

(Tierney (1994)).  Given target distribution p( )a  in (6), a Metropolis algorithm generates a

sequence of random samples ( , ,...)( ) ( )a a1 2  whose distributions converge to the target

distribution.  Each sequence can be viewed as a random walk whose distribution is (6).  Unlike

importance sampling in which the approximate distribution remains the same, approximate

distributions in the Metropolis algorithm improve at each step in the simulation.  The Metropolis

algorithm developed in this paper is now described as follows.

 Algorithm 2.  Initialize arbitrary value a ( )0  in R q . For n N N= +1 1 2,..., ,

 (a) generate z  from h( )z  and u  from uniform distribution U ( , )0 1  where h( )⋅  is a student-t

p.d.f. with 0 S, , ,c qυ1 6  in which c  is a scale factor and υ  the number of degrees of

freedom;

 (b) compute a a z= +−n 11 6  and

 J
p

p
n

n
a a

a

a
( ) , min ,−

−
=

%
&K
'K

(
)K
*K

1

1
12 7 1 6

4 91 6  ;

 (c) if u J n≤ −a a( ) ,12 7 , set a a( )n = ; else, set a a( ) ( )n n= −1 ;

 (d) simulate sequence a a( ) ,...,1 1 2N N+1 6> C  and but keep only the last N2  values of the sequence.

 According to Tierney (1994), Algorithm 2 generates a sequence of random samples whose

distributions converge to target distribution (6).  Intuitively, step (b) in Algorithm 2  can be

thought of as a stochastic version of stepwise optimization: when the value of the p.d.f.

increases, always step to climb; when the value decreases, only sometimes step down.
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Algorithm 2 proves quite efficient for identified VAR models even when the shape of posterior

(6) is very non-Gaussian and importance sampling becomes inefficient.

 Figure 2 reports results of the impulse responses to a monetary policy shock from Sims

(1986)’s overidentified six-variable VAR model.  The six variables are the 3-month Treasure Bill

rate (R), M1, GNP (y), GNP deflator (P), the unemployment rate (U), and gross domestic

business investment (I).  All variables are in logarithm except the interest rate and the

unemployment rate which are in an expression that already is divided by 100.  The model uses

quarterly data with Sims’s sample period 1948:1-1979:3.  The time horizon for all impulse

responses is 16 quarters.  The identifying restrictions follow exactly what is called “second

identification” in the original paper.  The prior specification explores the basic idea expressed in

the original paper but takes up the exact form as in Leeper, Sims, and Zha (1996)12.  The middle

line in Figure 2 is ML-estimated impulse responses, derived from ML estimates of ( , )a a+ .  The

two outer lines are .95 probability bands.13  These bands are computed from 1.8 million MC

samples by first drawing a  with Algorithm 2 and then drawing a+  directly from conditional

Gaussian distribution (7).14

 The first column of graphics in Figure 2 displays probability bands generated by ML distance

                                                

 12 The prior used here is simply a reference prior which is not influential on the characteristics of impulse responses.
Rather, it is designed to eliminate erratic sampling errors as the model becomes large and to reduce tendency of
overfitting the data in dynamic multivariate models.  See Sims and Zha (1997) for detailed discussion.
 13 Algorithm 2 is used to generate these bands.  In step (a) of Algorithm 2, scale factor “c ” is set at 0.25 and the

degrees of freedom “υ ” are set at 3.  The proportion of random draw a ( )n  at the n th simulation moving to new

point a , typically called “the value of jumping rule J n( , )( )a a−1 ,” is about 0.70.

 14 To monitor convergence, three parallel sequences are simulated with dispersed starting points.  Each sequence has
750,000 random simulations of which first 150,000 draws are discarded to ensure convergence.  As a result, there
are a total of 1.8 million effective draws.  Computing time is about 40 minutes for every 100,000 draws on Pentium
II.  Convergence criterion uses a measure called “potential reduction scale” constructed by Gelman et al (1995).
Such a measure weights both the mean of the three within-sequence variances and the variance between the three
means of sequences (see Gelman and Rubin (1992) and Gelman et al (1995) for details).  For all parameters,
potential reduction scale is almost 1 (below 1.002), which suggests a very high level of precision in simulations.  Of
course, for many practical problems, a much fewer number of draws (say, 100,000) are actually needed to achieve
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normalization.  It shows that monetary policy shocks generate both a liquidity effect (the interest

rate rises initially and the money stock declines steadily) and a contractionary effect (output,

price, and investment all fall and the unemployment rate rises for about one and a half years).

These results imply that ML-estimated impulse responses are quite informative.  Such statistical

reliability of estimated impulse responses could be distorted by other normalization rules.  The

second column in Figure 2 displays results produced from the normalization rule that restricts the

diagonal of A  to be positive; the third column displays results generated from the normalization

rule that restricts the diagonal of A−1  to be positive.  Both columns imply that the estimated

dynamic impact of monetary policy shocks is not useful or informative because almost all

impulse responses are statistically “insignificant”.  But the conclusion of “statistical

insignificance” is really an artifact of inappropriate normalization rules.  Although the model

analyzed here is more complicated than Example 1, some insights presented in the discussion of

Example 1 help explain why the normalization rules used for columns 2 and 3 of Figure 2 are at

odds with the shape of the likelihood.

5. Conclusion

In a simultaneous equations framework, it is well known that reversing signs of coefficients

in equations is simply an outcome of normalization that does not change the model’s economic

interpretation.  Traditional approaches to normalization are to restrict arbitrarily any non-zero

ML estimate to be, say, positive.  This paper argues that the shape of the likelihood or the

posterior distribution could be distorted by inappropriate normalization rules.  It discusses the

concept of normalization in the context of dynamic multivariate models and introduces the

method of ML distance normalization.  Moreover, the paper develops a new Monte Carlo

                                                

reasonable accuracy in approximations to the target posterior distribution.
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Bayesian algorithm for computing probability bands for impulse responses.  An example in the

existing literature is used to highlight ML distance normalization as a way of preserving the

shape of the likelihood.
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Figure 2.  Dynamic Responses to Monetary Policy Shock
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