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I. Introduction 

What accounts for the observed relationship between yields on short- and long-term 

bonds? A popular framework for the study of this issue involves the expectations hypothesis of 

the term structure of interest rates. According to this hypothesis, the interest rate on a long-term 

bond is the average of expected short-term interest rates over the duration of the long-tenn bond. 

An implication is that when the long rate is above the short rate, short rates should rise by the 

amount of the long-short spread. Another implication, noted by Macaulay over fifty years ago, is 

that if the long-short spread is positive, subsequent long rates should rise by a particular fraction 

of the spread. Conversely, when the short rate is above the long rate, subsequent long and short 

rates should fall. Numerous tests of these implications have appeared in the literature. 

Studies of the implications of yield spreads for movements in short rates indicate that 

there is a "predictability smile" in the tenn structure for post-WM U.S. data. That is, when the 

maturity of the long bond is three months or less, short rates generally move as predicted by the 

expectations hypothesis; for maturities between about three months and two years, short rates do 

not on average react to long-short spreads; and for maturities beyond two years, the long-short 

spread again predicts future short rate movements. A graph of the slope coefficients in a 

regression of subsequently realized average short rates on the long-short spread resembles a 

"smile": the coefficients are near unity at short horizons, near zero at intennediate horizons, and 

return toward unity at long horizons. 
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For movements in long rates, the "'smile" is like Mona Usa's "smirk." For very short 

maturities, long rates seem unaffected by the long-short spread, and for somewhat longer 

maturities, positive long-short spreads seem to signal reductions in future long rates.1 

There have been a number of attempts to explain features of the predictability smile and 

smirlc Because the complete image has become apparent only recently, these studies tend to focus 

on either the "trough" (the very low predictability at intennediate maturities) or the '1eft half' of the 

smile (for short and intennediate maturities). For example, Mankiw and Miron (1986) 

hypothesize that aspects of the predictability smile for post-1914 short rates can be accounted for 

by interest-rate smoothing by the Federal Reserve. McCallum (1994), Hardouvelis (1994), 

Rudebusch (1995), Dotsey and Otrok (1995), and Bekaert, Hodrick, and Man;hall (1995), extend 

the smoothing idea or offer related explanations involving time-varying risk premia. .. Peso 

problems," and measurement error. 

In this paper we take an alternative approach to explaining these empirical regularities, by 

working out the implications of two benchmark. theoretical models of the term structure for the 

relationship between long-short spreads and subsequent movements in long and short rates. 

These models, developed by Cox, Ingersoll, and Ross (1985, CIR) and Chen and Scott (1992, 

1993, CS), provide parsimonious characterizations of the dynamics of the tenn structure, and 

have been widely studied in the finance literature. However, no attempt has been made to work 

out analytically the implications these models carry for the ability of yield spreads to predict 

future interest rates. Our approach can be seen as complementary to the simulation approach of 

1 For evidence on the predictability smile, see, e.g., Wood (1964), Fama (1984), Mankiw and Miron (1986), Fama 
and Bliss (1987), Hardouvelis (1988), Mishkin (1988), Simon (1989), Campbell and Shiller (1991). Campbell 
(1995), and Roberds, Runkle, and Whiteman (1996). For the Mona Lisa smirk. sec, e.g., Campbell and Shiller 
(1991 ), Bekaert, Hodrick, and Marshall (1995), and Campbell (1995). 
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Backus. Gregory, and Zin (1989) and related papers. These studies examine various term-

structure anomalies using simulations of discretized CIR-type models. Our continuous-time 

approach. which is directed specifically at the predictability smile, trades off the generality 

obtained through discretization in favor of analytical tractability. 

Our primary motivation in undertaking this project is to determine whether there is an 

"off-the-shelf' explanation for the smile and the smirk, using well-understood models of the term 

structure. A secondary goal is to investigate to what extent these empirical regularities may be 

used to restrict the range of permissible parameter values of these and related models. 

Our results suggest first that both models are relatively successful in replicating the smile 

and the smirk. There is of course a large literature which suggests that the models are empirically 

implausible along a number of dimensions. What we have shown is that the endogenous term 

premia embedded in even the simple CIR-type models are enough to explain most of the 

deviations from the expectations hypothesis which have been found to characterize the term 

structure data. 

Second, consistent with the conjecture of Mankiw and Miron ( 1986) and subsequent 

work. we fmd that there must be substantial persistence in the short rate (or one component of the 

short rate) to generate these patterns. Third, the cost of matching the patterns is that other 

characteristics of the short rate cannot be matched to the data. though the difficulties in doing so 

are smaller for the two-factor model. 

IL Econometric Studies of the Expectations Hypothesis 

Acconling to the expectations hypothesis, long rates can be written as averages of expected 

futUie short rates. This implies that current spreads between interest rales at diffemlt maturities 
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predict future interest rate changes. To see this, let R.,. denote a longer-term, n-period rate of 

interest, and let Ri,m denote a shorter, -m-period rate of interest, where m divides n. The risk-adjusted 

expectations hypothesis then states that the n-pericxl interest rate at time t, R,,n, is the average of the 

current m-period interest rate Rt,m and current expectations alx>ut future m-period rates, plus a time-

invariant risk premium; that is, 

1 .t:-1 n 
R,,,. =-"I,E,~+llli,,,. +c, k=-

k f-O m 
(I) 

where E,R.,.<m is the expectation at time I of the m-period interest rate starting in period t + k and c 

is a term premium which may depend on m and n but not t. 

To use the hypothesis to predict short-term rates, we follow the standard approach in the 

literature (e.g., Campbell and Shiller (1991)) by subtracting R..., from both sides of(!), giving 

1 t-1 

-k I_E,R, • .,, -R,~ = R,,-R,~ -c . ... 
The right side is just the cmrent spread between n- and m-period interest rates. This indicates that 

the difference between the average expected m-period rate and the curmtt m-period rate is equal to 

the cumnt spread between n- and in-period rates plus a risk premium. 

The expeclalions hypod>:sis can therefore be msted by regressing the realized difference 

between the average m-period rate and the cmrent m-period rate, (!Jk.)I.R,-., - R,,.,. s .... ~. on the 

anrem spread. R..a - R..- • s"'"'>, i.e. 

1 t-1 

- I.R.-~-R.~ =a+P(R.. -R..)+•, ..... 
k~ 

(2) 

The expectations theory implies that fl should be unity. Thus, the curmtt spread should be a good 

predictor of the future average change in short-term rates. 

To see the implicalions of the expectations hypod>:sis for future long rate changes, note that 

if (I) bolds, then-period iDl=st rate should also equal an appropriate weighted average of the m-
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period rate and tho (n-m)-period rate. This implies, after scaling, that tho spmad should also predict 

short-run changes in the long rate, i.e., 

,C••l s~sl·~l = E 11 - " 
I t t'"'t+111,1J-• '"'t..- ' n-m 

(3) 

This implication of the expectations hypothesis can be tested by reg=sing tho realiml value 11,....,.. 

-R on s(n.-), 
Ill 1,.11 ' • 

(4) 

The expectations theory predicts that a will be unity. 

Existing evidence on the performance of equation (2) is summarized in Figures 1 and 2. 

Figure 1 displays estimates of p from regressions using postwar U.S. data, in which m = n/2; i.e., 

the maturity of the long rate is twice that of the short rate. Figure 2 displays estimates of p from 

regressions in which the maturity of the short rate is one month or less. 

The predictability smile is evident in each of the figures: estimated values of p from 

postwar U.S. data follow a characteristic U-shaped pattern. That is, estimates of P initially fall 

with increasing n from a value near unity to values close to zero by the time n equals six months. 

For n between six months and two years, p is close to zero. At maturities n greater than two 

years, Prises slowly with increasing n. 

Very different results have been obtained in studies that estimate equation (2) for 

different data sets. Mankiw and Miron (1986), for example, estimate (2) using pre-1914 U.S. 

data and obtain values of P close to unity for n equal to six months and m equal to three months. 

Roberds, Runkle, and Whiteman ( 1996) estimate (2) using daily data from the fed funds market 

from November 1979 to October 1982, and again obtain estimates of P close to unity for m equal 

to one day and n equal to one, two or three months. Kugler ( 1988, 1990) also finds that estimated 
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values of JJ closer to unity, when (2) is estimated using postwar data from Germany and 

Switzerland. Marty (1990) finds similar results for 1975-1984 data on Euro interest rates for 

England, France, and the Netherlands. 

Existing evidence on the performance of equation (4) is summarized in Figures 3 and 4. 

Again, in Figure 3 the long rate maturity is twice that of the short rate and in Figure 4 the short rate 

maturity is fixed at one month (or less). 

We characterize the panems in Figures 3 and 4 as a ''smirk". In particular, if m is fixed at 

one month, then 0 falls monotonically with increasing n, from a value near zero for n equal to 

two months, to values as low as -4 for n equal to ten years. On the other hand, if m=n/2, then 

estimates of 0 display a U-shaped pattern as a function of n, falling from a value near zero for n 

equal to two months to a minimum value of -1 around n equal to two years, and slowly rising 

thereafter. 

Maokiw and Miron (1986) argue that the failure of long-short spreads to predict future 

short rates for (intennediate maturities) results from a combination of time-varying term premia 

and an unpredictable short rate. Following Maokiw and Summers (1984), Maokiw and Miron 

note that in the presence of time-varying term premia. when changes in the short rate are not 

predictable (i.e., the short rate is a random walk), the estimate of the slope coefficient f3 in 

equation (2) will approach zero. As the variance of changes in the short rate increase, the 

coefficient estimate approaches the .. expectations hypothesis value" of unity. Mankiw and Miron 

note that changes in short term rates became much less predictable after the founding of the Fed, 

and they attribute the more recent "failure" of the expectations theory to the smoothness of the 

short rate caused by Fed actions. Though Mankiw and Miron were specifically interested in the 

low slope coefficient estimates for intermediate maturities, one of their results (their Figure m 
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carries potential to address the entire predictability smile: when the correlation between the term 

premium and the expected change in the short rate is negative, slope coefficient estimates of f3 in 

(2) initially fall from zero as the variance of the change in short rates rises, and then eventually 

tum up, become positive, and approach unity. Thus with the right sort of correlation between 

unobserved term premia and expected changes in short rates, a wide range of slope coefficient 

estimates can be accommodated. 

Rudebusch (1995) provides an explicit model of a smooth short rate. Specifically, he 

models the funds rate as temporary deviations from a gradually changing and persistent target. 2 

This makes the fed funds rate follow a type of Markov-switching process which embodies 

nonlinear dynamics coupled with substantial persistence. After calibrating a model for the short 

rate which incorporates these features, Rudebuscb simulates short rate data, and builds simulated 

long rate data using the expectations hypothesis. The simulated data are used to calculate 

estimates of equation (2). The I-statistics from the resulting estimates display a declining pattern 

as the maturity of the short rate increases, thus producing a version of half of the predictability 

smile. Rudebusch does not report coefficient estimates of f3 from equation (2) because the 

estimates depend on the variance of term prem.ia (as in Mankiw and Miron) which Rudebusch 

chose not to include in his model. 

Dotsey and Otrok (1995) utilize a short rate process much like Rudebusch's, but also 

provide an explicit treatment of time-varying term premia Dotsey and Otrok first present 

simulations of the term structure in which the short rate follows a persistent, nonlinear process 

and long rates are modeled as weighted averages of expected future short rates. For these 

2 Balduzzi, Bertola, and Foresi (1993) use a similar setup to explain features of the smile. 
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simulations, long-short interest rate spreads on average correctly predict future movements in 

short rates. The same result holds when white noise term premia are added to long rates. Dotsey 

and Otrok then construct time-varying term premia by simulating ARCH-M models which have 

been fit to observed term premia in postwar U.S. data. When these simulated premia are added 

to long rates, the resulting estimates of versions of equation (2) roughly reproduce the 

predictability smile. 

McCallum (1994) offers a related but more behavioral explanation involving the Fed's 

objectives. In McCallum's setup, the Fed favors stable short rates, but is willing to tolerate some 

short rate volatility in order to pursue countercyclical policy. That is, the Fed seeks to smooth the 

short rate, but will adjust it when the absolute long-short spread is high. As McCallum notes, for 

the purpose of explaining term structure anomalies, the source of the feedback is unimportant. It 

matters not. for example, whether policy tightening in the face of a large long-short spread is 

becaose the spread is a good predictor of future output growth or an indication that recent policy 

has been loose. Upon coupling bis short rate process with the expectations hypothesis and a 

time-varying term premium, Mccallum shows that the probability limit of the estimate of /3 in 

(2) depends on the degree of persistence in the term premium and the Fed's responsiveness to 

long-short spreads in setting the short rate. Even with highly persistent term premia and 

responsive short rates, the estimates can still fall far short of unity. 

Relatively few studies have advanced explanatinns for the long-rate "smirk." In one 

which has, Bekaert, Hodrick, and Marshall (1995) hypothesize that this pattern can be explained 

by a regime-switching model of the short-rate, coupled with a version of the ''peso problem," in 

which agents rationally anticipate a high-inflation regime that is underrepresented in historical 
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data. They find this effect is not strong enough to explain the long-rate smirk in postwar U.S. 

data. Hardouvelis (1994) considers a number of explanations for this pattern, including white-

noise measurement error in the long rate, additive fads, market overreactions, and time-varying 

risk premia. He finds that none of these explanations can account for the deviations from the 

expectations hypothesis observed in postwar U.S. data. 

The most common themes in these attempts to explain the term structure anomalies are 

that smooth short rates and time-varying term premia seem necessacy. fu the next section, we 

begin our study of whether the most ready source of both--the typical implementation of the term 

structure model of Cox, Ingersoll, and Ross (1985)--deliven; the predictability smile and smirk. 

m. Implications oftbe Cox-lngersoll-Ros.s Model for Spread Regressions' 

In the continuous-time CIR model, a representative agent with constant relative risk 

aversion faces production opportunities which evolve according to movements in a single state 

variable, which is in tum described by a first-order stochastic differential equation. This implies 

that the instantaneous interest rate is proportional to the state variable (and thus can be thought of 

itself as the state variable) and evolves according to a process of the form 

dr = rc(IJ- r)dt +<T..Jrtk (5) 

where r is the interest rate. K is the "speed of adjustment" of the interest rate toward its long-run 

value 0, a is the instantaneous variance. and z is a one-dimensional Wiener process. This 

3 CIR was developed as a general equilibrium model of the real term structure. In this section we follow the tradition 
of the finance literature (e.g., Longstaff and Schwartz (1992) or Chen and Scott (1993)) in using CIR as a benchmark 
model of the nominal term structure. 
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process bas the feature that interest rates cannot become negative, and the absolute variance of 

the interest rate increases with the interest rate itself. 

With this process for the short rate and the assumptions made concerning preferences, 

CIR show that the time-t yield to maturity on a pure discount bond paying one unit of the 

consumption good in 't periods can be written 

R,,, = (B(T)r, -In A(<)) IT 

where 

A(<)= 21" 
[ 

(1r+l+r)t12 ]ZOJta2 
(IC+A+y)(e" -1)+2y 

B(T) =---2~(•_"_-_l~) __ 
(IC+A+y)(e" -1)+2y 

( "' r= (IC+ .<J' +2cr') 

(6) 

(7) 

Thus the yield is an affine function of the instantaneous short rate, and depends upon the long-

run level of the short rate 0, the degree of mean reversion K", the volatility of the short rate cr. and 

the "market price of risk" A -- the covariance between changes in the interest rate and the market 

portfolio. 

The structure (5)-(7) is highly restrictive, and some observed yield curves cannot be 

produced using it. For this reason, a variety of modifications to the setup have been pursued. 

One we shall explore presently was provided by Chen and Scott (1992). Adopting an approach 

which has become common in the literature, Chen and Scott begin with a specification of the 
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instantaneous short rate (rather than the underlying state variables.) The short rate they consider 

is simply the sum of two independent processes of the form of (5), each with its own 8, K', and (J. 

In this case, the yield curve is of the form 

(8) 

with A,(T) and B,(~) given by formulas analogous to (7).4 

To determine the implications the CIR model carries for estimates of coefficients m 

regressions (2) and (4), it will prove useful to work through a simple example often studied in the 

literature, namely the case in which the maturity of the long rate is twice that of the short rate. 

Thus consider equation (2) for this special case, i.e., 

_l_[R. ,-R, ]=a(n . .'.:)+P(n.n'{R .. ,-R, )+e ,. 
2 l't"z 2" 2 2 J\ 1'' r+z 

The population estimate of P( n,%) is given by the covariance of the right-hand-side variable 

with the left, divided by the variance of the right-hand-side variable. Using (7), 

and 

cov{_I_[R, ,-R, ].(R,-R, )}= 2 -J+- -,l -I 
2 2 2 2' 

Thus 

4 A very similar model is presented in Longstaff and Schwartz (1992). 
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An analogous procedure may be used to derive a population estimate for the slope coefficient in 

equation (4): 

The limiting behavior of these estimates for the more general case in which the maturity of the 

long rate is a multiple (other than 2) of the short rate maturity is explored in detail in a set of 

technical appendices (available from the authors on request, attached to this version of the 

paper). For purposes of compa.-ing our setup to the expectations hypothesis as embodied in (1), 

perhaps the most important results are that as n ~ oo , 

(9) 

and when n.l.O 

(10) 

The limiting value for f3 in (9) implies that CIR will at least replicate the right endpoint of 

the predictability smile. As the maturity of the long rate n lengthens, then f3 will be driven to 

unity, irrespective of the values of the model parameters. Similarly, if the market price of risk 

A=O, i.e., if the model does not deviate too far from "local" risk neutrality, then (10) reveals that 

the left endpoint of the predictability smile will be approximately equal to unity. 
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Limits (9) and (10) are also informative with respect to the ability of the CIR model to 

replicate the smirk. According to ( 10), it should he possible to obtain estimates of 8 near unity 

for very short maturities, so long as the market price of risk remains sufficiently small. However, 

(9) shows that for very long maturities, estimates of 8 will tend to unity irrespective of the model 

parameter values. Hence the CIR model cannot replicate the negative long-maturity estimates of 

.5obtained for postwar U.S. data. 

The behavior of ~ n, ~) and <5( n, ~) at intermediate maturities can be parameteriz.ed 

(the technical appendices provide details) by the ratio q., defined as 

I 

( 
var( 11,.) )' 

q. = var( E,M,.,,,2...,2 ) 

where the risk premium 6 ,, is defined by 

8,,11 = R,,,. - R,,1112 - ~ E,( R,.n12,,u2 - R, ... 11) 

and where '1 is the gapped difference operator ( 1- L""). In words, q. is the ratio of the standard 

deviation of the risk premium incorporated into the long rate, to the standard deviation of the 

forecast change in the short rate. Mankiw-Miron (1986) and others have noted that ti( n, ;) can 

be written as 

where 
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The one-factor structure of CIR implies perfect correlation between movements in the term 

premia and forecast changes in the short rate, implying that p. = 1, and 

1 /3 =-. 
II l+q,. 

(11) 

Hence the "smile" pattern in /3. requires a fairly sharp peak in q. at n approximately equal to 

one year. 

It is also possible to show (see technical appendix D for details) that 8 depends on q. via 

o(n.")= l-2q •. 
2 1+2q. 

(12) 

Equation (12) shows that it is possible to obtain negative values of 0 so long as q,. exceeds two. 

Since 0 is decreasing in q,., a sharp peak in q,. at n approximately equal to one year, i.e., the 

pattern necessary to produce the smile in f3, will also produce a "smile" in Owith a trough at the 

same maturity. 

Another special case of equations (2) and (4) often considered in the literature is where 

the maturity of the short rate is fixed at 3 months or less, and the maturity of the long rate is 

allowed to vary. For this case we can show that the population value of J3 in regression (2) is 

given approximately by 

n m 

where the approximation becomes exact as m .!, 0. The approximation of J3 results from the 

following computationally convenient approximation which will be valid for small m: 
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It is also straightforward to show that the population value of the slope coefficient in equation (4) 

will be given by 

-= B(n-m) B(n) e _ _, ____ - ----
Ii= li(n,m)"' n- m ~m () n 

m Bn Bm ---
n m 

For small values of the short maturity m, the limiting values of f!(n,m) and li(n,m), the 

right and left endpoints of the smile, and the left endpoint of the smirk are the same as in the case 

n=2m given by equations (9) and (10). (See the technical appendices.) For this case, the right 

endpoint of the smirk is given by 

limlimli(n,m) = ZJ< 
,, __ mJ..o K+A.+r 

It is also possible to show that P(n,m) and li(n,m) can be written as 

fl=-1-
l+q 

l li=-
1-Q 

(13) 

where q (Q) is the ratio of the standard deviations of the appropriate risk premium to the standard 

deviations of forecast changes in the short (long) rates. 

The analytical results, taken together, suggest that explaining the smile and the smirk will 

require that the CIR model generate highly variable risk premia for some maturities, yet not 

deviate too far from local risk neutrality, i.e., A.= 0. If local risk neutrality is violated, from (10) 

it is impossible to obtain a left endpoint of the smile close to unity. However, equations ( 11) and 
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( 12) show that in order to generate the smile and the smirk, movements in risk premia must be 

large, relative to forecast changes in interest rates. Since the market price of risk is necessarily 

small, this suggests that the short rate should display a high degree of persistence, i.e. that Pr 

should be close to zero. 

Equations (13) will hold exactly for one-factor models such as the CIR model, but will 

also hold approximately for multifactor models when (1) the maturity of the long rate n is 

"large," and (2) one of the factors is more persistent than the others (which is typically the case). 

The inability of various tenn structure models to explain the smirk at the long end of the U.S. 

tenn structure results from fact that empirical estimates of Qare quite large (Hardouvelis(l994) 

reports estimates on the order of 30), whereas equation (13) implies that values of Q slightly 

larger than unity are required in order to generate the highly negative estimates of 0 that are 

observed in the data. Efforts to explain the smirk pattern have, in effect, explored the possibility 

that Q is mismeasured. Hardouvelis (1994), for example, explores the possibility that observed 

variations in risk premia are augmented by factors such as measurement error, fads, or 

overreactions (i.e., that the numerator of Q is too large}, while Bekaert, Hodrick, and Marshall 

(1995) suggest that small variations short rates can lead to large variations in expected long rates 

(i.e., that the denominator of Q is too small). 

IV, Empirical Results 

IV.1 Single-factor model. To judge how well CIR lits the empirical regularities 

displayed in Figures 1-4, we conducted a search over the CIR parameters JC, ,1., and G with the 
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objective of minimizing squared deviations of the model from the average of empirical estimates 

displayed in Figure 1.5 This procedure yielded the following parameter values: 

IC=0.049 
A.= --0.015 

a'= 0.81. 

(14) 

As suggested by our analytical results, the fitted value of IC is quite close to zero, implying a very 

persistent. though still stationary short rate process: the implied one·month autocorrelation of the 

term structure is e-1"'12 =.9959. The fitted value of A is negative and quite close to zero. The 

implied left endpoint of the smile is 1</(1<+A.)=l.45 l l. 

In the CIR model the sum 1<+A. has a special interpretation. From equations (6) and (7) it 

is evident that the CIR model prices the term structure "as if' local risk neutrality held and the 

short rate followed a process 

dr= ld1dt-(1r+ A.)rdt+a..frdz (15) 

Thus K+A represents the rate of mean reversion for the "equivalent martingale measure" in (15). 

The fitted parameter values (14) imply that (IC+A.)=.0340, which means that in order to replicate 

the smile and the smirk the term structure must be priced as if the short rate were almost 

nonstationary. 

The values of /3 and o implied by the parameter values in (14) are displayed as "CIR" 

values in Figures 1-4. As might be expected, the fitted parameter values do a reasonable job of 

replicating the smile when the maturity of the short rate is half that of the long rate (Figure 1 ). 

Less obviously, the fitted parameter values do a reasonable job of replicating the smirk when the 

5 Note that the CIR parameter 8 does not enter into the expressions for f3 or 6. 
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maturity of the short rate is half that of the long rate (Figure 3). When the maturity of the short 

rate is fixed at one month. the model fit deteriorates somewhat. Figure 2 shows that the values of 

fJ implied by the fitted CIR model fit the data for long maturities less than one year, but that they 

rise too slowly with the long maturity, relative to the data for long maturities beyond one year. 

Likewise, Figure 4 shows that the implied values of 0 fall with increasing maturity, for 

maturities up to roughly one year. For longer maturities, the model implies that 0 will rise slowly 

towards its positive asymptotic value, whereas the data require that 0 continues to fall with 

increasing maturity. 

Although the fitted CIR model is consistent with many of the empirical regularities 

embodied in the smile and the smirk, it is well-known that the one-factor ClR model does not 

provide a good approximation to the term structure. In terms of the fitted model, the empirical 

shortcomings of the CIR model are strikingly apparent along several dimensions. 

First, the fitted values of IC and a 2 in (14) are not close to those obtained by researchers 

estimating discretized versions of equation (5) using postwar U.S. time series on various short 

rates.6 In these studies, reported estimates of IC tend to be much larger and estimates of u 2 much 

smaller than those required to match the smile and the smirk. As a consequence it is impossible 

to match the first and second moments of actual short rates using the values of IC and a 2 given in 

(14). To see this, note that the unconditional mean of the short rate process in CIR is given by 

E(r) = e, while the unconditional variance of the short is rate is given by var(r) = cr'e I (21e). A 

realistic value for first moment requires a value of 9 say, on the order of 9 = 5% . However this 

6 See, for example, Chan et al. (Im); Bliss and Smith (1994); and Pagan, Ha11. and Martin (1994). 
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value, combined with the values of 1Cand a 1 in (14), implies an unconditional standard deviation 

for the short rate of 64%. Forcing the second moment of the short rate to a reasonable value, say 

corresponding to an unconditional standard deviation of 2.5%, implies a mean value for the short 

rate of less than .01 %. 

Second, the CIR model cannot produce the declining pattern of estimated t-statistics for fJ 

in equation (2) noted by Rudebusch (1995). To check on the model's implications for these t-

statistics, we approximated the asymptotic distribution of the estimated slope in (2) as 

J'i(/3 0 ,..; -/3) - N(O,a~v;) (16) 

where JT is the appropriate sample size, f3oLS is the standard OLS estimate, and cr~LS is the 

OLS estimator of the asymptotic variance of f3 oLS , i.e., 

2 var{LHS)-/32 var{RHS) 
" - --'----'-c'-~-'--~ ov; - var{RHS) (17) 

Where LHS and RHS refer to the dependent and independent variables in (2), respectively. 

Carrying out this exercise for the parameter values in (14), taking n==2m and T=400/n (a realistic 

value for postwar sample sizes where n is measured in months) yields an asymptotic t-statistic of 

roughly 0.64 at all maturities of less than 10 years. This flat pattern is in sharp contrast with the 

"smile" pattern oft-statistics reported in the literature. 

IV.2 Two-factor model. A desire to reconcile the apparent success of the single-factor 

CIR model at replicating the smile and the smirk with its apparent failure along other dimensions 

led us to consider the two-factor CS model. Fitting the CS model to the average estimates for f3 

reported in Figure 1 yielded the following values: 



JC,=l.8 

.:t, =-1.7 

a~ =.024 

JC,= .05 
.:t, =.06 
er; = LO. 
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(18) 

In contrast, Chen and Scott report the following estimates, based on monthly term-structure data 

over the period 1960-1987: 

><, = 0.77 
.:t, = --0.12 

"~ = 0.017 

><, =0.00090 
.:t, = --0.041 
a; = 0.0028. 

(19) 

Like Chen and Scott's, our first factor is strongly mean-reverting, and the second factor is nearly 

a random walk. though in each case, our estimates suggest greater mean reversion than do Chen 

and Scott's. But there is an important difference between the volatilities: both of our factors are 

more volatile than Chen and Scott's. The implications of this difference are evident in Figures 5-

7, which display population values of expectations hypothesis regression coefficients: the pattern 

of J3 values of implied by these parameter values is displayed in Figure 5 for the case where 

n=2m; Figure 6 displays the pattern of implied values of 8 for the case n=2m; aod Figure 7 

shows the values of 0 when m is fixed at one month. The fit of these curves for our parameter 

values ("CS Best") is essentially the same as for the one-factor model of Figures 1-4. The Chen-

Scott parameter values ("CS ML"), on the other haod, fail to produce the smile, aod only produce 

the smirk at longer maturities. 

The Chen-Scott parameter values were estimated to cause the model to fit a variety of 

characteristics Of the data, so it is unsurprising that they fail to produce the smile and smirk as 

well as ours do. Put another way. with our parameter values, the CS model will perform less 

well in matching some other moments in the data Yet our version of the two-factor model does. 
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in contrast to the one-factor model, manage to roughly match the unconditional moments of the 

short rate. For example, the parameter values in (18), in combination with the parameter values 

61 =.05 and fJ 2 =.0005 , imply the following unconditional moments for the short rate: 

E(r) = 6, +62 = 5.05% 

var(r)'" = cr,6, + cr,6, =7.3%. 
[

2 ']"' 
2JC1 2K2 

The implied unconditional standard deviation for the CS model is much closer to the actual value 

for postwar U.S. data on short-maturity interest rates (=-2.5%) than the one-factor CIR model. 

Our version of the CS model can also deliver a pattern of declining estimated t-statistics 

in f3 for short maturities. This is readily apparent from Figure 8, which gives asymptotic t-

statistics for /J implied by parameter values ( 18) in the case that n=2m and T =400/n. 

V. Conclusion 

In the context of a model which pennits analytical derivation of the complete term 

structure, a smooth (persistent) short rate and time-varying term premia do seem necessary 

(Mankiw-Miron, 1986; Hardouvelis, 1994; McCallum, 1994; Bekaert, Hodrick, and Marshall, 

1995; Dotsey and Otrok, 1995; Rudebusch, 1995) to explain existing results on implications of 

long-short spreads for subsequent movements in long and short interest rates. Considerable 

discipline is imposed by this framework - term premia are highly restricted, and there is no 

measurement error. It does fall short in some respects, particularly in producing sufficient 

volatility of long rates, but the framework goes a long way toward explaining term structure 
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facts. and signals dimensions along which modifications are necessary if models are to be 

designed which are consistent with a more complete set of such facts. 
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Appendix A: Some Analytical Results concerning the Slope Coefficient in Equation (2) 

We consider the limiting behavior of f3 in the regression (2) 

1 J-1 

J LRl+llli.m -R,,,,, =a+ /3(Rz,,. -R,,,,,)+et+lll},111 , ... 

30 

where n=lm and the term structure follows the CIR model. Two special cases considered in the 
paper are the first case where 2m=n, for which 

(Al) 

and the second case for which m--0ne "small" time unit and n> l, for which 

• _I (l-e-o}- B(m) 
/3 ~ JJ(n,m) = nJC !!Jri)__!!(,'!!J_ m (A2) 

n m 

where Kis the mean reversion parameter from the CIR model and B(n) is given by the standard 
formula 

( 2(e~-1) 
B n)= (y+J.+JC)(e~-1}+2y (A3) 

The following facts concerning B(n) are immediate and useful in deriving the results that follow: 

B(~)=limB(n)= 2 
11-+oo 'fC+y+A. (A4) 

B(O)=O (A5) 

(A6) 

(A7) 

We can now state and prove the following results concerning fJ: 
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Result 1: 

_ _I (1-e-~)-l 
limtJ(n,m)= nl< ( ) 
,,,in B n --1 

n 

Proof: Follows immediately from (A6). 

Result 2: 

lim ~(n,m) = 1 
"-

Proof: 
1,_l_l (l-e-~)]- B(m) !JJm) 

. ;,( ) "~'LnK m m 
!~" n,m = li-l B(n)]- B(m) = B(m) = l. 

"~ln m m 

Result 3: 

limtJ(n.n)=l 
"- 2 

Proof: . ( n) B(~) ltmtJ n,- = ( ) ( )(-1)=1. 
11-->00 2 Boo -2Boo 

Result 4: 

limlim~(n,m) =-"'-
11l.o ,,,J.o K +A. 

Proof: From result l, 
_ _!.(1-e-~)-n 

limlimtJ(n,m)=lim~"'~---
"J.o ,,,Ui ,,J.o B(n)-n 
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Since both the numerator and denominator of this limit tend to zero, we evaluate the limit using 
L'HOpital's rule (twice). First we note that for the numerator of the expression above 
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d2 d2 
-

2 
(numerator) = - Ke-'°' :::} - 2 (numerator )I ,.=0 = - K' 

dn dn 

Also, for the denominator 

d' . [(r+k +.<)(•" -1)+2r]' 4r'•" -sr'•"[(r+k+ .<)(e" -1)+2r] 
-

2 
( denonunator) = - 4 -

dn [(r+ .. +.<)(•"-l)+2r] 

-, (denominator """ = , =-(K'+.1.) d' ~ 16y'[r-(r+ .. +.<)] 
dn 16y 

Taking the ratio of the two derivatives gives the desired limit. 

Result 5: 

lim.B(n. n)=-K' 
.lo 2 .. +.i. 
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Proof: By definition, Jim .B(n. n) = I' 11.l.O 2 ,..).o 
. We again employ L'H6pital's rule. 

d
2 

I {n) d ( -"' ) I K' -
2 

(numerator)""' =-B - e 2 -I 1.-o =-(1)(-K')=--dn - 2 2 d(n/2) 2 2 

Recall from Result 4 that 

lim B"(n) = -(K'+?.) 
.lo 

Which implies that 

d2 
• (I) (n) I dn,(denommator) • .,=B"(n). .. -2 

4 
B" 2 l .... =-(K'+?.)+z(K'+.1.)= 

Taking the ratio of the two derivatives gives the desired limit 
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Appendix B: Some Analytical Results concerning the Slope Coefficient in Equation (4) 

We consider the limiting behavior of t5 in the regression ( 4) 

R1+m,n-m -R,.n = y+t5~(R,,n -R1.m)+u,+m.n-m • n >m n-m 

When the term structure is determined by CIR, then 

-~ B(n-m) B(n) 
e ,.-··-----

• '( ) n-m n-m n u=u n,m ,,,_ ( ) ( ) m Bn Bm ----.,.--
n m 

(Bl) 
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where rcis the mean reversion parameter from the CIR model and B(n) is given in equation (A3). 

Result 1: 

limo(n. n)= 1 ,, ..... _ 2 

Proof: By definition, 

~ ( ) -- n 
2e 2 B - -8 n 

( n) 2 () . ( n) 2·0·B(~)-B(~) 
li "·2 = B(n)-2s(~) =>~li n,2 = B(~)-2B(~) =L 

Result 2: 

limli(n,m)= (1-"11)B(n)-nB'(n) 
-"0 B(n)-n 

Proof: Using (A 7) we obtain 

To evaluate the above limit, we evaluate the numerator using L'HOpital's rule, i.e., 
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I' d [-- B(n-m) B(n)] 
Ii {_l_[e __ B(n-m) _ B(n)]}= ~lJl;t;;; e n-m -n-
.lJI m n-m n 1. dm 1m-

,,.J.o dm 

=.!!..._[e-"" B(n-m) B(n}JI =- B'(n) +B(n).!!..._(~)I 
dm n-m n -o n dm n-m _, 

Dividing the last tenn by [B(n)/n]-1 gives the desired result. 

Result 3: 

Iimlimo(n,m)= JC-A. 
,.J.o mJ.o K: +A 

Proof: From Result 2, 

I. 1im "( ) 1. (I-1<11)B(n)-nB'(n) 
1m v n,m = lffi •'° •'' •'° B(n)-n 

To evaluate this ratio we successively apply L'HOpital's rule, yielding 

d2 dl I 
-

2 
(B(n)-n) = B"(n) =>-2 (B(n)-n) =-(JC+.<) 

dn dn -

from Appendix A, Result 4, and 

d 2 d d 
-

2 
[(!- 1<11)B(n)-nB'(nl] = B"(n)-JC-[ B(n)+nB'(n )]--[ B'(n)+ nB"(n)] 

dn dn dn 

= B"( n )-2Jdl'( n )- k11B"(n )-28"( n )- nB-( n) 

34 

=> d', [(!- 1<11)B(n)- nB'(nlJ\ = - B"(n) \ -2Jdl'(n) \ =JC+ A.-2JC =-(JC-A.) 
dn ..... - -

Taking the ratio of the two derivatives gives the required result 
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Result4: 
limlimo(n,m)= 

2
1< 

11-- ,,,Ui K+A.+y 

Proof: Using (A4), Result 2, and the easily verified fact that limB'(n) = 0, 
H• 

B(n) _!dl(n)-B'(n) O-!dl(~)-0 1< 
lim~c5(n,m)=lim n = =-"---·- ·- B(n) _1 0-1 1<+A.+y 

n 
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Appendix C. Notes on the Mankiw-Miron (1986) Decomposition of the Slope Coefficients 
in Equations (2) and (4) when n=2m. 

In the case that the maturity of the long rate (n) is twice that of the short rate (m), equation 
(2) takes the form 

(Cl) 

As noted by Mankiw-Miron (1986, p.) and others, we can decompose the yield spread 
R,, - R,,n as a weighted sum of an expected future change in the short rate plus a risk premium, 
i.e., 

where the equation above defines the risk premium Br..,. We can similarly decompose the UIS of 
equation (Cl) as 

I ( ) I I 2 R,+n12,n12 - R,.1111 = l E,AR,+1112,,,12 + zE,+,.n,1112 

where L1 is the gapped difference operator (l-L"'2 ) and e1+ntz,11tl is the forecast error. Since the 

forecast error is uncorrelated with the yield spread (R,,,. -R,.n12), we can rewrite {J in equation 

(Cl) as 

where 

and 

{3= cov(LHS,RHS) 
var(RHS) 

cov( UIS.RBS)=~ var( E1 6.R.,+,.12 .11 12 )+~cov(AR,+nll,ll/l•8, ... ) 

var( RHS) =~var( E1M 1+1112,,,12 ) + ~cov(E,6.R.,+.uz,11/2•8 1,,.)+ var(e, ... ) 

Which implies that {3 may be written as 

{3= 1+2pq 
1+2pq+4q2 

where 

(C2) 



Technical Appendix for ''Endogenous Term Premia and Anomalies ... " 37 

( var(e.,) )± 
q = var( E,AR.,+1112.1112) 

If the term structure follows the CIR model, then the following must hold (ignoring constant 
tenns) 

where r(I) is the instantaneous rate and B(n) is given by (7) in the text. Hence the correlation 
between the expected change in the short rate and the term premium will he given bY p = ±1 
according to the sign of 

For the range of the parameters (IC,A.,o") considered above, sgn(C3)=-l which implies p=l. 
Substituting into (C2) we obtain 

l+q 1 
/3= 1+2q+q2 =-1+-q (C4) 

Hence a "smile" pattern in f3 is implied by a sharp peak in q at intermediate maturities. 

We can also use q to characterize the slope coefficient Din equation (4) when n=2m, i.e., 
in 

R,+.n..-n -R,,. = r + 8(R,.11 - R,,,u2)+ "l+n/2.,11/2 (CS) 
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Rewrite this equation as 

R1+1112,,,12 - R1,,.12 - R,,,. + R1"'12 = Y + 0( R,.n1,. - R,,,.n) + U1+nn.n12 

¢:::> EtflRt+n/2,1112 +~e/+1112.n/2 -(81.n +~Er~+n/2,11/2) = y+O(Br.11 +~E,~+1112,1112}+u1+1112.1112 

Using (C6) we can write o as 

where 

o= cov(LHS,RHS) 
var(RHS) 

cov( LHS,RHS) =~ var(E,M,,,,,,,12)-var(6,,) 

var(RHS) =~var( E,~+1112 ,,, 12 )+ var(B, ... )+cov( E,Mi+rt1z.11n ,81,,.) 

As was the case with f3, we can further simplify the expression for 0 to 

1-4q' 1-2q o= =- whenp=l 
1+4q'+4pq 1+2q 

(C6) 

(C7) 

Equation (C7) implies that o is decreasing in q. Hence, when q is peaked at a maturity around 
n=I year, owill have a minimum at this maturity. 
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Appendix D. Notes on the Mankiw-Miron (1986) Decomposition of the Slope Coefficients 
In Equations (2) and (4) when m=O and n is Large. 

We first consider the decomposition of f3 in equation (2), i.e., in the regression 

1 /-\ 
J I,R,.~~ -R, .• =a+ fl(R,, -R,~)+e, • .,,. 

i=O 

where n=Jm. Assume for simplicity that m=O so that we can approximate (2) by its limit as mJ..o, 
i.e., 

~ f: r(t + t)dt- r(t) =a+ fJ[ R,. - r(t) ]+ e(t.n) (DI) 

Define the risk premium B(t,n) as 

I I" 9(t,n) = R,, -- E,r(t+t)dt 
n o 

It is convenient to rewrite (D 1) as 

t.(t ,n) + e(t,n) =a+ fl[ 9(t ,n)+ t.(t,n)]+ e(t ,n) (D2) 

where 

Ii" t.(t,n) =- E,r(t+t)dt-r(t) 
n o 

and e(t,n) is the foreca-.t error associated with .d. The fonn of (D2) makes it evident that we can 
write fl as 

where 

fl= var(t.)+cov(O,_t.~) ~ 
var(t.)+ 2cov(9, t.) + var(O) 

p=corr(9,t.) 

q=[•ar(e)ii 
var(t.)J 

l+pq 
1+2pq+q2 (D3) 
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In the CIR model (ignoring constant terms) 

t.(t,n) = _l_ f" E,r(t+~)d~ - r(t) = _l_ f" e·tt r(t)d~ - r(t) = [-
1 (1-e·~ )-1]r(1) 

nJo nJo n'IC 
(D4) 

[
B(n) 1 ( ·~ ] 8(1,n) = --- l-e ) r(t) 

n nJC 
(DS) 

For the relevant range of parameter values, (D4) and (DS) imply that p=l, which implies that 
(D3) simplifies to 

where 

1 /3=-l+q 
(D6) 

As was the case where n=2m [cf. equation (C4)], a sharp peak in q at n=l year implies a 
predictability "smile." 

Next consider the decomposition of 0 in equation (4). i.e., in 

Begin by rewriting the scaled spread ( R,, - R.m) as 

~(R, ... -R1_,,.)= E,R,+.,.,11-m -R, ... +'¥1(n,m) 
n-m 

(D7) 

where (D7) defines the risk premium term '1',(n,m). Substituting (D7) into (4), we obtain 

r,(n,m) = r+8(r,(n,m)+ '1',(n,m))+u,.._. +(forecast error) 

where 

r,(n,m)" E,R, • ., .• -R,, 
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Using the same strategy as with /3. from (D7) we can write o as 

0 = var(r)+cov('l',r) = l+tiQ 
var(r)+ 2cov('l'S) +var('!') 1+2.iQ + Q' 

(D8) 

where 

t? = corr(L '!') 

Q = [var('!') r· 
var(r) 

In determining the values of (} and Q, it is convenient to scale both r and '¥ by (n-m)lm and 
drive m.J..o, yielding the following expressions for an infinitesimal short maturity m (cf. Appendix 
B, result 2) 

n:mr,(n,m) =[(~-JC )B(n)-B'(n)}(t) 

n:m'l',(n,m)=( B~n) _l)r(t)-( B~n) _Jdl(n)-B'(n)}(t)=[B'(n)+ldl(n)-l]r(t) 

For the relevant parameter values t? =-1, implying that (D8) reduces to 

where 

I 0=-
1-Q 

Q= B'(n)+KB(n)-1 
B(n) , --KB(n)-B (n) 

n 

(D9) 

Hence in order to obtain strongly negative values of 0, we need to obtain Q slightly greater than 
unity. 




