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Asymmetrie Information about Volatility and Option Markets 

1 Introduction 

lt is widely recognized that volatility ( as represented by the variance or standard 

deviation) of the underlying asset is one of the most irnportant deterrn.inants of option 

price and, yet, it is the one that is very unpred.ictable. Therefore it is likely that infor-

mation asymrnetry about the volatility of the underlying asset will have a significant 

irnpact on the option market, perhaps, in the same way that information asymmetry 

about the mean of the asset value impacts prices and liquidity in the market for the 

underlying asset, as in Kyle (85), Glosten and Milgrom (85) and others. Marke\ 

makers in the Chicago Board Options Exchange (henceforth CBOE) are known to 

use different volatility packages for forecasting purposes and take positions in options 

on the basis of their volatility estimates [Chapter 6 - The Options Institute, (90)], 

indicating the existence of asymmetry of beliefs about volatility in the option mar-

ket. Schwager (92) and Cookson (Risk - 93) also hlnt at the existence of information 

asymmetry about volatility in the equity options and currency options markets re-

spectively. 

While it is certainly true that information asymmetry about the level of the as-

set price or its mean may exist simultaneously with information asymmetry about 

volatility, it seems that the primary concern of options traders is the volatility of the 

underlying asset. In fact, according to Natenberg (90), "In. futures or cash trading, 

the primary determinant of whether one is successful is correctly picking the direction 

of the market. An options trader is not trying to p1:ck the direct1:on. of the market; he 

is trying to pick an appropriate volatility." This seems to suggest that information 

asymmetry about the mean of the asset price, while it may exist may only be of 

secondary importance in the option market. On the other hand, information asym-

metry about volatility can certainly have a signilicant impact on the option market 
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and private information about volatility may exist without any private information 

about the future price of the asset as discussed in Cox and Rubinstein (85, p. 55): 

"Suppose you are confident that a paper company will soon unexpectedly change its 

plans to sell the mineral rights on part of its land for a fixed fee and will instead take 

a large participatory interest in their development. You have no ideas about the likely 

succ.ess of this venture, but you do know that as a result the stock will be much more 

volatile in the future than the market had anticipated. You know that as soon as this 

becomes known, options will ri.se in price, relative to the stock. Bu.t you do not know 

how the stock price will respond. You could not take advantage of your information 

in the stock market, but you could in the options markef'. 

The theoretical literature on a.symmetric information in options includes John, 

Koticha and Subrabmanyam {91), Bad< {93), Biais and Hil!ion (94), Cherian and 

Jarrow (95) and Brennan and Cao (95). In these papers {with the exception of 

Cherian & Jarrow), the information asymmetry is about the mean of the underlying 

asset's value. Cherian and Jarrow consider the impact of asymmetric information 

about volatility of the asset price on the option market. They show that the Black-

Scholes {73) pricing formula can arise in an equilibrium from self-fulfilling beliefs that 

it is the correct pricing formula and the information asymmetry can cause implied 

volatilities tobe different from future volatilities. However, their model is static and 

the optimal demands of the informed. trader ( assumed to be exogenous) cannot be 

modeled. As a result the is.sues related. to the dynarnics of order fl.ow and its impact on 

option price, liquidity and the resolution of information asymmetry (about volatility) 

through time cannot be addresmxl in that framework. 

This paper considers a setting where one investor ha.s private information about 

the future volatility of the price process (that evolves exogenously as a geometric 

Brownian motion) of an as.set, but does not know the underlying asset price at any 

point in time. More specifically, the volatility of the underlying asset is going to 

jump at a point of time in the future and an informed investor has information about 

2 



the jump. However, the investor does not have any information about the level of 

the future asset price at any time. Thus, there is information asymmetry in the 

market about the volatility of the underlying asset, but not about the level of the 

asset price/mean. 

In this type of setup a discrete time multi-period model is not analytically tractable 

in the Kyle (85) framework because to my knowledge, the probability distributions 

for volatility, a non-negative random variable (for example, lognormal or chi-square) 

do not fall within the elliptical class of distributions for which conditional expectation 

is linear in the conditioning variable. I utilize the approach t.o the continuous time 

Kyle model developed in Back (92) to address the issue of equilibriurn in this model. 

However, the model and the associated information structure are very different from 

Back (92, 93) and other multi period models that have information asymmetry about 

mean. In this model, the informed investor knows the future volatility, but does not 

know the future asset price at any point in time and the option price depends on 

both the asset price and the volatility of the asset price. As a result, the informed 

investor, a priori, does not know the value of the option at the time the jump in 

volatility occurs. In eq_uilibrium, the trading strategy of the informed investor has to 

be such that there is no jump in the option price immediately following the jump in 

volatility as otherwise it would imply that the option was mispriced at the end which 

is inconsistent with equilibrium. Therefore, in this model the informed investor has 

a moving target that he has to push the option price to and it is not a priori obvious 

whether an optimal trading strategy and therefore an equilibrium exists. 

lt is shown that there exists an equilibrium under these circumstances and the op-

timal trading strategy of the investor is derived explicitly as part of the equilibrium. 

I derive expressions for the equilibrium option price, the price pressure parameter in 

the option market and the expected average variance ( until time to expiration of the 

option) of the underlying asset on the information set of the uninformed traders at a 

given point in time. The option price is a non-linear function of trading volume in the 
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option, variance of future variance and the variables that appear in the Black-Scholes 

formula. Interestingly enough) it is found that the price pressure in the option market 

(a measure that is inversely related to the depth ofthe option market) increases in the 

variance of future variance of the underlying asset. Therefore this model captures the 

important phenomenon that uncertainty about the volatility process lowers the depth 

of the option market and this result is consistent with the empirical findings of Jame-

son and Wilhelm (92) and Nandi (95) who find that there is a positive relationship 

between bid-ask spreads in the equity options market and a measure of uncertainty 

about the variance of the underlying asset. Also the model predicts that the expected 

average variance of the underlying asset (until time to expiration of the option) on 

the information set of the uninformed traders is an increasing function of the net 

order flow in the option market. This suggests that in the presence of information 

asymmetry about volatility, options trading volume may contain useful information 

about the evolution of the expected volatility process and there is certainly scope for 

empirical work along these lines that ca.n yield meaningful insights on the interaction 

between the expected volatility process of the underlying asset and trading volume 

in the option market. 

This paper is organized as follows. Section 2 sets up the formal model. Section 3 

describes the equilibrium pricing rule and the optimal trading strategy as well as the 

Bellman equation (arising from the optimization problem of the informed investor) 

that. yields the necessary and sufficient conditions for optimality of a trading strategy. 

Section 4 discusses the depth of the option market and the expected variance process 

of the underlying asset in our equilibrium. Section 5 concludes. 
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2 The Model 

The price process of the underlying asset, St, evolves exogenously as a geometric 

Brownian motion represented by 

dS, =V dW, s, (1) 

where Wt is a standard Wiener process and v is the instantaneous standard deviation 

of the asset returns. The absence of a drift term in (1) will be explained in the 

next paragraph. Also traded continuously is a risk-free asset on which the rate of 

return is r 1. Without loss of generality, r f is normalized to zero and assume that the 

underlying asset pays no dividends. 

At time 1, there will be a jump in the volatility of the price process such that tbe 

asset price process from time 1 onwards will be given by 

dSt = ä dWt s, (2) 

A call option is traded simultaneously with the underlying asset and the option (with 

an exercise price of K) will expire at time 2. A risk-neutral investor has information 

about 0- at time 0 i.e., the investor k:nows that 0- = u. 1 The rest of the market treats (r 

tobe a random variable and knows that there is an investor who is informed about the 

future volatility. Since the risk-free rate has been normalized to zero and the informed 

investor is risk-neutral, it is required for absence of arbitrage that there be no drift 

term in (1), i.e., that the instantaneous expected return on the underlying asset 

be zero. Let U be lognormally distributed with distribution function G. Assuming 

that (r is lognormal implies that there exists a normal random variable ( such that 

U = exp((). Let ( and af. denote the mean and standard deviation of (. Assume that 

ä is independent of W (the Wiener process that drive.5 the asset price) as otherwise, 

the investor's information about ä will provide him with some information about the 
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level of the asset price, St, and the insider will start trading both the underlying asset 

and the option, a setup that is beyond the scope of this model. Although Back (93) 

solves for an equilibriurn in which an informed investor trades in both the underlying 

asset and the option, the insider knows perfectly the liquidation value of the asset and 

there is no inforrnation asyrnmetry regarding the volatility of the underlying asset. 

Since ir and W are independent, the informed investor does not enjoy any infor-

rnational advantage over the rest of the rnarket about the level of the future asset 

price/mean. Therefore it is reasonable to assume that the inforrned investor, who is 

risk-neutral will not trade the underlying asset. If the investor was risk-averse averse, 

he rnight hedge the risk that comes from the unknown future value of the underly-

ing asset by constructing a delta hedge portfolio (shorting de~ta units of the call and 

buying 1 unit of the underlying asset) that is instantaneously risk-free and requires 

trading the underlying asset. However, risk-neutrality implies that the risk of the un-

derlying asset does not matter to the investor. The equilibrium that 1 will construct 

is based on the assumption that the risk-neutral investor (who has information about 

volatility) will not trade the underlying asset and the aaset price process exogenously 

evolves as in (1). lt is possible that there are other equilibria in which the risk-neutral 

investor trades the underlying asset on the basis of bis inforrnation about volatility. lt 

is conjectured that such equilibria do not exist, but 1 cannot formally prove it within 

the scope of this paper. 

Prices in the option market are set by risk-neutral competitive market makers 

(making zero expected profits). The model does not take into account the inventory 

risk faced by the market makers in the option market. However, in most major 

options exchanges, for example the CBOE, where there are multiple market makers, 

the inventory risk can be substantially reduced through pooling. In this model, the 

market maker (making zero expected profits) essentially provides liquidity service 

to the market and it is weil known that market makers in exchanges such as the 

CBOE trade on their own account and employ a broad array of trading strategies to 
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hedge and speculate. However, it must be noted that according to the rules of an 

important options exchange like the CBOE, the primary task of the market maker is 

to provide liquidity to the market by making available bid-ask quotes that contribute 

towards maintaining an orderly market with no abrupt price discontinuities [Cox and 

Rubinstein (85) and George and Longstaff (93)] and thus our assumption about the 

market maker may not be unrealistic. In the r~st of the paper, it will be assumed 

that there is a representative market maker who sets prices in the option market. 

Also, there are noise/liquidity traders in the option market. The cumulative noise 

trades in the option market at time t are represented by Zt, a Brownian motion 

process, with instantaneous variance er';. Z is independent of W and Ö" and the 

reason for this assumption will be explained later in this section. The demands of 

these noise traders are exogenous to the model and completely inelastic with respect 

to the prices set in the option market. Also, all the orders (i.e., those of the investor 

and the noise traders) are market orders and prices are set by the market maker upon 

observing the order fl.ows. Although there is only one option in this model, one could 

have multiple options with different exercise prices and times to maturity and the 

results will remain unchanged as long as the informed investor does not have any 

wealth constraints. 

Let Xt be the c11mulative trades of the informed trader in the option market, 

yt( = Xt + Zt) be the total cumulative trades in the option market, Y0 = 0 and X 0 

= 0. The information set of the investor, generated by ä, Zt, and St will be denoted 

as :F{ and the information set of the market maker 1 generated by yt and St will 

denoted as :FtM. Both filtrations/information sets are augmented in the usual sense. 

Assurue that X is a continuous semimartingale [Karatzas and Shreve (88), Definition 

3.3.1] and that the order strategy Xt of the investor in the option market is given 

by dXt = O:tdt for some process O'.t adapted to :F{. Although it is assumed here that 

Xt is of bounded vaxiation and continuous, it will be shown to be necessary in the 

equilibrium that will be constructed. 

7 



At time 1 the volatility jumps to u and thereafter the value of u is common 

knowledge. In other words, we assume that upon the realization of the event (that 

changes the volatility) at time 1, the new volatility becomes known to everyone and 

uncertainty abo11t the volatility process is resolved fully. Thus, starting from time 1, 

when the information asymmetry about volatility ceases to exist, option prices will be 

set according to the Black-Scholes formula by the risk-neutral market maker. Prior 

to time 1, the future volatility is \1nknown and the order ftows provide information to 

the market maker about a, the future volatility. Therefore, during this time interval, 

the option price will be a function ofthe asset price and the order ftow. Let BS(S,u) 

represent the Black-Schole_s function for call options with the asset price equal to S, 

the exercise price equal to K, standard deviation of instantaneous a.sset returns equal 

to a, time to maturity equal to 2 and the risk-free rate equal to zero. 

Let the price of the option at time t be denoted by Ct and the pricing rule in 

the option market be given by Ct = H(St, Yt, t), where H is twice continuously 

differentiable in S and Y, continuous in t and strictly monotone in Y and S for each 

t. Since the pricing rule is monotone, the investor can infer the past liquidity trades 

and therefore as in Back (92), knows Zt at the time he chooses O:t. If Zt is correlated 

either with ä (about which the investor has information) or with W, then the investor 

will know something about S (the level of the asset price) and may start trading the 

underlying asset, a scenario that has been mentioned before tobe outside the scope 

of this model. Let h(S1, Y1)"' H(S1, Y1, 1) and define h(S1 , Yi) = BS(S1,ö-). Note 

that thls is just a definition of the function h() and does not imply that the values of 

h(S1, Y1) and BS(S1, ä) are equal for all possible realizations of 51, Y1 and ä. 

The wealth dynamics of the investor are defined by 

dW, = X,dC, (3) 

Without loss of generality, a.ssume that W0 =Ü. Since the informational advantage 

of the investor lasts till time 1, it is assumed that the investor will trade until time 
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1.2 The investor could trade after time 1 also (the option expires at time 2), but 

would be indifferent to trading after time 1 because the volatility of the asset price 

and hence the true option price is common knowledge. Therefore assume that the 

investor would not trade after time l. Given this and the fact that the trading 

strategy of the investor is of bounded variation, it can be shown as in Back (92) that 

the wealth of the investor at time 1 is given bY 

W, = fo' (BS(S1,i7) - H(S„ Y,, t))dX, (4) 

The above equation basically says that the wealth of the informed investor at time 1 

is the market value of his option position [BS(S1,ü)X1] minus the cost incurred in 

acquiring it IJl H(S,, Yi, t)dX,]. 

An equilibrium in the option market consists of a rational pricing rule of the mar-

ket maker and an optimal tra.ding strategy of the informed investor. These concepts 

are defined as follows: 

Given a trading strategy X, a pricing rule is rational if it satisfies, 

H(S,, Yi, t) = E [BS(S„ ü)l(S,),g, (Y,).9 ] (5) 

Given a pricing rule H, a trading strategy is optimal if it maximizes the expected end 

of period wealth W1 as given by 

E [fo' (E(BS(S„ü)l:F{)- H(S,, Y,, t)) dX,] (6) 

The above equation follows from (4) by using iterated expectations. Henceforth, an 

optimal trading strategy of the informed investor will refer to the trading strategy X 

that maximizes W1 given the the pricing rule H and the as5umption that the investor 

does not trade the underlying as5et. 
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3 Equilibrium 

In this section, the m.ain theorem that characterizes the equilibrium in this model is 

provided. Also I describe the Bellman equation associated with the informed trader's 

optimization problem. In this section and for the rest of the paper, if D denotes a 

stochastic process then the realization of Dt will be denoted. by dt. 

Let N() denote the normal (O,o-;) distribution function. Let f 1(a1 ,a„t) and 

j, (b1, b„ t) be two functions defined "" follows: 

fi(a1, a,, t) _ (!._) . 1 exp [- {log(a1) - log(a2) - ~v2 (1- t)} '] 
a1 .,/27rv'(l - t) 2v2 (1 - t) 

J,(bi, b,, t) _ (~) 1 exp [- { (log(b1) - E) ~ - b,} '] 
o-eb1 /2"0-;(1 - t) 2o-}(1 - t) 

Lemma 1 Let r/> = N-1 o G(<;). Then <f; is distributed normal (O,o-;J and 

<f; = (log(<;) - () ""• .,., (7) 

Theorem 1 Define for 0'.St'.Sl 

H(s, y, t) = 1.= 1.= BS(s1,o-)fi(s1, s, t)j,(o-,y, t)ds1do- (8) 

With <f; as in Lemma 1, define 

In
' Z, x, = t<f; + (1 - t) - ---ds 

o (1-s)' (9) 

Then ( H, X) is an equilibrium. 

The proof of Lemma 1 is given later in thiS section and that of Theorem 1 is in the 
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appendix. lt will be shown that in this equilibrium Y1 ~ </! a.s. Also / 1() and j,() are 

probability density functions a.nd 1 will explain later in this section what they exactly 

represent. Note that s1 (that represents the realization of the asset price at time 1 )and 

u are integrated out of (8) making the right hand side a function of the asset price at 

time t, cumulative option order flow at t and t itself. One can numerically integrate 

(8) to arrive at an explicit option price given the asset price and the cumulative 

option order flow at timet as well as the other parameters like t, Uz, ae, ( and v. 

The formulas (8) and (9) depend on the assumption that ü is lognormal. lf ü is any 

random variable with a distribution function L satisfying the following as.5umptions 

- (i) Support of L is an interval in ~+, (ii) L is continuous on this interval, and 

(iii) L does not have a mass point (i.e., not degenerate) then the equilibrium trading 

strategy (9) will be the same except </J = N-1 o L (see the appendix) and pricing rule 

will be the sarne a.s (8) except that /,(<T, y, t) will be rep!aced by a different density 

function. 

As mentioned before, starting from time 1, the information asymmetry about 

U disappears and it is common knowledge that ä" = a. Thus from time 1, option 

prices as set by the risk-neutral market maker are given directly by the Black-Scholes 

function. Before time 1, the value of Ö" is not k:nown to the market maker. However, he 

can make inferences about Ö" by observing the order fl.ow yt that contains information 

about Cr because Yt = Xt + Zt, and Xt, the cumulative order ß.ow of the informed 

trader at time t incorporates the information of the informed investor about Cr. In 

other words, the market maker, at timet observes St and Yt and on the basis of these 

observations, arrives at the best estimate of the option price by taking the conditional 

expectation of BS(S1 ,ü) (recall that BS(S1 ,ü) is the option price at time 1 given 

by the Black-Schales function) with respect to the joint distribution of S1 and ä" on 

bis information set at timet. Since S and ef are independent, the joint density is the 

product of the marginal densities of S1 and Ö" on F/'1 in this equilibrium and these 

maxginal densities are represented by f 1 ( s1, s, t) and !2( a, y, t) respectively. Following 
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are some remarks on this equilibrium: 

Remark 1: The optimal trading strategy of the investor does not depend on the 

contemporaneous asset price or any function of it. This is intuitive because the 

investor does not have any information about the asset price. 

Remark 2: The optimal trading strategy of the investor ensures that H(S1, Y1, 1) = 

BS(S1, U) a.s V s1 and er i.e., there is no jump in the option price iromediately 

following the resolution of information asymmetry. A jump implies that the option 

was mispriced at the end of trading and the investor did not take advantage of the 

mispricing which is incompatible with equilibrium. Note that the jump does not 

occur despite the fact that the informed investor has no information about the future 

asset price. 

Remark 3: The probability distribution of the future volatility i.e., ü on the in-

formation set of the market maker is determ.ined endogenously in this equilibrium 

and the information that determines the distribution is filtered through the order 

ftow in the option market. This is different from stochastic volatility models (with 

no information asymmetry about the future volatility) of option pricing where the 

distribution of future volatility is exogenous. Thus unlike other stochastic volatil-

ity models, this model yields interactions between options trading activity and the 

expected volatility process of the underlying asset. 

Remark 4: lt is not claimed here that this particula.r equilibrium is unique. How-

ever, following Back {92) it can be shown that this equilibrium is unique among the 

class of equilibria in which the option price is a strictly monotone function of the 

underlying asset price and the total cumulative option order flow and the informed 

investor does not trade the underlying asset. 

Proof of Lemma 1 : I will first prove the lemma for any ü whose distribution 

function L satisfies the assumptions mentioned before. In other words it will be shown 

that if </> = N-1 o L(ü), then <f> is distributed normal (0, 11;). If ü is lognormal, then 

(7) will follow automatically. 
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Let us denote C() tobe the cumulative distribution function of ih = L(U). Now, 

C(a) - Prob(m S a) 

- Prob(L(i1) Sa) 

Prob(i1 S L-1(a)) 

- L(L-'(a)) 

- a 

This implies that m is distributed uniformly Oll (0,1). Now <P ~ N-1oL(u). Therefore 

if R denotes the distribution function of </>, we have that 

R(a) - Prob(<P Sa) 

- Prob(N-1(m) Sa) 

- Prob(m S N(a)) 

- N(a) 

The last equality follows from the fad that m is uniformly distributed on (0,1). This 

implies that </> i.e., N-1 o L(ä) is distributed normal (0, u;) given that U is a random 

variable whose distribution function L satisfies the assumptions mentioned before. For 

the lognormal case, denoting the distribution of a standard normal random variable 

by N", 

rjJ 

or, G(if) - N(rjJ) 

or, N' (log(~;-() N' (!J 
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From the last of the above equations, 

- "· <P = (log(O') - ü- a.s. 
"< 

(10) 

Note that the relation between <P (that will be shown tobe equal to Y1 in our equi-

librium) and ä was derived independently of the level of the asset price St. 

3.1 Bellman Equation 

This section describes the Bellman equation associated with the optimization 

problem of the informed investor. The Bellman equation yields the necessary and 

sufficient conditions for a trading strategy of the informed investor to be optimal. 

Let Pt= log(St)· lt follows from Ito's lemma that dPt = vdWt - ~v2dt. For the 

rest of this sub-section, I will use Pt (instead of St) as an argument in the option 

pricing rule, H() and the Black-Scholes function, BS(). Set Q(p, c) = h-1(p, .)(c) i.e., 

Q(p, c) = y iff h(p,y) = c. 

As mentioned before, the trading strategy of the informed investor is given by 

dXt = aidt, for some O:t adapted to Ff. Given an option pricing rule H(Pt, yt, t), the 

informed investor solves 

n;~E [/,' ( E(BS(P1, u)IF{) - H(P,, .Y;, t)) a,dt] (11) 

Let J(Pt, yt, t) denote the value function associated with the optimization problem 

of the informed investor as mentioned above (the value function at timet yields the 

expected profits to the investor if an optimal trading strategy is followed from time t 
until time 1). J is non-negative and satisfies the following Bellman equation and the 

a.ssociated boundary condition: 
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[ 
12 12 12 

~~ lt+ 2azlyy + 2v J'PP + CXtly ~ 2v J'P 

+ (E(BS(P1, u)\F{) - H(P„ Y,, t)) o,] = 0 (12) 

J(p, y, 1) > J(p, Q(p, BS(p, u)), 1) = 0 ('iy f Q(p, BS(p, u))) (13) 

The boundary condition (13) can be interpreted as saying that J being continuous 

at time 1, the remaining value J(,p1 y, t) at timest near 1 is close to zero if and only 

if y is close to Q(p, BS(p, u)). In other words, there is an optimal value of the order 

flow at time 1 that is necessary for the optimization problem of the informed investor. 

Performing the maximization in (12) yields the following two equations 

J, = H(P„Y,,t)-E(BS(P1,u)\F{) (14) 

(15) 

If J is non-negative and smooth and satisfies (15) then, 

J(p, y, t) = E [J(p + P, - P,, y + Z, - z,, u)j ('10 < t < u '.S 1) (16) 

where the expectation is taken with respect to P and Z [Karatzas & Shreve (88), p. 

366, Theorem 7.6]. 

The following lemma is analogous to Lemma 1 of Back (92). lt calculates the value 

that can be attained by waiting until the "last instant" and trading "immediately'' 

such that h(P1 , Y1) = BS(Pi. ii) a.s. and also provides a solution to the Bellman 

equation. 
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Lemma 2 Let h be a function that is strictly monotone in its arguments and j (., . ) 

= J (., . , 1). Let the option pricing rule be 

H(p,y, t) = E[h(p+ P1 - P,,y + Z1 - Z,)] (17) 

Define 

1Q(p,BS(p,a)) 
j(p,y) = (BS(p,u)-h(b,x))dx 

• 
(18) 

and 

J(p, y, t) = E [i(p +Pi - P„ y + Z, - Z,)] (19) 

where the expectation is being taken with respect to P and Z. Then J is a smooth 

solution of (12) and (13). 

The Bellman equation and the associated value function are instrumental in prov-

ing the optimality of the trading strategy as proposed in Theorem 1. lt can be shown 

as in Lemma 2 of Back (92) that any solution of the Bellman equation and the bound-

ary condition is also the val.11e function for the optimization problem of the informed 

investor. Alse it can be shown following Lemma 2 of Back (92) that an optimal 

trading strategy of the informed investor implies that the trading strategy is contin-

uous (i.e., no discrete orders), of bounded variation (i.e., no martingale component), 

and that there will not be any jump in the option price following the resolution of 

information asymmetry about volatility at time 1. Each of these conditions is indi-

vidually necessary and they are jointly sufficient for a trading strategy to be optimal. 

The proofs of these are straightforward extensions of Lemma 2 of Back (92) and are 

therefore omitted. The following proof of Lemma 2 makes use of the fact that the 

distributions of Y1 on FtM and Z1 on Fl are equivalent (see the appendix). 
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Proof of Lemma 2: lt is clearly the case that J(., ., 1) = j(., .) is continuous, 

2 0 and satisfies the boundary condition (13). Also the function J satisfies (15) by 

[Karatzas & Shreve (88), p. 366)]. Thus it has tobe made sure that (14) is satisfied 

for which one needs to differentiate t1nder the expectation operator. 3 Differentiating, 

J,(y, y, t) E [i,(y + P1 - P,, y + z, - Z,)] 

- E [h(y + P1 - P,, y + Z1 :_ Z,)] - E(BS(P,,ir)IF{) 

- H(p,y, t)-E(BS(P1,a)IF{) 

4 Properties of the Equilibrium 

4.1 Depth of the Option Market 

The price pressure parameter ( one of the primary determinants of market liquidity) 

in the option market is represented by the sensitivity of the option price to the order 

flow in the option market and is given by At=H11 (St, yt, t). Depth of the market is 
. b l g1ven y X· 

get4 

Given the pricing rule in (8), we differentiate under the integral sign to 

(20) 

Since (20) does not yield a closed-form solution for the price pressure parameter, 1 

compute (by numerical integration) the price pressure parameter in the option market 

between time 0 and time 1 for various values of U( (note that the variance of ö- is 

directly proportional to u(). The results of this computation are displayed in Figure 1. 

In conformance with our intuition, it is seen that the price pressure parameter in the 

17 
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option market is an increasing function of the variance of variance. In other words, 

an increase in the variance of variance, that in our model, measures the amount of 

private information about variance, lowers the liquidity of the option market. This is 

consistent with the ernpirical evidence of Jameson and Wilhelm (92) and Nandi (95) 

who find that bid-ask spreads in the equity options rnarket is increasing in a rneasure 

of uncertainty about the vaxiance of the underlying stock. 

4.2 Expected Average Variance 

Until time 1, the future volatility a is unknown to the market maker and the order 

flows in the option rnark.et provide information about a. Let llt denote the expected 

average variance of the underlying asset until time to expiration of the option on the 

inforrnation set ( as of timet) of the market maker. lt can be shown that 

v, - - 1- [1 v2du + E(ii2 1 F;') 
1 - t lt . 

_ v2 + e2(i°+~t1t+u~(l-t)) (21) 

The derivation of (21} is shown in the appendix. 

Since Yt measure; the net cumulative order flow in the option market at time t, 

(21) shows that in the presence of information asyrnl)letry about volatility1 ceteris 

paribus, the expected average variance of the underlying asset is increasing in the net 

order flow in the option market. The intuition behind this is that an increase in the 

value of a causes the informed trader to buy more options and the rna.rket maker 

correctly anticipates it in equilibrium. lt can be easily verified that Vt is a rnartingale 

on the information set of the rnarket maker (:F'iM) i.e., E(vtlF.s) = ll.s 'Vs~ t. Figure 

2 shov.rs how the Zlt process evolve<> fort E (0, 1] for az. = ae = 0.0005, v = 0.01 and 

(~o 

Although this model is a sirnplification of the real world, it shows that in the 

presence of information asymmetry about volatility, options trading volume contains 
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useful information about the evolution of the expected volatility process of the un-

derlying asset, an area that may be worth exploring empirically. lt must be noted, 

however, that options trading volume in derivatives markets is also related to the 

arnount of hedging demand (assumed exogenous in this model) that may depend on 

the magnitude of actual/implied volatility and volatility innovations. 

5 Conclusion 

I developed a model of asymmetric information in wbich a risk-neutral investor has 

private information about the future volatility of the asset price process, but does not 

know tbe future asset price at any point of time. As long as information asymmetry 

about the future volatility exists, tbe option price (set by a competitive risk neutral 

market maker) is a function of tbe options trading volume, variance of future variance 

and the variables that appear in tbe Black-Scholes formula. The model predicts that 

the option maxket becomes less liquid (in that the price pressure parameter increases) 

if the amount of private information about the future volatility increases, i.e., if the 

variance of vaxiance increases. This is consistent with empirical results that the bid-

ask spreads (a measure of liquidity) in the equity options market are positively related 

to a measure of the uncertainty about the variance. Thus private information about 

the volatility of the underlying asset lowers the depth/liquidity of the option market 

in the same way that private information about the mean of the asset value lowers 

the depth of the asset market in Kyle (85) and Glosten and Milgrom (85). Also, 

it is found that on the information set of the non-informed traders, the expected 

average variance ( until time to expiration of the option) of the underlying asset is 

an increasing function of the net order fiow in the option market, a result that has 

empirical implications in terrns of the linkage between the expected volatility process 

of the underlying asset and trading volume in the option market. 

Future research can be directed towards developing models in which the informed 

19 



investor is risk-averse and tra.des the underlying asset to hedge his position1 a feature 

that will be very interesting to model and may yield valuable insights into the workings 

of the option market amidst information asyrometry about volatility. Also it will be 

desirable to endogenize liquidity trading and model hedging demands explicitly. 
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Appendix 

This section provides a proof of Theorem 1 and derives the expression for the 

expectation of 0- on the information set of the market maker at time t i.e., (21). 1 will 

sometimes use Pt(= log(St)) as an argument of the pricing rule of the market mak.er 

instead of St. 

Proof of Theorem 1 : lt was mentioned in, section 3.1 that the optimal order 

strategy of the informed investor has tobe of bounded Variation (i.e., no martingale 

component), continuous and should not result in any jump in the option price at time 

l.The trading strategy (9) in Theorem 1 is continuous and of bounded variation (of 

order dt). The remaining thing is to show that this trading strategy irnplies the last 

of the above condition, i.e., no jurnp. 

If we add Zt to (9) i.e., yt = Zt + Xt, it follows that Y is a Brownian bridge (on 

the time interval [0,1], with instantaneous variance a;) on the information set of the 

informed investor (:F{) that starts at 0 and ends at ,P i.e., N- 1 o G(ö-) [Karatzas & 

Shreve (1988, p. 358)]. Therefore, given the trading strategy (9), Y1 = N-1oG(i1) a.s. 

and equivalently i1 = c-1 o N(Y1) a.s. In order to check that the trading strategy (9) 

implies that there will not be any jump in the option price at time 1 given the pricing 

rule, we have to verify that h(S1, Yi) = BS(S1,ö-) 'V s1 and O'. Using the definition of 

function h(), (see section 2) 

Therefore, 

h(Si, Yi) = BS(S1, c-10N(Yi)) 

h(S1, N-1 o G(i1)) 

ar, h(S1, N-1 o G(i1)) 

BS(S1, c-1 o No N-1 o G(i1)) 

BS(Si,i1) 

lt has already been shown that given the trading strategy (9) of the informed investor, 

Y1 = N-1 o G(U) a.s., and this is true for any realization of 8 1 . Therefore it is always 
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true that given the trading strategy (9), h(S1, Y1) ~ BS(S1,i'i) a.s. '<! s1, a. This 

proves the optimality of (9) under the assumption that Ö' is lognormal. For any other 

random variable whose distribution function L satisfies the assumptions mentioned 

in section 3, we can show following the steps above that h(S1 , Y1) = BS(S1, ii) a.s. 'V 

If a stochastic process is a Brownian bridge, then its finite dimensional distribu-

tions are identical to those of a Brownian motion, conditional on the ending point of 

the process being known [Karatzas and Shreve (1988, Problems 5.6.11 and 5.6.13)]. 

The ending point of the process is N-1 o G(ü), which is distributed normal (0, CT;). 

Therefore the unconditional (unconditional on Sand ü) finite dimensional distribu-

tions of Y are those of a Brownian motion with instantaneous variance u;. This, in 

turn implies that on the information set of the market maker (:FtM), Y is a Brownian 

rnotion with instantaneous variance a;. Since Z is a Brownian rnotion on :Ft1 with 

instantaneous variance a;, this implies the equivalence of the distribution of Z on ft1 

and the distribution of Y on ftM. 

Now we will prove the rationality of the pricing rule of the rnarket rnaker given the 

trading strategy of the inforrned investor. Let E 1 [.] denote expectation with respect 

to the information set of the informed investor and EM [.] denote the expectation with 

respect to the inforrnation set of the rna.rket maker. Di:fferentiating (16) with respect 

to Y and using (14) and (18) we get 

H(P,, Y;, t) = E1 [h(p + P1 - P,, y + Z1 - Z,)] (22) 

This implies that 

H(P,, Y;, t) = E1 [H(P„ Z,, l)IP, = p, z, = y] (23) 

lt has been shown above that given the trading strategy of the informed investor, 

the distribution of Y on the inforrnation set of the market maker is the same as the 
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distribution of Z on the infonnation set of the informed investor. Therefore) 

H(P,, Y,, t) =EM [H(P1 , Y1, l)[P, = p, Y, = y] (24) 

lt has also been established that if the informed investor follows the trading strategy 

(9) then, H(P„ Y1, 1) = BS(P1, &) a.s. Therefore, 

H(P,, Y,, t) =EM [BS(P1 , &)\?, = p, Y, = y] 

or equivalently1 

H(S,, Y,, t) EM [BS(S1,&)[S, = s, y; = y] 

(25) 

(26) 

(27) 

The last of the above equalities follows from the Markov properties of Sand Y. The 

pricing rule in equation (8) is the conditional expectation as shown above that can 

be evaluated by integrating BS(S11 Ö') against the joint density of S1 and Ö' on :FtM, 

that by the independence of S1 and Ö' is the product of the marginal densities of S1 

and Ö' on :FtM, represented by f 1 () and J2() respectively. Hence the rationality of the 

pricing rule (8) will be proved upon showing that fi () and /,() are the densities of 

S1 and Ö' respectively on the information set of the market maker (at timet) given 

the trading strategy of the infonned investor. 

Now1 dPt = vdWt - ~v 2dt. Therefore, 

1 2 ? 1 = P, + v(W1 - W,) - 2v (1 - t) (28) 

This implies that the time t conditional distribution of P1, given tha.t Pt = p is 

N(p- ~v2 (1- t), v2(1- t)). Since S1 = exp(P1), the expression for f 1() follows. 

lt has been established before that an optimal trading strategy of the informed 
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investor implies that Y is a Brownian motion on the information set of the market 

maker. Therefore on the information set of the market maker at time t, given that 

Yt = y, the distribution of Yi is N(y,a;(1- t)). Given the relation between Y1 and 

(r from Lemma 1 (recall that in equilibrium q, = Y1), the expression for /2() follows 

immediately from the distribution of Y1 on :FtM. This completes the proof of Theorem 1 
1. 

The last part is to derive the expression for E(Ö'2 l:FtM). 

(29) 

where f(aly, s) is the conditional density of (rat timet. As (r and S are independent, 

the above integral is equivalent to 

(30) 

Since f ( o-ly) is the same as j, ( o-, y, t), substituting Y1 for iT from (7) ( recall that in our 

eqtlilibrium Y1 = q, a.s.), a straight calculation using the moment generating function 

of normal random variables shows that the result is e2((+~y+ul(l-t)). 
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Footnotes 

1. The informed investor could also know (j with some error. However, as long as 

the investor is risk neutral, the results remain essentially unchanged with no additional 

insights. The formulae become more cumbersome since one has to integrate out the 

error term. 

2. The investor could trade after time 1 (the pption expires at time 2), but would 

be indifferent to trading after time 1 because the volatility of the stock price and 

hence the true option price is common knowledge. Therefore it is assumed that the 

investor would not trade after time 1. 

3. Back (92) shows that differentiation under the expectation operator is allowed 

in a similax case. 

4. Differentiation under the integral sign is allowed in this case because the integral 

is a Riemann integral and the integrands as weil as their derivatives are continuous 

[Trench (78), p. 576] 
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The above figure shO'NS how the expected average variance process (until time to expiration of the optlon) 
evolves on the information set of the market maker fort in (0, 1}. 
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