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Empirical Tests of Two State-Variable HJM Models 

1 Introduction 

In the last decade increased attention has been placed on the volatility stn1ct1rre of both spot 

and forward interest rates. There a.re two main reasons for this. First, the volatility structure 

of forward rates plays a key role in pricing and hedging interest rate contingent claims. 

Second, the structure of forward rate volatilities determines how shocks to the underlying 

state variables are transmitted along the yield curve. An empirical characterization of this 

volatility structure will provide insight into the underlying process that causes yields to 

change over time. 

Heath, Jarrow and Morton (1992) (hereafter HJM) show that, given an initial term 

structure, arbitrage-free price patbs of all bonds can be established once the structure of 

all forward rate volatilities is supplied. The simplest forward rate volatility structure is the 

constant variance structure, first proposed by Ho and Lee {1986). In this model, all shocks 

to the term structure are permanent; that is, the absolute magnitude of the change in all 

forward rates to new information is constant across maturities, and thus independent of both 

the level of the forward rate and its maturity. Over the last decade, more realistic volatility 

structures for forward rates have been proposed, in which volatilities fi11ctuate according 

to forward rate levels and maturities. Unfortunately, if the structure for these volatilities 

is left quite general, the evolution of the term structure is usually path dependent and it 

may not be·possible to characterize its dynamics by a finite collection of state variables. In 

such cases it is di:fficult to implement the HJM theory; especially for longer term interest 

rate dependent claims that have early exercise features. AB a result, while many proposed 

forward rate volatility structures have been motivated by the need to incorporate added 

realism; other structures have been motivated by a desire to eliminate the path dependence 

problem and to make the resulting models for interest rate claims more tractable. 

Recently, R.itchken and Sankarasubramanian (1995) (hereafter RS) identified necessary 

and sufficient conditions on volatility structures that permit the term structure of HJM 

rnodels to be characterized by two state-variables regardless of the structure for spot interest 
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rates. Indeed, the volatility of the spot interest rate could depelld Oll its level, or Oll any set 

of rates drawll from the present or past term structures. For example, spot rate volatility 

structures could take on the form of all the models examined by Chan, Karolyi, Longstaff and 

Sanders (1992), including the constant volatility model of Va.sicek (1977), the square root 

structure of Cox, Ingersoll, and Roes ( 1985), and the proportional structure of Dothan ( 1978). 

Alternatively, spot interest rate volatilities could be modeled as GARCH processes as in 

Brenner and Kroner (1994). Fora two state-variable representation to exist, the relationship 

of forwa.rd rate volatilities relative to the spot rate volatility has to be curtailed in a way 

that will be made precise later on. The resulting class of forward rate volatility structures 

include the Ho-Lee and Generalized Vasicek structures as weil as others. 

The purpose of this a.rticle is to establish whether there is any empirical support for 

these two state-variable HJM models. If volatility structures belong to the RS cla.ss, thell 

informational events are transmitted across the yield curve in a constrained fashion. In 

particular, knowledge ofjust two points on the term structure at any date, together with the 

original term structure, is sufficient to uniquely characterize the entire yield curve at that 

date. Since this implies a relatively simple intertemporal linkage between term structures, 

pricing a:nd hedging interest rate claims is greatly simplified. On the other hand, rejection 

of the class will imply that simple two state-variable HJM models are unlikely to describe 

the linkages between term structures. In this case, HJM models, which are more consistent 

with empirical evidence, will either have to retain all their path depelldence or will require 

more state variables to capture the intertemporal relationships between term structures. 

Most tests of term structure models have assumed the number of state variables that cap-

ture the dynamics of the term structure equals the number of sources of uncertainty (i.e. the 

number of factors). All the tests reported in Chan, Karolyi, Longstaff, and Sanders (1992), 

for example, a.ssume one state-variable is sufficient to characterize the term structure, in a 

one factor economy. The single-factor/single state-variable models have had mixed success 

at best. One approach to extending these models is to increase the number of sources of risk. 

For example, Longstaff and Schwartz (1992) added stochastic volatility; while Brennan and 

Schwartz (1979) added a stochastic lang rate. An alternative approach is to keep the single 

factor, or source of risk, but to have that factor effect the term structure through not only 
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its current value, but also its history. In the HJM paradigm, for example, one can construct 

one factor models, where the number of state-va.riables that are necessary to characterize the 

term structure is infinite. With constra.ints on the volatilities, models with a finite number 

of state-variables are pos.sible. For example, the single factor generalized Vasicek model, is a 

one state-variable HJM model developed under a specific deterministic forward rate volatil-

ity assumption and the single factor Li, Ritchken and Sankarasubramanian (1995) model 

is a two state-variable HJM model. Indeed, under appropriate volatility restrictions) it is 

pos.sible to develop k state-variable models where k > 2, all developed. in a single factor 

framework. This article will focus on one factor models, but will investigate whether there 

is support for any two state-variable HJM model. 

The paper proceed.s as follows. In section 2 we review the HJM paradigm, emphasizing the 

consequences of alternative volatility structures. In section 3 we transform the finite state-

variable models into alternative forms that are more useful for empirical analysis. Section 

4 develops specific hypotheses, reports the tests, and examines whether the extension from 

the cla.ss of volatility structures that lead to one state-variable HJM models to the larger 

class of two state-variable models derived from the RS class leads to economically significant 

differences. Section 5 concludes. 

2 Path Dependence, Volatility Structures, and Finite 
State-Variable HJM Models 

Let /(t,s) be the instantaneous forward rate for time s viewed from date t. Forward 

rates are assumed to follow a diffusion process of the form 

df(t,T) = !'1(t,T)dt+cr1(t,T)dw(t) f(O, T) given VT. 

Here µ.f(t, T) and cr1(t, T) are the drift and volatility parameters which could depend on the 

level of the term structure itself, and dw(t) is the Wiener increment. 

HJM (1992) show that, given the initial forward rate curve, f(O, T), and a structure 

for volatilities of all forward rates, o-,(t, T), interest rate claims can be uniquely priced 
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without explicitly modeling utility dependent parameters such as the market price of risk. 

In particular, pricing can proceed as if the local expectations hypothesis holds under the 

following modifi.ed process: 

df(t,T) = [ur(t,T) J.T ur(t,s)d.sl dt+ur(t,T)dw(t) 

Unfortunately, in general, the evolution of this term structure will not be Markovian with 

respect to a finite collection of state variables. That is, knowledge of a finite numbers of 

forward rates at any future date may not be sufficient to characterize other forward rates 

at that time. Moreover, the dynamics of any interest rate, including the in.stantaneous spot 

rate, will usually depend on the entire path taken by forward rates since the initialization 

date. These issues create difficulties for developing efficient numerical proced.ures for pricing 

interest rate claims. 

While the general HJM model has these problem.s, for special subclas.5es derived using 

curtailed forward rate volatility structures, the path dependence issues fall away. Caver-

hill (1994), Hull and White (1993) and Ritchken and Sankarasubramanian (1995) show, for 

example, that if the volatility structure of forward rates has the form: 

ur(t, T) = uk(t, T) 

where k(t, T) is a deterministic function satisfying the following semi-group property 

k(t, T) - k(t, u)k(u, T) 

k(u,u) 1 

then, conditional on knowing the initial term structure, knowledge of any single point on the 

term structure at date t is sufiicient to characterize the full yield curve at that date. Usually, 

the single point is taken as the instantaneous spot interest rate, and its dynamics are path 

independent. If no time varying parameters are used in the volatility structure, then the 

structure for k(t, T) is necessarily the exponentially dampened structure: 
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k(t,T) = e-•IT-<1. (1) 

Such volatility structures are referred to as Generalized Vasicek (hereafter GV) structures. 

This structure implies that the volatility of the spot rate is a constant, independent of its 

level. Under the GV model, forward rate volatilities are exponentially declining in their 

maturities, and the future va.lue of the state variable is normally distributed. As a result, 

it is not surprising that analytical solutions exist for a variety of European claims and 

that efficient numerical procedures exist for American claims. Empirical tests of the Ho-Lee 

model1 which is a special case of the GV model with,,, = 0 inequation (1), has been conducted 

by Flesakar (1992) while Amin and Morton (1994) examine the more general structure. 1 No 

support is found for the Ho-Lee model. However, the GV model was found useful in that it 

was capable of generating abnormal returns in particula.r trading strategies. Unfortunately, 

there appears to be little empirical support for the constant spot rate volatility structure. 

Chan, Karolyi, Longstaff and Sanders (1992), for example, conclude that the volatility of 

the spot interest rate should depelld Oll its level, a.nd that models which allow volatilities to 

be indepelldent of their level will be misspecified. 

RS (1995) consider a dass of interest rate processes in which volatilities can fluctuate 

according to their levels. Let u„(t, .) represent the volatility of the instantaneous spot rate, 

r(t), at date t. This structure could depend on a.ny term structure information available at 

time t. As examples, this structure could depend on the level of rates or it could take Oll a 

GARCH form. RS then show that if the volatility structure of forward rates is given by: 

u1(t, T) = u,(t, .) k(t, T) (2) 

where k(t, T) again is a deterministic function satisfying the semi-group property, then, given 

an initial term structure, there exists a two state-variable represelltatioll of the evolutioll of 

future interest rates. 

1Coben and Heath (1992) and Ablren and Coben (1994) investigate some volatility structures that do not 
pennit a Markov representation, and Raj, Sirn and Thurston (1995) compe.re some HJM models to the Cox, 
Ingersoll, and Ross models. 
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The class of volatility structures admitted by equation (2) is quite large. As an example1 

u,(t, .) = u[r(t)p. 

Notice that for "Y = 0 the volatility structure is identical to that of Vasicek (1977) while 

'Y = 0.5 yields the square root volatility used in Cox, lngersoll and Ross (1985).2 For 

volatility structures that do not contain time-varying parameters, the only feasible k(t, .) 

function is again the deterministic, exponentially dampened function given by equation (1), 

and thus 

u1(t,T) = u,(t,.) e-•(T-•J. 

Equivalently, the volatility of the forward rate, normalized by the volatility of the spot 

interest rate, must be a deterministic, exponentially dampened function of maturity 

u1(t, T) _ -•(T-t) 
~~~-e . 
u,(t, .) (3) 

Heath, Jarrow, Morton and Spindel (1992) provide cursory evidence that is inconsistent 

with this structure. In pa.rticula.J\ they conclude that the term structure of volatilities is 

humped, increasing and then decreasing. Amin and Morton (1994) estimate the exponen-

tially declining volatility structure model. They find point estimates of K. that are negative, 

implying that volatilities of forward rates are increasing in maturity. Thls result is im.plau-

sible for all maturities, and may result from the fact that their analysis is limited to data 

sets with short maturities. Over this narrow region a negative K. might be consistent with 

the theory that the term structure of forward rate volatilities is humped. Unfortunately, a 

humped term structure is inconsistent with any of the path-independent models described 

in this paper. 

Other examples of volatility structures not in the two-state-variable HJM class include 

some of the fonns tested by Amin and Morton (1994). For exaxnple, if volatilities are 

proportional to their levels as: 

u1(t,T) = u[f(t,T)]', 

2The drift terms for r(t) in these models are different from their single sta.t~variable counterpart.s. 
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then a two state-variable representation is not possible. 

For volatilities belonging to the two state-variable class, RS show that there is a simple 

analytical linkage between term structures at dates s and t. Let 

rt+T P[t, t + T] = e- ,, /lt.•i"" 

represent the time t price of a T-maturity pure discount bond that pays $1 at date t + T. 

Given an initial term structure, P(s, .) at time s, the price of a bond, at any future date, 

t, s ~ t ~ T, must be defined in terms of its forward price at date s, the short interest rate 

at date t, and a third variable capturing the history of the path of interest rates from s to t 

as follows: 

(4) 

where 
ß(T) - ~(1 - e-•T) 

.P(t) - J! uj(s, t)ds 

1/;(t) - f(s, t) - r(t) 

If this is not the case the ncrarbitrage assumption will be violated. In this representation, 

conditional on the time s term structure, the entire term structure at a subsequent time 

t can be reconstructed once <f>(t) and 1/;(t) are given. Neither of these factors dependB on 

maturity T. Thus, this model is a two state-variable model, even though there is still only 

a single stochastic driver. Equation (4) identifies the two state-variables as the ex post 

forwa.rd premium on the spot interest rate, !/J(t), and the "integrated va.riance" factor, <f>(t). 

RS characterize the dynamics of the two state-va.riables, <f>(t) and !/J(t), in terrns of their 

current values and the forward rate curve at an earlier date s. Specifically, interest rate 

claims can be priced as if the local expectations hypothesis applied; if the dynamics of the 

-tate variables are taken as: 

d!/J(t) - [1<!/J(t) + .P(t)] dt + u,(t, .)dw(t) 

d<f>(t) = [u~(t„) - 21«/>(t)]clt 
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The dynamics of the instantaneous spot interest rate under the RS assumption is given by 

dr(t) = [ ~1/J(t) + q,(t) + ;tf(s, t)] dt + u,(t, .)dw(t). 

Note that since the dynamics depend only on the values of the two variables <P and 'l/J at time 

t, the evolution of the spot rate is Markovian. This contrasts with the general HJM models 

in which the spot interest rate proces.s cannot be described by a Markov process with a finite 

number of state variables. 

Let HJM-RS denote the restricted form of HJM models that follow from the assumption 

in equation (3) and presented in equation (4). 

3 Empirical Implications of the HJM-RS Models 

Let y„[t, t + T) represent the continuously-compounded. annualized forward yield over the 

time period, [t, t + T) measured at date s ~ t.3 Tbat is, 

l 1t+T y,[t, t + T] = T , f(s,x)~. 

Equation ( 4) can be rewritten in yield form as 

11t[t, t + Tj T = y,[t, t + T] T + ß(T)1/J(t) - ß";T) q,(t) (5) 

That is, the yield at date t equals its original forward yield plus a deviation which is fully 

determined at date t by the two state-variables, 1/J(t) and q,(t). Let 

ßy,[t, t + T] = y,[t, t + T] - y,[t, t + T], (6) 

3Thus the yield on a T-maturity pure discount bond paying Sl at time t + T and costing P[t, t + T] at 
date t will be 

1 y,[t,t+T[=- TlnP[t,t+T[ 

and the forwa.rd rate observed at time s < t for the period t to t + T is 

t+T-s t-s y,[t,t+T]=- T y,[s,t+T]+ Ty,[s,t]. 
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represent the deviation between the actual yield at date t and the original forward yield at 

previous observation date s. We shall refer to this deviation simply as the "forecast error" 

which it would be under the pure expectations hypothesis1 though this reference is only for 

convenience and does not imply a maintained hypothe:sis that the expectations hypothesis 

is correct. Substituting we have: 

ßy,[t, t + T] T = ß(T)1/l(t) - ß';T) ,P(t) (7) 

3.1 Empirical Implementation of HJM-RS Model 

Unfortunately, the state variables 1/J(t) and ,P(t) are not readily observed. Duffee (1995) 

shows that using a short maturity bill to proxy for the spot rate r(t) is problematic; and 

even shorter rates, such as Fed. Funds or overnight repo rates, are subject to shocks specific 

only to these markets. 

Our solution to the problem of unobservable state-variables is to transform the state-

variables. Note that by selecting any two distinct maturities 1 1 and r2 say, and observing 

the values for ßy,[t, t + ri] and ßy,[t, t + r2] we can invert the following pair of equations for 

,P(t) and 1/J(t) 

Ay,[t, t + r1] T1 - ß(r1)1jJ(t) - ß';ri) ,P(t) 

Ay,[t, t + r2] T2 - ß(r2)1/l(t) - ß';r,) ,P(t). 

Substituting back into equation (5) we obtain: 

where 

r1ß(T)[ß(r2)-ß(T)] 
T ß(r1)[ß(r2) - ß(r1)] 
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r,ß(T)[ß(T) -ß(r1)] 
- T ß(r2)[ß(r2) - ß(r1)] 

Thus, we transform the equation (7), which involves unobservable state-variables, <J>(t) and 

1/;(t), into equation (8), which involves the observable state-variables, ßy,[t, t + r 1] and 

t.y,[t, t + r 2]. 

In summary, if the volatility structure in equation (3) obtains, and the no-arbitrage con-

dition holds, then the forecast error over the period [s, t], for yields of any arbitrary maturity1 

T, can be linked to the forecast error of a.ny two benchmark maturities r1 and r2 . Equiv-

alently, if two state-variables are to cha.racterize a term structure in an HJM model with a 

single stocha.stic driver, then the relationship in equation (8) must hold. Conversely, if equa-

tion (8) does not hold, then the volatility structure is not of the form given in equation (3) 

and hence is not in the class of HJM-RS models, and more assumptions will be necesMcy 

for two or fewer state-variables to characterize the term structure. 

Equation (8) does not contain any parameters that characterize the volatility of the spot 

rate, crr(t, .). Regardless of its structure, if a two state-variable HJM-RS representation is 

to obtain, then the linkage between term structures, in terms of two state-variables, only 

depends 'on the parameters characterizing ß(.), namely, ~. 4 

In order to test this relationship, we first recognize that annualized yields are measured 

with error. We assume that: 

y,[t, t + T] = y;"[t, t + T] + <[t, t + T] (9) 

where y:n[t, t + T) is the measured yield on a T-maturity pure discount band at date t, and 

t[t, t + T] is the measurement error term, the set of which are assumed to be independent, 

identically distributed normal random variables with mean 0 and va.riance .,,2 . AB a first 

approximation this is reasonable. Bliss (1994), for example, shows that bonds of langer 

maturities have larger pricing errors. Measurement errors resulting from stale prices may be 

reasonably expected to be random. While other sources of error, such as liquidity differences, 

4 Actua.lly, in equation (8), we have assumed tbe par&meters of tbe volatility structure are not time varying. 
Fora disctl88ion on the use of time va.rying parameters see RS (1995). 
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may be systematic, modeling these is problematic at best. Since we use non-parametric 

hypothesis tests, any misspecification of our error structure is going to reduce the effi.cacy of 

our estimates, and bias against finding positive results. 

The simple error structure, (9), assumed for raw yield measurements, implies a very 

specific error structure for the forecast error. Substituting equation (9) into (6) we obtain, 

after simplification: 

tly;"[t, t + T] = y;"[t, t + T] - y;"[t, t + T] + "[t, t + T] 

where 
(t + T) t 

e"[t, t + T] = e[t, t + T] - T e(s, t + T) + Te(s, t) 

The E*(·)'s are normally distributed with mean 0 and covariances 

Cov[e"[t, t + T], e•(t, t + S)] = ry 1' T { 
2 '(1 + ( t ) + ( t )') 

ry'c:.~ i 
forT=S 

for T f S 

Substituting equation (10) into equation (8) and rearranging leads to: 

(10) 

tly;"[t, t + T] = tly;"[t, t + ri]H1(T) + tly;"[t, t + r2]H2(T) + ,„[t, t + T] (11) 

where 
,„[!, t + T] = ,•[t, t + r 1]H1(T) + ,•[t, t + r 2]H2(T) - ,•[t, t + T] 

The E**[t, ·]s are normally distributed with mean 0 and covariances given by: 

where 

x(T, S) = Cov (<„[t, t + T], ,„[t, t + S]) = { a'(T)E(T, S)'y(S) 
a'(T)E(T, T)a(T) 

a'(T) (H1(T),H2(T), -1,0) 

,Y(S) (H1(S),H2(S),O,-l) 

11 

for T f S 

forT=S 



a.nd 

2(1 + (~) + (~)2) 
,, •' •' „„, T>T nS 

L 2(1 + (~) + (~)2) L •' 
E(T,S) = 11

2 ,.,„ nT „s 
•' •' 2(1 + (~) + (~)') •' T>T nT TS 

•' •' •' 2(1 + (j) + (~)2) nS nS TS 

Tbis empirical HJM-R.S model has two unknown parameters, K and ry2 which must be 

estimated from the data. 

3.2 Empirical Implementation of HJM-GV Model 

Equation (7) holds regardless of the volatility structure, o-,(t), of the spot interest rate. If, 

however, the volatility of the spot interest rate is a constant, independent of the level of 

rates, then the dynamics of the forward rales correspond lo lhe GV model. In Ibis case, </J(t) 

becomes 
.,.2 

.j>(t) = - (i - e-2"') 2K 

which is deterministic, and 1/J(t) is the sole state-variable. Only a single benchmark maturity, 

T, is needed in Ibis case. Tue GV analog lo equalion (11) is: 

where 

l:.y;"[t, t + T] = h(T)l:.y;"[t, t + Tj + o-2k(T) + <„[t, t + T] 

h(T) 

k(T) 

<„[t, t + T] 

T ß(T) 
T ß(T) 

- 4~2 ß(T)ß(T)[ß(T) - ß(T)j(l - 0-2"') 

- h(T)<'[t, t + Tj - <'[t, t + T] 

12 

(12) 



The €"""[t, ·]s are normally distributed with mean 0 and covariance 

where 

and 

E"(T, S) = ry2 

{ 
a"(T)E'(T,S)'Y'(S) 

x'(T, S) = 
a•' (T)E'(T, T)a'(T) 

a"'(T) - (h(T), -1,0) 

·{(S) - (h(S),O, -1) 

2(1 + (~) + (;,)') •' T,T 

for Ti S 

forT=S 

•' 2(1 + (~) + (~) 2) ,.,r 

•' T,S 

•' TS 

•' •' 2(1 + (~) + (~) 2) ,.,s TS 

This empirical GV model requires estimating three parameters, K, 112 , and a2. 

4 Empirical Tests and Results 

4.1 The Data and Methodology 

Our raw data set consists of the monthly unsmoothed Fama-Bliss yields, over the period 

1982 to 1994.5 A set of 9 target maturities were chosen to cover the term structure. These 

were 0.25, 0.5, 1, 2, 3, 5, 7, 10, and 19 years.6 For each adjacent pair of months we computed 

the forecast errors ßyt[t, t + T] for each of the target maturities. 

Figure la shows the box and whiskers plot of the forecast errors for each of the 9 matu-

rities. The plots are based on 13 x 12 = 156 data points for each maturity. 

5See Fama.-Bliss (1987) and Bliss (1994) for details of tbe metbod used to extract pure discount yields 
from tbe set of avai.lable coupon bond prices each month. 

6These maturities correspond to the T's ahove. To compute the month-before forward prices we also 
eed ··1'''1' n matunt1es o 12, 12• i2• 12, etc. 
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If forward yields were perfect predictors of future spot yields, then there would be no 

unexplained variability1 and the whiskers in the plot would have zero length. Figure la 

shows that forecast error dispersion varies moderately with maturity and there is evidence 

of a maturity dependent bias in the forecasts; at short maturities forward rates tend to over 

state subsequently realised yields on average, but this effect disappears at longer maturities. 

To see if there was a term structure of forecast errors we subtracted the errors each month by 

the forecast error of the shortest maturity. The "normalized" results, presented in Figure lb 

show a positive relation between the premium of long-maturity forecast errors over the 

shortest forecast error, and maturity. In addition, normalized forecast errors show dispersion 

increasing markedly with maturity. 

The question is whether our two models, HJM-RS and HJM-GV, can "explain„ these 

forecast errors in terms of two (or one) state-variables as proxied by selected benchmark 

maturities andin the manner implied by the models. 

We divided our 156 months of observations into 13 annual groupings. This was clone to 

minimize reliance in stationarity of the parameters tobe estimated, and to provided multiple 

independent estimates of the parameters and to be able to compare the models' individual 

and relative performances. 

Two maturities were selected as r1 and r 2 . The HJM-GV model reci.uired a single bench-

mark to substitute for the single state variable, so one of the pair was used for estimation 

and the other was simply discarded. This was clone so that the set of remaining maturites, 

over which the models were be tested would be identical in both cases. 7 

The next step was to estimate the model parameters, K. and 11 for HJM-RS and K., 11 and u 

for HJM-GV. This was clone by maximum likelihood, making use of the variance-covariance 

structure developed above. The process was repeated for each of the 13 years and r1 and 

r 2 were varied to investigate the dependence of the results on the maturities selected as 

benchmarks. The following analyses were based on the residuals from the estimated models, 

i.e. 

<[t, t + T] = t.y;"[t, t + T] - t.y;"(t, t + T1)H1(T) - Ay;"(t, t + T,)H,(T) 

7We also compared the results to models wbich retained the best of two GV models based on separate 
use of the two candidate state variables. Simila.r results were obtained. 
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4.2 HJM-RS Model Results 

Using r 1 = 0.25 and r2 = 5 years respectively, Figure 2a shows a box and whiskers plot of 

the monthly residuals for ea.ch of the remaining maturities. AB in figure la, each box and 

whiskers is based on 13 x 12 = 156 residuals. There is a marked reduction in variance and 

the bias observed in Figure la is no langer apparent. Figure 2b shows an elirnination of the 

heteroskedasticity evident in the raw data 

The lack of biases in the above plots suggest that the structural form of the model in 

equation (11) may have some merit, and indicates that there may be empirical support for 

the normalized volatility restriction. What remains: therefore, is the task of testing this 

specification against some plausible alternatives. If the model provides unbiased estimates 

of yields for all maturities, and if these estimates have smaller mean squared errors than 

alternative estimators, then the underlying assumptions must be somewhat consistent with 

actual market behavior. In particular, such evidence would indicate that the normalized 

volatility constraint, given in equation {3) is not severe and that a two state-variable Markov 

representation of the term structure is permissible. 

Table 1 shows the point estimates and standard errors for the pa.rameters K and 77 for 

each of the 13 years when r1 = 0.5 and r2 = 5. In addition, in column 2 of the table we 

report statistics on the total sum of squa.red forecast errors, TSS, and in column 3 we report 

the sum of squared residuals, RSS, that remain unexplained after equation (11) has been fit. 

Clearly, at any date, knowledge of two points on a future term structure must be useful, 

in that forward yields can now be modified so as to reflect this information and reduce the 

"unexplained" variability. The question that needs tobe addressed is whether our model uses 

this information to update forecasts in such a way that it explains more of this variability 

than some other simple specifications which use the same information. 

On average the HJM-RS model is explaining about 903 of the forecast errors. While 

this number might seem large, it is possible that there are superior ways of using the "extra" 

information provided by these two points, to revise predictions of future spot yields than 

proposed by equation {11). Of course: in order to perform statistical hypothesis tests, very 

specific alternatives need to be developed. We shall return to this issue later. 
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The actual point estimates of the parameters K. range from 0.09 to 0.28 while those for TJ 

range from 0.04 to 0.20. In general, the standard errors of K. are quite large, while those of TJ 

are small. In all 13 years the point estimates of K. are positive. A non- parametric test of the 

hypothesis that K ~ 0 against the alternative K > 0 is strongly rejected at the 0.05% level 

of significance. This finding is consistent with the results of Flesaker (1992). Our results, 

however, are not consistent with those of Amin and Morton (1994). As noted above they 

obtained negative estimates of K. in tests of their GV structure. Flesaker (1992), and Heath, 

Jarrow, Morton and Spindel (1993) also remark that the volatility structure of forward rates 

may not be monotone in the maturity of the rates. In the next section we shall return to 

study this issue more carefully. 

U nder the normalized volatility restriction, ariy two points oll the yield curve can act as 

the state variables. Moreover, regardless of the two state-variable proxies used, the param-

eters are the same, and hence the estimates should all be "close" to one another. Further, 

there should be no systematic relationship between the estimates and the maturities of the 

state variables. Table 2 provides the point estimates of K. for each year, under a variety of 

choices of the two state variables. The results show that the point estimates of K. depend Oll 

the choice of the state variables. In particular, given Ti, as r 2 increases, the point estimates 

of K. decrease. This implies that the model is not able to capture all elements of volatility 

shocks.8 

Notice that under an exponentially dampened structure, with K. > 0, very long term 

forward rates will remain somewhat unchanged. The parameter ,.., controls the speed of 

adjustment to an informational event across the yield curve. If the volatility of yields at 

distant maturities is high, then the model will produce point estimates of K. that are lower 

then would be the case if the volatility were low. If shocks to the yield curve have per-

manent effects, (i.e. the shocks are parallel) thell higher than anticipated volatilities may 

be encountered on distant maturities, and as T2 increases, one would expect the estimates 

produced by the model to decline. In this regard, Table 2 provides some evidence that the 

RS constraint may not be fully satisfied and that other specifications could improve upon 

8 An alternative source of the dependence of K estimate on T1 and T2 ma.y lie in the a.ssumption tha.t the 
t:[t, t + T] in equation (9) a.re homoskedastic a.nd independent. 
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this postulated structure. For example, a two factor model, wi.th an exponentially dampened 

structure for the first factor, and a constant structure as.sociated. with the second structure 

might have some advantages. A model with these features, would, in the HJM paradigm, 

have 3 state-variables. 

In summary, the lad: of systematic patterns in the residuals and the fact that the signs 

of the estimates are consistently positive indicates that the model may have some pred.ictive 

attributes. On the other hand, the fact that the estimates of K decrease as r2 increases, 

suggests that the model could be missing a factor that captures parallel shifts. While more 

complex structures may provide added realism, the two state-variable model still may have 

predictive capability beyond that of weil specified alternative models, such as the GV model. 

4.3 Hypothesis Tests 

There are two reasons for using HJM-GV as a benchmark against which to compare the 

HJM-RS model. First, the HJM-GV model is the only single state-variable model in the 

HJM class and has been used in a number of theoretical and empirical studies. Second, 

Amin and Morton (1994} have shown that this simple structure has predictive power, and 

that trading schemes based on estimates of the parameters of this structure can generate 

abnormal risk adjusted returns. Our goal, therefore, is to establish whether the HJM-RS 

structure has significantly greater predictive capability, beyond that of the GV model. In 

particular, we are keen to investigate whether the residuals generated by the model (11) are 

smaller than those generated by the GV model, for all maturities across the spectrum of the 

term structure. 

Towards this goa.l, for each year we estimate the three parameters of the GV model and 

the two parameters of the two state-variable model. Then for each month we record the 

absolute value of the residuals for all the remaining maturities. For each maturity we count 

the number of times (out of 12) that the RS model bad a smaller deviation than the GV 

model. Table 3 shows these num.bers for each maturity and for each year, when r 1 = 0.5, 

and r2 = 5, for the RS model a.nd r = r2 for the GV model. 

The "wi.nner" for the year was then identified. This experiment was then repeated for all 

13 years, and a non-parametric test performed to establish if the RS model out-performed 

17 



the GV model. The result is an overwhelming rejection of the hypothesis that the two models 

are not different. In particular, in each year the two state-variable model out-performed the 

GV model. 

Table 4 reports summary statistics when alternative pairs of maturities are used as state-

variables. 

In summary, we can conclude that models developed under the normalized. forward rate 

volatility restriction, provide a significant improvement over the GV model. Since the differ-

ence between the two models arises solely from the fact that the spot rate volatilities in the 

GV models are constant, we can conclude that alternative spot rate volatility specifi.cations 

can lead to flrrther improvements. 

4.4 The Volatility Hump 

Several studies on the volatility structure of forward rates claim or infer that the volatility 

structure of forward rates is humped: increasing over short horizons before decaying. lf this 

structure is correct, then the exponentially dam.pened normalized volatility structure, with 

no time-varying param.eters, equation (3), will be misspecified. We now investigate whether 

there is a "hump" in the normalized volatility structure. We accomplish this without making 

assumptions on the spot rate volatility structure. 

First, parallelling Amin and Morton's (1994) study, we re-estimate the HJM-RB model 

using only short maturities. In the presence of a humped term structure of volatilities, an 

exponentially declining model such as HJM-RS or HJM-GV might come up with positive 

point estimates of "' when fitted across the entire maturity spectrum, but should produce 

negative estimates when fitted to short maturities only. Our short-horizon maturity targets 

were t. ~' ~, l, t!, 2, 2~ and 3 years. From this set, ! and 3 years were selected. as tau1 and 

r 2 . Table 5 reports the results. For all 13 years, the estimates of K remain positive. This 

suggests that the normalized volatility structure is a decreasing function of maturity, even 

nea.r the short end of the curve. 

Returning to our original target-rn.aturity set, as a final test to establish whether the 

estimates of K are maturity dependent, we estimate K for each maturity separately, again 

using r1 = 0.5 and r2 = 5. If there is no maturity dependence1 then plots of these estimates 
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against maturities should not reveal distinct patterns. Figure 3a presents the croos-maturity 

K estimates for each of the 13 years of data. Although K estimates vary across maturities 

within each year1 there is no obvious pattern to the point estimates. To emphasize this point 

we plot, in Figure 3a, the K estimates for each maturity '~normalized" by subtracting out the 

estimate for the shortest maturity. 

The only pattern evident here is that the short-maturity K does not seem to fit in with 

the others, appearing to be unusually low relative to the others part of the time, and too 

high at other times. AB for the remaining maturities, the only pattern is one of increasing 

dispersion with maturity. 

In neither Figure 3a nor 3b is there any evidence of a '·uwnped" pattern in the K estimates. 

This confirms the evidence in Table 5 and is consistent with the success of the HJM-RS model 

in fitting the forecast errors. Our results are thus strongly supportive of an exponentially 

declining term structure of normalized forward rate volatilities consistent with the HJM-RS 

class of models. This conclusion contrasts with the results of Amin and Morton (1994) and 

Heath, Jarrow, Morton and Spindel (1993) 

5 Summary and Conclusions 

One of the main drawbacks of the HJM paradigm for pricing interest rate claims concerns 

the fact that for an arbitrary forward rate volatility structure, a finite collection of state 

variables, which are su:fficient to describe the price process of bond.s, may not ex:ist. Im-

plementations of the general HJM model requires keeping track of the entire history of the 

forward rate process since the initialization date. For short term contracts: Heath, Jar-

row, and Morton (1990) discuss feasible lattice based procedures. However, for langer term 

contracts, the path-dependence causes complications. Lattice models, for example1 do not 

recombine1 and actually grow exponentially in the number of period.s. However, if the struc-

ture for forward rate volatilities belongs to the HJM-R.S class, given in equation (2), then 

the computational problems are simplified. In this case, two state-variables can be identified 

and the path-dependence is avoided, resulting in computationally efficient HJM models for 

pricing a wide variety of European and American type interest rate contingent claims. 
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This article explores whether there is any empirical support for the HJM-RS volatility 

constraint. The constraint makes no particular as.sumptions about spot rate volatilities, but 

rather about forward rate volatilities relative to spot rate volatilities. Our empirical tests 

allows us to avoid having to postulate a particular spot rate volatility and thus avoid a 

joint-hypothesis dilema. 

Based on the analysis it appears that the HJM-RS model, based on the normalized 

volatility structure of forward rates being exponentially dampened in maturity, outperforms 

the GV model. In particular, there is support for a decaying volatility structure, with no 

evidence of a "hump" existing in the volatility structure. 

Given the two state variables1 corresponding to forecast errors at maturities r 1 and T2, 

the estimates of individual K's vary with maturity, but without pattern. The ability of 

a cros.s-maturity fixed-K to fit the data suggests that a constant K produces an adequate 

representation of the data. 

The fact that estimates of K depend on the selection of the state variables implies that 

not all information is being captured by the exponential structure. 

One possible explanation for the results in Table 2 is that a two factor model might be 

more appropriate. lt remains for future research to test such models. While alternative 

models could do equally weil or better than the single-factor / two state-variable model, 

with unexplained forecast-error variance already red.uced to 103, it is unlikely that such an 

approach can produce economically beneficial advantages. 
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Figure 1a: Box Plots of Raw Data 
8.yt[t,t+T] = Yt[t,t+T] -y0[t,t+T] 
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Figure 1 b: Box Plots of Data Relative to öyt[t,t+0.25] 

öyt[t,t+T] = Yt[t,t+T] • Yo[t,t+T] 
(5, 10, 25, 50, 75, 90, and 95th percentiles; dashed llne represents the mean) 
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Figure 2a: Box Plots of Raw Errors 
E[t,t+T] = ~Yt[t,t+T] - H1(T;'t1, 't2) ~Yt[t,t+'t1] - H2(T;'t1, 't2) ~Yt[t,t+'t2] 

(5, 10, 25, 50, 75, 90, and 95th percentiles; dashed line represents the mean) 
1.00 ~-----------------------------~ 

0.75 

0.50 -

........ .... 
© c: 0.25 © Q) © © © ~ © © 

Q) 

$ $ $ c. $ c: 0.00 v 
!:::' © © t. ~ © © - -0.25 
~ ! © -
"' © 

-0.50 

-0.75 ~ 
i 

-1.00 
0.25 0.5 1 2 3 5 7 10 19 

Horizon "T" in Years {t1=0.5 and t 2=5) 



~ _. 
c: 
Q) 

~ 
Q) c. 
c: = 
lö' 
N • 
0 t. -~ 
"' • 
i= t. 

Figure 2b: Box Plots of "Normalized" Errors 
i>[t,t+T] = ~Yt[t,t+T] - H1(T;'t1 , 't2) ~Yt[t,t+'t1] - H2(T;t1, 't2) ~Yt[t,t+t2] 

(5, 10, 25, 50, 75, 90, and 95th percentiles; dashed line represents the mean) 
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Figure 3b: Plot of Annually Computed K's Relative to K(1/4) 
't1 = 0.5, 't2 = 5 
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Table 1 - HJM-RS Model Results for T1 = 0.5 and T2 = 5 
·-,-·~~ 

t'>.y 
Year TSS RSS R' " S.E. ry S.E. 
1982 62.894 9.525 0.849 0.276 0.079 0.207 0.016 
1983 15.172 2.420 0.841 0.081 0.013 0.072 0.006 
1984 24.985 1.892 0.924 0.178 0.022 0.084 0.007 
1985 21.247 1.213 0.943 0.104 0.014 0.067 0.005 
1986 18.229 1.957 0.893 0.094 0.011 0.069 0.005 
1987 13.433 1.207 0.910 0.170 0.026 0.071 0.005 
1988 9.578 0.775 0.919 0.091 0.017 0.043 0.003 
1989 11.694 0.628 0.946 0.349 0.039 0.053 0.004 
1990 7.143 0.754 0.894 0.098 0.013 0.049 0.004 
1991 8.313 0.652 0.922 0.164 0.034 0.048 0.004 
1992 8.299 0.913 0.890 0.287 0.036 0.058 0.004 
1993 4.556 0.553 0.879 0.207 0.022 0.046 0.004 
1994 6.524 1.221 0.813 0.210 0.038 0.067 0.005 

Overall R2 : 89.43 



Table 2 - K, and Ü".erall Performan~e of HJM-RS Model for Various T1 and T2 

T1 0.25 0.25 0.25 0.25 0.25 0.25 
T2 2 3 5 7 10 19 

Year 
--1982 0.537 0.427 0.300 0.222 0.154 0.081 

1983 0.088 0.085 0.082 0.078 0.074 0.063 
1984 0.196 0.190 0.180 0.172 0.164 0.148 
1985 0.111 0.109 0.105 0.101 0.096 0.083 
1986 0.098 0.097 0.094 0.092 0.089 0.081 
1987 0.195 0.186 0.172 0.161 0.148 0.124 
1988 0.102 0.098 0.092 0.087 0.079 0.057 
1989 0.388 0.375 0.355 0.339 0.324 0.305 
1990 0.105 0.103 0.099 0.096 0.091 0.081 
1991 0.209 0.193 0.168 0.149 0.128 0.088 
1992 0 325 0.313 0.292 0.276 0.258 0.227 
1993 0.223 0.218 0.209 0.202 0.194 0.180 
1994 0.265 0.244 0.215 0.195 0.173 0.133 

Overall R2: 70.73 82.43 86.73 8543 83.93 7583 

T1 0.5 0.5 0.5 0.5 0.5 0.5 
T2 2 3 5 7 10 19 

Year 
1982 0.485 0.390 0.276 0.206 0.146 0.079 
1983 0.087 0.085 0.081 0.078 0.073 0.062 
1984 0.194 0.188 0.178 0.171 0.162 0.146 
1985 0.111 0.108 0.104 0.100 0.095 0.083 
1986 0.098 0.097 0.094 0.092 0.089 0.081 
1987 0.192 0.184 0.170 0.159 0.147 0.122 
1988 0.101 0.097 0.091 0.086 0.078 0.056 
1989 0.383 0.370 0.349 0.333 0.317 0.296 
1990 0.105 0.102 0.098 0.095 0.091 0.080 
1991 0.204 0.188 0.164 0.146 0.125 0.086 
1992 0.321 0.308 0.287 0.271 0.252 0.218 
1993 0.221 0.216 0.207 0.200 0.192 0.179 
1994 0.258 0.238 0.210 0.190 0.169 0.130 

Overall R2: 75.13 85.53 89.43 89.23 88.83 83.63 



Table 3 - Comparison of HJM-RS and HJM-GV Model Results for 71 = 0.5 and 72 = 5 

Delta11 HJM-RS Model HJM-GV Model RSS Wins 
Year TSS RSS R2 RSS R2 Ratio Ratio 
1982 62.89 9.52 0.85 16.34 0.74 1.72 1.07 
1983 15.17 2.42 0.84 3.47 0.77 1.43 1.02 
1984 24.98 1.89 0.92 6.66 0.73 3.52 1.19 
1985 21.25 1.21 0.94 2.95 0.86 2.43 1.26 
1986 18.23 1.96 0.89 4.24 0.77 2.16 1.31 
1987 13.43 1.21 0.91 3.12 0.77 2.58 1.21 
1988 9.58 0.77 0.92 1.11 0.88 1.44 0.81 
1989 11.69 0.63 0.95 1.23 0.89 1.96 1.14 
1990 7.14 0.75 0.89 1.95 0.73 2.59 1.14 
1991 8.31 0.65 0.92 1.25 0.85 1.91 1.02 
1992 8.30 0.91 0.89 1.85 0.78 2.03 1.24 
1993 4.56 0.55 0.88 1.88 0.59 3.40 1.33 
1994 6.52 1.22 0.81 2.12 0.68 1.73 1.31 

Overall R2: 89.43 77.23 
-· 

Table 4 - Comparison of HJM-RS and HJM-GV Model Results for Various 7 1 and 72 

Number of years that HJM-RS Model beats HJM-GV Ratio of Annual 
Criterion RSS Ratio Individual IE[t, t + TJI Ave(RSS/TSS) 

71 0.25 0.50 0.25 0.50 0.25 0.50 
72 

2 3 7 2 5 0.61 0.91 
3 7 11 7 8 0.95 1.47 
5 11 13 10 12 1.38 2.15 
7 11 13 12 13 1.60 2.50 
10 11 13 12 13 1.91 3.13 
19 11 12 11 13 2.10 3.18 



Table 5 - Sbort-Maturity HJM-RS Model Results for r 1 = 0.5 and r 2 = 3 

Year t;y TSS RSS R' K S.E. ry S.E. 
1982 73.841 5.501 0.925 0.718 0.129 0.116 0.010 
1983 12.668 0.994 0.922 0.426 0.118 0.053 0.004 
1984 25.975 1.111 0.957 0.728 0.070 0.053 0.004 
1985 18.144 0.609 0.966 0.446 0.090 0.049 0.004 
1986 12.061 0.493 0.959 0.035 0.106 0.040 0.003 
1987 12.337 0.549 0.956 0.513 0.069 0.044 0.004 
1988 8.781 0.273 0.969 0.349 0.080 0.029 0.002 
1989 13.095 0.246 0.981 0.593 0.049 0.031 0.003 
1990 5.942 0.452 0.924 0.445 0.096 0.038 0.003 
1991 9.348 0.311 0.967 0.325 0.108 0.033 0.003 
1992 8.717 0.301 0.965 0.238 0.074 0.034 0.003 
1993 3.202 0.189 0.941 0.388 0.056 0.025 0.002 
1994 6.022 0.847 0.859 0.628 0.099 0.049 0.004 

Overall R 2: 94.63 


