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Abstract: We use generalized method of moments to estimate a rational expectations aggregate demand—
aggregate supply macroeconomic model for five European economies. Our aim is to examine whether supply or
demand shocks have predominated in the major European economies during the post-war era and whether shocks
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We find that all four types of shocks (permanent supply, permanent demand, temporary supply, and
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1. Introduction

In recent years, a number of authors have used vector autoregressions (VAR'’s) to investigate whether
macroeconomic fluctuations are primarily caused by nominal or real shocks. In this paper, we investigate
the sources of macroeconomic fluctuations in the major European economies by estimating an aggregate
demand/aggregate supply model with rational expectations. Our model allows macroeconomic fluctua-
tions to arise from either supply or demand shocks. We also allow the demand and supply shocks to have
permanent and temporary components that are not separately identifiable. A distinctive feature of the
analysis therefore is that the number of driving shocks exceeds the number of endogenous variables. Nev:
ertheless, we are able to estimate the structural parameters, including the variances of the underlying

shocks, using generalized method of moments.

The classic paper by Sims (1980) found that nominal shocks were a major source of U.S. fluctuations.
Sims argued that the exclusion restrictions commonly used to identify parameters in traditional structural
models were not reasonable under rational expectations. When expectations are rational, all relevant pre-
dictive variables belong in any equation where expectations appear. While a VAR treats all observable
variables as endogenous, the parameter estimates are very difficult to interpret. As a substitute for exclu-
sion restrictions, Sims assumed that his data could be ordered in a Wold causal chain. Since then, various

other methods of identifying VAR’s have been proposed.

Blanchard and Watson (1986) identify a VAR by restricting the contemporaneous correlations of the one-
step-ahead forecast errors. They conclude that U.S. fluctuations are due to fiscal, monetary, demand, anc

supply shocks, in roughly equal proportions.

Several other authors have used long-run restrictions to identify VAR’s. After assuming that demand
shocks have zero long-run impact on output, Blanchard and Quah (1989) find that demand shocks are the
primary source of U.S. fluctuations. By contrast, Shapiro and Watson (1988) find evidence that exoge-
nous labor supply shocks drive U.S. fluctuations. King, Plosser, Stock, and Watson (1991), who use a
combination of long and short-run restrictions to identify their VAR'’s, report that nominal shocks have

little importance and find evidence of at least two separate real shocks.

Gali (1992) examines a structural VAR of the IS-LM variety for the US economy. He assumes there are
four shocks: supply, money demand, money supply, and an IS shock (that is, three types of “demand”

shocks, and one supply/productivity shock). He identifies parameters through a combination of long-run
and short-run restrictions. He finds both types of shocks important, but supply shocks are dominant: 70

percent of output variability at business cycle frequencies is accounted for by supply shocks.
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Long-run restrictions on VAR'’s of the Blanchard-Quah variety have also been used by Ahmed and Park
(1994), Bergman (1996), Karras (1994), Bayoumi and Eichengreen (1992) and Whitt (1995) to examine
evidence on the sources of macroeconomic shocks in other economies. Ahmed and Park focus on seven
OECD countries, including five in Europe. They estimate VAR'’s with four endogenous variables: home
country real output, the price level, the balance of trade, and rest-of-world output, proxied by U.S. output.
They report strong support for one of the propositions of real-business-cycle theory, namely that supply-
side changes explain the bulk of the movements in aggregate output. Bergman studies five countries,
including Germany and the United Kingdom, using a bivariate VAR model for output and inflation.

Using variance decompositions, he argues that at a typical business cycle frequency (the five-year hori-

zon), supply shocks are the main source of output variance for all his colintries.

By contrast, the other three papers find results less favorable to real-business-cycle theory. Karras (1994)
estimates VAR’s for three European countries, two of which (France and the U.K.) were analyzed by
Ahmed and Park. He uses five variables: home country output, the price level, employment, the real inter-
est rate, and the world price of oil. He concludes that real business cycle models are inadequate, because
aggregate demand was responsible for over half of the variability of output at a four-quarter horizon in
France and Germany, and about 40 percent in the U.K. Bayoumi and Eichengreen (1992) and Whitt
(1995) estimate VAR’s with two variables, output and prices. Like Karras, they find that aggregate

demand shocks account for a substantial portion of output fluctuations in major European countries.

In this paper, we also estimate a small structural model of output fluctuations for several European coun-
tries. We follow Hartley and Walsh (1992), however, and use a method of moments procedure to identify
the parameters rather than long-run restrictions of the Blanchard-Quah variety. Our results thus are
immune from the Lippi and Reichlin (1993) and Faust and Leeper (1994) criticisms of the Blanchard-
Quah approach. In addition, structural modeling of the type proposed by Hartley and Walsh (1992), and
pursued in this paper, has the advantage of giving the estimated parameters a clear economic interpreta-

tion, something often lacking in VAR analyses.

Hartley and Walsh assumed a structure of supply and demand curves where each curve could be affectec
by more than one shock. When the number of unobserved exogenous shocks exceeds the number of
observed endogenous variables, the econometrician cannot recover a time series for the shocks from the

data. However, the endogenous variables can be expressed as a vector autoregressive moving average pr

1 Itis debatable whether Bergman's results for Germany are entirely supportive of real-business-cycle theory. At a three-year
(12-quarter) horizon, only 35 percent of output variance in Germany is attributable to supply shocks.
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cess of the shocks. This VARMA representation yields expressions for the contemporaneous and lagged
variance and covariances of the endogenous variables as a function of the various supply and demand

elasticities and the variances (and possibly covariances) of the underlying shocks.

An initial estimation chooses parameter values to minimize the sum of squared differences between the
theoretical second moments and the corresponding sample second moments obtained from the data. A
second estimation minimizes a weighted sum of squared deviations with weights chosen “optimally” to

yield a test of the parameter restrictions.

The method of moments estimation used by Hartley and Walsh is closely related to the “calibration
method” used to evaluate real business cycle models. Whereas the parameters are usually at best just-
identified in the typical calibration exercise, however, the number of moments fit in the method of
moments estimation can exceed the number of parameters. The over-identifying restrictions can then be
tested. The method of moments procedure also allows us to estimate standard errors for the parameter

values and this provides further information on the fit between the model and the data.

Hartley and Walsh (1992) were particularly interested in investigating a possible role for inside money in
initiating or propagating business cycles. They developed a “non-standard” model that reflected various
institutional features of the U.S. money market, and they applied it solely to U.S. data. By contrast, our
focus is the relative importance of supply versus demand shocks, and, within each of these categories,
permanent versus temporary components. We also want to facilitate cross-country comparisons. We
therefore use a simpler and more common structure than Hartley and Walsh (1992), with only demand

and supply shocks.

Identification of the different shocks is fundamentally based on the idea that demand shocks tend to push
prices and output in the same direction, while supply shocks push them in opposite directions. Since we
allow for expectations and lags, and permanent and temporary components of each type of shock, how-

ever, our model can account for more complicated patterns of correlations between prices and output.

We find that all four types of shocks (permanent supply, permanent demand, temporary supply, and tem-
porary demand) are needed to account for the data. Permanent demand shocks have been the dominant

source of variance in output growth in Germany, the UK and the Netherlands. Temporary demand shocks

2. Another difference is that, in the typical calibration exercise, the model is kept simple enough that each moment is prima-

rily dependent on the values of a small number of key parameters. In the models examined in this paper, and in Hartley and
Walsh (1992), however, the second moments are complicated functions of the parameters. It is then no longer obvious how
parameter values should be set so as to optimally match the theoretical second moments to their corresponding sample val-
ues. The main source of this non-linearity is the assumption that expectations are formed rationally.
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have been about twice as important a source of variance in output growth in Italy, while all four shocks
have been of roughly equal importance in France. However, permanent supply shocks have been the main
source of longer run positive autocorrelation in output growth in all countries. In all countries demand

shocks contribute to longer run negative autocorrelations in output growth.

Inflation variances and autocovariances have been dominated by permanent supply shocks in France. In

the remaining countries, permanent supply and demand shocks have been of roughly similar importance.

We find net positive covariances between output growtHwdnce inflation in the data from Germany,

France, and Italy. These results stand in contrast to the findings of Cooley and Ohanian (1991, Table 1)
and Kydland and Prescott (1990, Table 4) for the United States that these covariances are negative at
nearly all leads and lags. Our parameter estimates imply that in all economies, permanent supply shocks
have contributed to a negative covariance between output growth and current, lagged, and future inflation.
By contrast, permanent demand shocks have contributed to a negative covariance between output growth
andlaggedinflation, but a positive covariance between output growthcameént and futurenflation.

Temporary shocks have also influenced the contemporaneous correlations between output growth and

inflation in all countries.

2. Integration and co-integration tests

There are few a priori theoretical restrictions on the possible number, or stationarity properties, of the
shocks affecting the macroeconomy. Before developing and estimating the model, therefore, the data
need to be examined for stationarity and possible co-integration features. The assumed stochastic struc-

ture of the theoretical model then needs to be consistent with the stationarity properties of the data.

Quarterly data on industrial production and producer prices, both seasonally-adjusted, were obtained
from the IFS or the BIS for the five largest West European economies — Germany, France, UK, Nether-
lands and Italy. The data are described in more detail in Appendix 2. The well-known augmented Dickey-
Fuller test was applied to the quarterly series, logged, in order to asses the number of unit roots (perma-

nent shocks) in the data. The results are presented in Table 1.

The pattern for Germany is clear: we fail to reject a single unit root in each series, we do reject two unit
roots in each, and we fail to reject an absence of co-integration. For the other 20 tests, 17 conform to the

German pattern.

The first exception is France (column 1). The test indicates a weak rejection of a single unit root in output

(the 1 percent critical value is about -3.97), suggesting that the output level might be stationary.
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The other two exceptions are both in column 4 for the UK and the Netherlands. In these two instances, we
fail to reject the null hypothesis of two unit roots in the price series at the five (or even the 10) percent lev-
els. Graphs of the data indicated that for a lengthy period in the middle of the sample (roughly 1973 to
1981), the mean rate of growth of prices was substantially higher than at other times. We considered using
dummy variables to create adjusted series, but chose not to do so for two reasons: first, such dummy vari-
ables might well remove from the data major supply or demand shocks, and second, we thought it desir-

able to maintain cross-country consistency by using the same pre-filter for all countries.

TABLE 1. Dickey-Fuller tests of stationarity and co-integratior?

Industrial production Producer prices

1 unit root? 2 unit roots 1 unit root 2 unit roots Co-integration
Germany -2.42 -8.33 -1.31 -3.97 -1.87
(-3.45) (-3.86)
France -3.54 -8.14 -1.08 -4.72 -3.31
(-3.46) (-3.87)
UK -2.89 -10.76 -1.68 -2.32 -2.78
(-3.44) (-3.85)
Netherlands -1.92 -4.78 -1.22 -3.03 -1.60
(-3.44) (-3.85)
Italy -1.95 -11.90 -1.56 -4.90 -0.78
(-3.45) (-3.86)

a. Tests were done including zero to eight lags of the dependent variables in order to deal with the possibility of serially-cor
lated residuals. The test statistics in the table use the specification that was the “best” according to the Schwasubriterion,
ject to having residuals with a Ljung-Box Q statistic that failed to reject the null hypothesis of no serial correlatibn at a 1
percent or higher significance level.

b. The 5 percent critical value for each country's unit root tests are given in parentheses below the test statisticd jitmlumn
same critical value also applies to columns 2 to 4. The 5 percent critical values for the Engle-Granger co-integragon tests ar
in parentheses below the test statistics in column 5. All critical values were obtained from Mackinnon (1991).
Based on these results, we constructed an aggregate demand/aggregate supply model with two indepen-
dent permanent shocR&Ve shall assume one of these shocks is a supply shock and one is demand shock.

We make no assumptions, however, about whether the demand shock is real or nominal.

3. Aggregate Supply

We assume there is a supply shecktt that is acombinedemporary and permanent shock. Temporary
supply shocks could represent the effect of strikes, severe weather or other temporary influences on

aggregate production. Permanent supply shocks represent long-lasting shifts in aggregate supply associ-

3- While aggregate demand/aggregate supply models that use the I1S-LM framework have been criticized in recent years,
McCallum (1989, pp. 102-107) argues that if the supply function has classical properties, as is the case in the model in this
paper, then the resulting model is for many purposes rather similar to models derived from explicit maximization of agents’
choice problems.



ated, for example, with changes in technology and factor supplies.

While s is known at, neither agents in the economy nor the observing econometrician know for sure
what part ofs, will be permanent.We initially assume that agents learn the temporary versus permanent
composition of supply shocks after one period. Later in the paper, we consider a model where agents do

not know the composition of the supply and demand shocks for two periods.

We also assume supply increases when current prices rise above the rationally expected prices based on
the previous period’s information. Lucas (1973) provides a justification for such an effect when suppliers
are confused about whether shocks are primarily local (and real) or aggregate (and nominal). Our model
does not distinguish between local and aggregate shocks, while agents always know the current demand
and supply shocks. They are confused only about the permanence of those shocks. Nevertheless, we car
obtain an analog of the Lucas supply curve if we assume suppliers base their expectations on last period’s
information. Alternatively, Fischer (1977) generates such a supply curve in a model where suppliers pre-

commit to contracts one period in advance.

Finally, we allow supply to be autocorrelated. This could result, for example, from investments that trans-
mit current deviations of supply into future periods. Thus, the aggregate supply curve can be written

(where all variables are in logarithms):

¥ = PY—1 V(P —E_1P) +5 (1)
with
§ =& te = &1t tE (2)
The shockg (the innovation to the permanent component of the overall supply shock)thedempo-
rary component) are assumed to be uncorrelated at all leads and lags and each of them is assumed to be
independently identically distributed. Because we use GMM for estimation, we do not need to specify a

distribution for the shock& ande. We merely need to assume that both shocks have finite second

moments. The same is true of the components of the demand shocks that are specified below.

We shall assume that the number of integrated random variables among the driving shocks matches the
number of non-stationary driving shocks indicated by the unit-root and co-integration analysis. The struc-
tural model then must be constructed so that it would yield stationary endogenous variables if the driving

shocks had also been stationary. In particular, the autocorrelation pargmets to lie in the interval

4 Brunner, Cukierman and Meltzer (1980) developed a similar theoretical model in which macroeconomic fluctuations arise
because agents cannot distinguish permanent from temporary shocks.

6



(-1,1). We expect the elasticity coefficigrtb be positive.

4. Aggregate Demand

We allow the aggregate demand for output to respond negatively to the real interest rate. Following Sieper
(1989), we assume that, in contrast to factor markets where expectations are based on information avail-
able att-1, expectations in capital markets are based on information availabléhate is also a real
demand shock; that represents shifts in the IS curve. Examples of such shifts are changes in demograph-
ics, fiscal policy or export demand. As with aggregate supply, we allow aggregate demand to be autocor-
related. Thus, the aggregate demand curve can be written (with variables other than the interest rate in
logarithms):

Yi = NY—a(—E Pt P) +Xy (3)

We expectr to be positive and again require the autocorrelation parametelie in the interval (-1,1).
Money Market
We also postulate a conventional aggregate demand for money balances:

M —py = By, =3~ + oy 4
wherewis a shock to money demand antlis the interest semi-elasticity of the demand for money.
Reduced form aggregate demand curve

We assume equilibrium, andi; equate aggregate supply and aggregate demand for goods and money.

From the money market equilibrium condition we can conclude that

iy = Oy, —d(M—p—uy) . (5)

Substitute (5) into the aggregate demand curve (3) to deduce that it can be written:

X
i = nyt_l—a[Béyt—Bﬁn—q+a—g—pH—(Etpm—pt)} (6)

Equation (6) can be re-arranged to yield

n
Vo= Toapat-1 1+(x[36%nl o a5 ~pg+ 1+a[36(Etpt+l =Y 7)
As shown in the middle term in (7), shocks to aggregate demand can arise in many ways: besides the real

demand (IS) shocks representegpynonetary policy can generate nominal shocks by changing the true

money supplyn, and changes in financial intermediation technology among other factors can produce

7



real shocks to money demad

We assume neither the public nor the econometrician obsewer x. Nevertheless, usingp, Ejp.1
and (7) the public can infer the value of the amalgamated demandds{uefined asn,—w, +x,/ad ).

We can write the aggregate demand curve in terms of prices and the demardiadboekin the form

Yi = qut_l"'r(dt_pt)+¢(Etpt+1_pt) (8)
We conduct the subsequent analysis using (8) for the aggregate demand curve. Analogously to the supply

shocks, we assume that the demand shdak acombinedemporary and permanent shock.
dp = Mt T = g VT 9)
The shocks andt are assumed to be independently identically distributed and uncorrelated at all leads

and lags with each other and with the supply shocks.

We again assume that neither the econometrician nor the agents in the economy know how much of a cur-
rent demand shock is temporary and how much is permanent. Specificallydygkeown, the compo-
nentsy,_q, V; andt; are not. We again assume, however, that agents learn the temporary versus permanent

(but not the real versus nominal) compositiomlcifter one (or, later in the paper, two) period(s).
5. Equilibrium
Using the lag operatdy, the aggregate supply curve (1) can be written:
(1_p|—)yt =y( pt_Et_lpt) +S (10)
while the aggregate demand curve (8) can be written
(1-YL)y; = PEp;, 1 —(P+T)p+1d,. (11)
Multiplying (10) by (1+4L) and (11) by (1pL) we deduce that product market equilibrium requires
(1-wD)Iy(p—Ei_1p) +s] = (1-pL)[PEP, 1 —(P+T)p +Td] (12)
= (DEt pt+1_¢pEt_1pt_(cD+ r)(l_pl—) pt + r(l_pl—)dt

Since the composite shocgsandd, are non-stationary, is also non-stationary. To solve for the equilib-
rium price and output, we need to manipulate equation (12) to ensure we are working in spaces of station-

ary processes. By adding and subtractingp, , equation (12) can be re-arranged to obtain
PE Py 1—(P+1)(1-pL) p=Ppp; = (1-YL)§-T (1-pL)d +(y—Pp-YyL)(P—E_1p) - (13)
Now observe thags—E, p, = P—E, ;P is stationary while

(1-L)EiPrs+1 = EiPrr1—Er1P = EiPrae 1 =Pt P—E 1Py = EL(1-L) Prs o] +(P—E¢_1Pp) - (14)
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Thus, differencing (13), we obtain a stochastic difference equatidf fo(1L)p;:

®E,P,, ;—(P+T)(1-pL)P,—DpP, = (1-WL)(Z, +&—¢,_1)—T (1—pL)(V,+T,~T,_,) + (15)
[(y—Pp—D)—(Py+y- PYL+PyL? (P—E,_,P,)

6. Information processing

Individuals know the functional forms of the aggregate demand and supply curves. They alppakrtbw

Y, and therefore the valuespaindd,, at timet. We assume to begin with, however, they do not know the

decomposition o§; or d; into their components, &, | or T; until periodt+1. From these assumptions

about information, and the form of (15), we deduce Rpatill be a linear function of current and lagged

¢, €, v andt. Since individuals know, &t1, all shocks dated2 or earlier, P,—E;.1P;) will be a linear sum:
Pi—Er_1Pt = Tuol + Thoof *+ TV + ol + 1 (G 1 —B_18i_1) +T0a(€r_1—Er_1&_1) (16)

Ty (Veo1 =B Vi) +Tua(Ta—E 1T o)
Since individuals know&,_», Mo, €2, Tr.o, ASi.1 = (i1 + €1 — Ep ANAAD, 1 = Vi1 + Tyq — Ty att-1, they

will also observe, ; +€,.; andv,_; + T,4. Projecting onto these variables they would obtain:

Ei_1i-1 = ap(G_a+€y) 17)
Ei_18 2= ax({_1+€1) (18)
Ei_1Vi-1 = bi(Via+ 1) (19)
B 1Tio1 = oV g +Tiy) (20)
where
2 2 2 2
a, = 822%_%2, a,= GZZGTEGE by = ogcivo% andb, = ogc-j:orz : (21)

Observe thaa, = 1-a; andb, = 1-b;.

7. ARIMA representations for p, and y;

We define the inverse of the lag operator by
o (22)

wherex, is known at time. Then the equilibrium solution fé, can be written in terms of current and

5 Thus, whilep, andE, ,p; are both non-stationary, they are co-integrated.
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lagged shocks using the operatorsndL™:

Lemma 1: The equilibrium inflation rat®, satisfies the stochastic difference equation:
O N _
(P+ r)%l—mL D(1—pL)Pt =M (1-pL)(vi+ 1T, _)—(1-YL)({; +&—&;_1)— (23)

1
[(y—Pp—®)—(Py+y— PPL+PyL2] { Z (K 1iC—i T Ko TKgVy_j +K4iTt—i)}
i=0

for constant coefficientsy = 15, i = 1,...,4, and

K11 = (M1—Thy)ay, Koy = (T —Th)ay , Kgy = (T3 —Tyy)b, andk,y = —(T3;—1y)b; . (24)

Proof. The left side of (15) can be written

® ®
DEP,,1—(P+I)(1-pL)P,—DpP, = ~(d+ F)[—TrEtPt+1+ %HmpEPt—th_l} (25)

- @ -0 @ 1
- (D+ r)[%—mrl_ PRzl EPPH}

Also, substitute (17)—(20) into the right side of (16) and then substitute the result into (15).

Now defineF = ®/(®+I") and observe that feb andl” positive,F < 1. Also, all the shocks on the right
side of (23) are stationary. The polynomiaLifon the left side of (23) can therefore be expanded as a
geometric series on the right side of (23). Then by using (22), and the fact that the shocks on the right side

of (23) are independently distributed we can show:

Theorem 1:When the composition of shocks is unknown for one period, equilibrium inflation satisfies

3

(1-pL)P = 5 [yl + i€y + TV +T05 Ty ] (26)
i=0

where the coefficients;, i = 1,...,4,j = 0,...,3 satisfy equations (65)—(78) in appendix 1.
Proof. The proof is given in appendix 1.
Comment: Note that the solution (26) is consistent with the unanticipated inflation rate given in (16).

Usefl, for the 4«4 matrix of MA coefficients witti1y; thejth column off1,, so the 4 polynomials multi-
plying z = [(; & v; 1]’ are the rows of
4
My(L) = z I‘Ilj'LJ'—l
j=1
Then we can write the ARMA(1,3) representationfpas:

10



(1-pL)P =My(L)z. (27)
From the supply curve (1), (16) and (17)—(20) we obtain an expression for equilibrium output:

Theorem 2:When the composition of shocks is unknown for one period, equilibrium oytpatisfies:

1

(1-pL)y, =st+y z (KpiQei tK i€ TKgiVy_j TK4iT) (28)
i=0

wherek;q =T, i = 1,...4 whilek;q, i = 1,...4, satisfy (24).

Proof. Substitute (17)—(20) and the right hand side of (16) into the aggregate supply curve (1).
Corollary: The first difference of the equilibrium outpt Ay, follows an ARMA(1,2) process.
Proof. Multiply (28) through by (1k).

If we define a 43 matrixI1, of MA coefficients, we can write the ARMA(1,2) representatioryfor

(1-pL)Y = My(L)7. (29)
Appendix 1 then shows how the ARMA representations (27/ferAp, and (29)Y, = Ay, can be used to
derive theoretical expressions for the variances and autocovariari®es ¥f and the cross covariances

between current and lagged value®géndy;.

8. Estimating the parameters using GMM

We examined lags up to six quarters for the autocovariances and cross covariances. We expected that this
would cover a substantial part of typical cyclical fluctuations while leaving us a reasonable sample size
(from the original roughly 100 to 130 quarters). We thus obtained theoretical expressions for 2 variances
and 25 covariances of rates of change of equilibrium output and price. There are 9 parameters in these
expressions. We can write the vector of parameters to be estimated as

b=[p,W,y, T, o, 0; ,0¢ .0y 0] (30)

and we can denote the>A7vector of theoretical second moment(y).

From the data, we hawobservations on trend-corrected and seasonally adjusted quarterly rates of

Since output growth follows a stationary ARMA process, demand or supply shocks cannot permanently affect output
growth— the coefficients on the permanent shocks must eventually decline to zero. The long run effect of a demand or sup-
ply shock on théevelof output, however, is given by tkamof the coefficients in the output growth ARMA, which can be
non-zero. Buiter (1995, note 13) has argued that the restriction, used by Blanchard and Quah (1989) and others, that
demand shocks have no long-run real effects, makes sense for nominal, but not real, demand shocks.

We estimated standard deviations instead of variances to impose the restriction that the variances are non-negative.
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change in industrial production and producer prices. Using this data, we calculier@3s products
corresponding to our 27 theoretical second moments, with one set of cross products for eanh period
Following the notation of Hansen (1982), we wf{tex,,,b) for the 241 vector of differences between the
sample cross products in perio@nd the corresponding theoretical second mome®®)jnUnder the

null hypothesisE[f(Ax,,b)] = 0. We form

N

gu(b) =% Y F(Bxyb), (31)
n=1

which, in our case, equals the vector of differences between the empirical second moments and the corre:

sponding theoretical second moments.

Initial estimatesb  ob are obtained by minimizing the sum of squared emR(®)'gy(b) 8 Following
Hansen (1982), Cumby, Huizinga and Obstfeld (1983) and White and Domowitz (1984) we conclude that

JN(B—b) will converge in distribution to a random vector with mean zero and covariance matrix

(d'd)1d'Sd dd)-1 (32)
where
_J0
d= E[%f(b)} (33)
and the matriSis defined by
S= z H f(Axy,b) f(Ax_;,b)] . (34)
j:—oo

An estimate ofl can be obtained using the least square parameter estimates

~ a A~ _ a A~
d=| pon(B) | = 5500)| (35)
Following Newey and West (1987) we estimaiey®

In practice, the numerical minimization algorithm worked better when we normalized by re-scaling parameter values and
dividing gy (b)'gy(b) by the sum of squared values of the sample moments. We used a combination of a derivative-based
guasi-Newton method and the Nelder-Mead simplex algorithm to minimize the highly non-linear objective function. The
simplex algorithm proved more effective at finding the general region of parameter space where a minimum lies, while the
derivative-based algorithm was more effective at actually attaining the local minimum to be found in that region. To ensure
we obtained a global minimum of the objective function, we tried many different starting values for the parameters.

In our empirical analysis, we uséd 12.
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J
S =00+ Y Wi, )[Q;+Qy] (36)
j=1
wherew(j,J) = 1-[j/(J+1)] is a linearly declining weighting function and
~ 1 N
Q= N Z f(AXx,, b) f (Ax

n=j+1

b)'. (37)

n—j

Hansen (1982) shows that the optimal GMM estimator (in the sense that the asymptotic covariance
matrix ofb is as small as possible) is obtained by minimizing a weighted sum of é'ﬁtm,(b$Wg\,(b),

for a symmetric weighting matrW which is a consistent estimator®t. If we letb be the parameter
vector which minimizes this weighted sum of squares U‘ﬁbﬁ—b) will converge in distribution to a

random vector with mean zero and covariance madt8d(!, which can be estimated by
(A5 (38)

Following the suggestion in Hansen (1982), we test the over-identifying restrictions by evaluating

N (b)'(50) g (b), (39)
which converges in distribution to a chi-square random variablerwdtdegrees of freedom wherés

the number of moment conditions (27 in our case)cgiin@ number of parameters (9 in our case).

By analogy with variance decompositions in VAR's, we shall use the final parameter estimates to decom-
pose the variances and covariances into the components due to each of the underlying shocks. This will
provide our measure of the relative importance of supply and demand, and temporary and permanent

shocks in driving output and prices over the sample period.

9. Results for the first model

The 27 moments used to estimate the model were the variance of output growth, the contemporaneous
covariance between output growth and producer-price inflation, the variance of inflation, each variable’s
autocovariances up to six quarters, the contemporaneous cross-covariance, and other cross-covariances
going forward and back up to six quarters. In all countries the sample variance of output growth is greater
than the variance of inflation, but the disparity varies considerably across countries. The ratio of the vari-

ance of output growth to the variance of inflation ranges from 4.2 for Germany to 1.4 for Italy.

The pattern of sample cross-covariances warrants discussion. Kydland and Prescott (1990) and Cooley

10| effect, the weighting matrix emphasizes those moments that can be estimated more precisely from the data.
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and Ohanian (1991) report negative cross-covariances between filtered prices and output for the United
States at nearly all leads and lags. This led Kydland and Prescott to call the notion of a positive relation-

ship between prices and output a monetary myth.

For our countries, we find somewhat different patterns. The contemporaneous cross-covariance is size-
able and negative for the United Kingdom, but small and positive for France and Italy, and small and neg-
ative for Germany and Netherlands. The cross-covariances between output growth and positive lags of
inflation are consistently negative, thereby conforming to the U.S. pattern: the negative sign means that
when inflation rises, output tends to fall several quarters later. However, the cross-covariances in the other
direction, between output growth and future (negative lags of) inflation, are quite variable: mostly nega-

tive for the United Kingdom and the Netherlands, but mostly positive for the other three cddntries.

TABLE 2. Least squares parameter estimates

Parameter Germany Germany? France U. K. Netherlands Italy
tanh'(p) 1.1893 1.1799 1.2438 1.5784 1.7080 1.2144
tanhi(y) 0.4678 0.2483 0.4219 -0.0136 0.3251 0.0198
y 4.2610 3.56385 2.1389 9.2372 3.7430 2.1372
r 0.8208 1.1034 0.2943 0.4533 0.4877 0.6219
tanh}(F) 0.2464 0.4600 1.4696 -2.9552 1.6942 -3.0595
o; 0.004636 0.004694 0.002508 0.001812 0.001397 0.003311
o 0.005384 0.015243 0.016526 0.060779 0.035365 0.029791
o 0.014694 0.014690 0.000010 0.043592 0.009277 0.056177
o; 0.012309 0.0000003 0.002442 0.000323 0.011721 0.000050
LS objective 0.09150 0.09181 0.13900 0.02689 0.05300 0.08444

a. We found two sets of estimates for Germany with similar least squares values. While the first set had a lower minimized least
squares objective, the second set a lower weighted least squares objective and lower estimated standard errors.
The least squares estimates of the parameters, and the corresponding minimized value for the (normal-
ized) sum of squares objective function, are presented in Table 2. We defined the parameters so that all
except the autocorrelation coefficienpsapdy) should be positive. Ib represents lags in the capital
accumulation process, however, we would expect it also to be positive. We do requgeubdihto be
less than 1 in absolute value. As with ARIMA models, the same autocorrelation structure can be

explained either by stationary or non-stationary, and invertible or non-invertible processes. We have elim-

11 Several factors may account for the differences between our results and those of Cooley and Ohanian and Kydland and
Prescott: the countries, the measures of output and inflation, and the way the data were filtered all differ. Cooley and
Ohanian use real GNP and implicit price deflators, while Kydland and Prescott use real GNP and two price measures, the
implicit price deflator and consumer price. We use industrial production and producer prices. As for filters, Kydland and
Prescott use only the Hodrick-Prescoitt filter, while Cooley and Ohanian use three filters: linear detrending, differencing,
and the Hodrick-Prescaott filter. We use differencing but in addition we remove a linear trend and seasonal effects.
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inated this identification problem by ensuring the numerical algorithm concentrates on stationary and
invertible representations of the data. Similarly, the coeffi¢ient the forward operator is required to be

less than 1 in absolute vallre.

We normalized the sum of squared differences between the sample and theoretical second moments by
dividing by the sum of the squared second moments. The least squares objective function can thus be
thought of as a type offneasure. It tells us the proportion of the “variation” in the second moments that
the theoretical model explains. Except for France, the estimated model accounts for over 90 percent of the

variability of the 27 moments.

The minimized value for the least squares objective function was lowest for the UK, highest for France.
One might conclude that the model performs best for the UK and worst for France, with the other coun-
tries in between. Such a conclusion would be unwarranted, however, since the least squares objective
function is not the best measure of the fit between the theoretical model and the data. The minimized least
squares objective function, in common with “calibration” exercises, places greater weight on explaining
the larger moments (in absolute value). By contrast, the GMM, or weighted least squares procedure,
places greater weight on explaining the moments that can be estimated more precisely from the data in

the sense that they have a lower sample variance.

The weighted least squares estimates, together with their standard errors estimated according to (38), are
presented in Table 3. In all countries, the minimized weighted least squares objective function (39) was
well below conventional significance levels for a chi-squared random variable with 18 degrees of free-
dom. However, the distribution of this statistic in samples as small as ours is unlikely to be chi-squared

with the hypothesized degrees of freedom.

While the overall fit appears good, some of the estimated parameter values do not accord with our prior
expectations, notably the negative estimatds @nd hence) for Italy and the U.K. Also, some of the

estimated standard errors are large.

While unexpected parameter estimates, or large standard errors, may indicate an inadequate theoretical
framework, other factors might also be relevant. While many lag structures could be consistent with the
basic theoretical framework, we did not adjust the lags in the model to better fit th&Alata.the lack

of a specified distribution for the shocks may have reduced our ability to obtain tightly estimated standard

12.\We estimated the inverse hyperbolic tangents oft#(%+I"), p andy to impose the conditions |F|<p|41 and|<1.
13. Burnside and Eichenbaum (1994) examine the small sample properties of GMM estimators.
14 In many studies, lag lengths are chosen ex-post using the Akaike or a similar goodness-of-fit criterion.
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errors. Finally, many of the parameters are unlikely to have been constant over the sample period. We are
not estimating “deep structural parameters” (arising from a specification of relatively stable taste and

technology functions), and policies and other sources of shocks are likely to have varied over time.

TABLE 3. Weighted least squares parameter estimatés

Parameter Germany Germany® France U. K. Netherlands Italy
tanh'(p) 1.1971 1.1866 1.2842 1.5938 1.6603 1.2901
(0.0777) (0.0802) (0.0974) (0.1339) (0.2964) (0.1055)
tanh(y) 0.4218 0.1881 0.4084 -0.0105 0.2798 0.0203
(4.7715) (0.1279) (1.3584) (0.0919) (0.2348) (0.1370)
% 4.4581 3.6006 2.1817 10.3710 3.5410 2.2602
(18.085) (0.4013) (0.9649) (2.6864) (0.7647) (0.2764)
r 0.8722 1.1765 0.3304 0.4676 0.5099 0.5810
(5.8709) (0.1940) (0.6180) (0.0924) (0.3868) (0.3077)
tanh(F) -0.0379 0.2049 1.3701 -2.8535 1.6610 -2.2777
(16.404) (0.6907) (0.5966) (1276.6) (0.6960) (338.12)
o; 0.004445 0.004467 0.002437 0.001746 0.001369 0.003001
(0.00042) (0.00043) (0.00028) (0.00067) (0.00075) (0.00054)
O, 0.004968 0.015464 0.015551 0.062807 0.033528 0.02950
(76.667) (0.001709) (0.00518) (0.01622) (0.00557) (0.00282)
o 0.015221 0.015676 0.010426 0.039376 0.010572 0.053405
(0.00267) (0.002957) (0.01003) (0.01661) (0.01860) (0.00815)
O, 0.011318 1.4e-08 0.004775 0.000002 0.000059 0.000014
(0.20370) (6.6480) (0.35501) (1.33870) (0.74565) (1.7011)
X% (18 d.f.) 9.447 9.372 6.946 8.120 9.799 8.709
(P-value) (0.949) (0.951) (0.991) (0.977) (0.938) (0.966)
Implied parameter valués
p 0.8328 0.8301 0.8576 0.9207 0.9303 0.8591
U 0.3985 0.1859 0.3871 -0.0105 0.2727 0.0203
F -0.0379 0.2021 0.8787 -0.9934 0.9304 -0.9792
o] -0.0319 0.298 2.394 -0.233 6.812 -0.2874
5t -0.037 0.253 7.246 -0.498 13.359 -0.495
p+dtat 1.147 0.850 3.027 2.139 1.961 1.721

a. Standard errors are in parentheses below each parameter estimate.
b. We found two sets of estimates for Germany with similar minimized least squares and weighted least squares values.
c. The income elasticity of money demdhdnd the real interest elasticity of demandannot be recovered.

10. An alternative information assumption

A change in the amount of information available to individuals substantially alters equilibrium prices and
output. To illustrate this, we now assume that agents do not know the decompostmrdpinto their
components;, &, M or T, until periodt+2. In appendix 1, we derive the following analogs to the above

results for equilibrium prices and output.
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Theorem 3:When the composition of shocks is unknown for two periods, equilibrium inflation satisfies

4

(1=pLIP =5 (M0 i+ T + Tl Ve + T4 Ty ] (40)
i=0

where the 18 distinct coefficient, i = 1,...,4,j = 0,...,4 (withTy o = To andTz = Tyg) are given by the
18 equations (106)—(123) in appendix 1.

Proof. The proof is given in appendix 1.

Thus, under the modified information assumptiéh$ollows an ARMA(1,4) process. From the supply

curve (1) and (85) we obtain an expression for equilibrium output:
Theorem 4:When the composition of shocks is unknown for two periods, equilibrium oytpatisfies:

2

(1-pL)y, =s+y Z (KqiGioi T K€ TKgiVi_j TK 4T ) (41)
i=0

wherekjo =T, | = 1,...4 whilek;, i = 1,...4,j = 1,2 satisfy (96) and (97).

Multiplying (41) through by (1k), we conclude that, under the modified information assumptions, the
first difference of equilibrium outp= Ay, follows an ARMA(1,3) process.

The additional MA terms in the ARMA processesRpandY; lead to straightforward modifications for

the expressions in appendix 1 for variances and covariances. These have been omitted for brevity.

11. Results for the alternative model

TABLE 4. Least squares parameter estimates for the alternative model

Parameter Germany France u. K. Netherlands Italy
tanh(p) 1.1955 1.2388 15784 1.5621 1.2463
tanh(y) 0.5572 0.6068 -0.0138 0.1615 0.4961

y 4.3078 3.0906 9.1982 3.8273 2.9563
r 0.7203 0.2368 0.4534 0.7632 0.2877
tanh(F) 0.0796 1.3356 -2.2358 1.2361 -0.1399
o7 0.004598 0.002595 0.001812 0.001851 0.003008
o 0.007858 0.006755 0.061102 0.035266 0.006369
o, 0.014554 0.006578 0.043581 0.016609 0.054067
o; 0.016308 0.058139 0.000048 0.000002 0.068094
LS objective 0.09126 0.13736 0.02689 0.05283 0.08388

The least squares parameter estimates for the alternative model are presented in Table 4. In all countries

the minimized least squares objective function is lower in Table 4 than in Table 2, although the differ-
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ences are slight. This could reflect the fact that the alternative model has additional MA terms for equilib-
rium inflation and output growth, although these additional terms are constrained to be functions of the

same number of underlying parameters.

The weighted least squares estimates are in Table 5. These are below the corresponding minimized values
of the weighted least squares objective function in Table 3 only for France and the UK. Nevertheless, the

differences are again small.

TABLE 5. Weighted least squares parameter estimat@or the alternative model

Parameter Germany France U. K. Netherlands Italy
tanh'(p) 1.2022 1.2778 1.5935 1.5071 1.3298
(0.0787) (0.0975) (0.1235) (0.2154) (0.1096)
tanhi(y) 0.5247 0.6284 -0.0268 0.1489 0.5202
(0.9572) (0.0596) (0.0639) (0.1391) (0.1908)
% 4.4632 2.7966 10.140 3.6867 3.2231
(3.9632) (0.7171) (2.4995) (0.7617) (0.4769)
r 0.7525 0.2501 0.4651 0.7935 0.2619
(0.8999) (0.0294) (0.0805) (0.3586) (0.1468)
tanh(F) -0.3672 1.2128 0.1955 1.1184 0.1501
(8.3042) (0.2629) (1.9226) (0.6628) (2.1774)
o; 0.004418 0.002515 0.001751 0.001872 0.002272
(0.00043) (0.00029) (0.00038) (0.00076) (0.00055)
O, 0.007292 0.002264 0.062086 0.033705 0.006335
(1.3160) (0.00597) (0.01522) (0.00540) (1.4533)
o 0.015046 0.011677 0.037835 0.017061 0.050400
(0.00319) (0.00842) (0.00718) (0.00427) (0.00911)
O, 0.015608 0.047338 1.5e-06 1.9e-09 0.068144
(0.04302) (0.01529) (3.7133) (214.89) (0.04257)
X% (18 d.f.) 9.450 6.939 8.031 9.907 8.723
(P-value) (0.948) (0.991) (0.978) (0.935) (0.966)
Implied parameter valuBs
p 0.8343 0.8559 0.9207 0.9064 0.8692
W 0.4813 0.5570 -0.0268 0.1478 0.4779
F -0.3516 0.8375 0.1930 0.807 0.1490
® -0.1957 1.2890 0.1113 3.318 0.0459
5t -0.2601 5.1540 0.2392 4,181 0.1751
p+&tat 1.329 3.999 2.150 1.260 3.818

a. Standard errors are in parentheses below each parameter estimate.
b. The income elasticity of money demghdnd the real interest elasticity of demancdannot be recovered.

It is comforting that in many cases, the estimated parameters in Table 5 are quite similar to the ones in
Table 3, suggesting that the specification of the length of the information lag does not make a huge differ-

ence. The most notable changes are in Italy and the UK, where the alternative specification leads to the
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expected positive values fBrand®. By contrast, for Germany the alternative specification leads to
counter-intuitive negative values frand®, as in the first column of Table 3. As for France and the
Netherlands, the results in Table 5 are preferable to those in Table 3 because various parameters are mor
tightly estimated in Table 5. Accordingly, in the subsequent discussion, we shall take the second model

from Table 3 for Germany but the models from Table 5 for the remaining countries.

12. Discussion of the preferred models for each country

For convenience, the parameter estimates in the preferred models for each country are repeated in
Table 6. Figures 1-5 graph, for the preferred models for each country, the fit between the sample and the
estimated moments, the decomposition of each of the moments into the components arising from each

type of shock, and the implied impulse response functions from each type of shock.

The fit between the sample moments and the weighted least squares theoretical moments is presented in
the upper left chart of Figures 1-5. The graphs indicate a reasonably close fit between the theoretical and
sample moments for all countries. The most difficult problem seemed to be matching the autocovariances
of output growth. In all countries, some autocovariances of output growth were positive, while at other
lags they were negative. The estimated models generally could not match such patterns well.

TABLE 6. Parameter estimates for the preferred model for each country

Parameter Germany France U. K. Netherlands Italy
p 0.8301 0.8559 0.9207 0.9064 0.8692
P 0.1859 0.5570 -0.0268 0.1478 0.4779
y 3.6006 2.7966 10.140 3.6867 3.2231
r 1.1765 0.2501 0.4651 0.7935 0.2619)
® 0.298 1.2890 0.1113 3.318 0.0459
F 0.2021 0.8375 0.1930 0.8070 0.1490
o; 0.004467 0.002515 0.001751 0.001872 0.002272
o, 0.015464 0.002264 0.062086 0.033705 0.006335
o, 0.015676 0.011677 0.037835 0.017061 0.050400
o, 1.4e-08 0.047338 1.5e-06 1.9e-09 0.068144
ot 0.253 5.1540 0.2392 4.181 0.1751
p+dtat 0.850 3.999 2.150 1.260 3.818

The most consistent and tightly-estimated paramefertiee autocorrelation coefficient in the aggregate
supply curve. Apparently the data are indicating that supply disturbances, whether temporary or perma-
nent, exhibit strong persistence. By contrast, the autocorrelation coefficient in aggregate dggmand (
implies moderate persistence in France and Italy, weak persistence in Germany and the Netherlands and

no persistence at all in the UK.

19



The estimated elasticities of supply with respect to unexpected infigteme, all of the hypothesized
positive sign. The inverse gfcan be interpreted as the slope coefficient in an expectations-augmented

Phillips curve. The estimates appear reasonable for all countries except the U.K.

The effect of expected future shocks on current output and prices is determbediiggd+). While

the estimates df appear reasonable for all countries in so far as they are all between zero and one, the
combined estimates & andl" imply unreasonably low interest semi-elasticities of money dendahd (

for Germany, the UK and Italy. On the other hand, the estimafe$oofall countries except Germany

can accommodate an income elasticity of money denfgraf @round unity.

The estimated standard deviations of the shocks suggest that temporary demand shocks have been rele-
vant only in France and Italy, where they have been the largest type of shock. Permanent demand shocks
appear to have been relatively large in all countries, but particularly so in Italy and the U.K. On the other
hand, temporary supply shocks have tended to exceed permanent supply shocks in all countries except
France, where the estimated standard errors are similar. The temporary supply shocks are estimated to be
substantially larger than the permanent ones in Germany, the UK and the Netherlands. The estimated
standard error of permanent supply shocks is more similar across the economies than is the case for any
of the other shocks. The similarity in size of permanent supply shocks across economies might suggest

that the economies have faced common technology, oil price or other permanent supply shocks.

The relative contributions of the different shocks to variances, autocovariances and cross-covariances in
output growth and inflation depend not only on the estimated standard errors of the shocks but also on the
autoregressive and moving average coefficients. In the VAR literature, the traditional way to present the
information contained in the estimated coefficients is to graph the impulse response functions. Using the
parameter estimates in Table 6 we can calculate the effe¥taraP of a unit shock td, €, v ort. The

resulting impulse response functions for a period of 12 quarters (3 years) are graphed for each country in

the final two panels of Figures 1 through 5.

In all countries, permanent supply shocks have the longest lasting effects on output growth, with the peak
positive effects occurring after a two or three quarter lag. The effects of the remaining shocks on output
growth are negligible beyond two or three quarters after the period of the shock. Permanent supply shocks
also have the longest lasting effects on inflation, although permanent demand shocks also have a cumula

tive positive impact on inflation in all countries.

Thecumulativeeffects of shocks on output growth and inflation can also be interpreted as long run effects

on the output and pridevels From the sums of the impulse responses in Figures 1 through 5, and using
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the fact that subsequent coefficients will decline exponentially from the final coefficients at lag 12, we can
conclude that only permanent supply shocks will have a long run positive impact on output. The long run
effects of the remaining shocks are all effectively zero. Furthermore, the long run effects of permanent
demand shocks on the price level are very close to unity in all countries. This suggests that the permanent
demand shocks we are estimating are predominantly nominal in character. Permanent supply shocks have

a substantial negative impact on the long run price level in all countries.

The middle panels of Figures 1 through 5 graph the contribution of each shock to the variances and auto-
covariances of andP and the contemporaneous and lagged covariances befwedP. These are not
variance decompositions as usually derived and discussed in the VAR literature. Instead of presenting the
proportion of forecast error variances resulting from each shock, the figures simply decompose the differ-
ent variances and covariances into the components coming from each type of shock. In the figures, verti-
cal bars give the contribution by the four types of shock to each variance or covariance. In all cases the
bars are ordered, from left to right, as follows: permanent supply stiQ¢cteniporary supply shocks)(
permanent demand shockg,(and temporary demand shocks (In some cases (usually involving the

temporary shocks) a bar is so small relative to the others that it is not visible on the chart.

In four out of five countries, demand shocks (either permanent or temporary) are the predominant source
of variance in output growth. In Germany, the UK and the Netherlands, permanent demand shocks are the
largest contributor to variance in output growth. While these shocks are also an important source of out-
put growth variance in Italy, temporary demand shocks are about twice as important. In France, all four

shocks contribute a roughly similar amount to the variance of output growth.

The variance of inflation shows no consistent pattern. In Germany and especially Italy, the variance of
inflation is predominantly attributable to permanent demand shocks, while in France and the UK, perma-
nent supply shocks are more important. In the Netherlands, temporary supply shocks are the largest

source of variance in inflation.

As for the patterns of autocorrelation in output growth and inflation, inspection of the upper-left charts in
Figures 1-5 shows that in most cases, inflation is more serially-correlated than output growth. The charts
of decompositions show that our model accounts for these patterns by having both permanent supply and
demand shocks contributing to positive autocovariances of inflation, whereas in the case of output
growth, the two permanent shocks have tended to offset one another, at least at the longer lags. In partic-
ular, at the longer lags (and sometimes at all non-zero lags) the permanent supply shocks contribute

toward positive autocorrelation of output growth, but permanent demand shocks contribute toward nega-
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tive autocorrelation.

As discussed earlier, the cross-covariances between output growth and current or future inflation are
small and variable (sometimes positive, sometimes negative). By contrast, the cross-covariances between
output growth and past inflation are consistently negative and relatively large. Our estimated model
largely attributes this difference to a switch in the sign of the effect of permanent demand-3hoaks.
countries, permanent supply shocks are an important contributor to negative covariance betweenY and P
at all leads and lags. Permanent demand shocks tend to reinforce the effect of permanent supply shocks ir
the case of covariances between Y and lagged values of P, but they tend to have an offsetting positive

effect on covariances between Y and current or future values of P.

We do not present time series of the driving shocks for each country since the sample values of these
shocks are not identified. We have four driving shocks, but only two endogenous variables (output and
prices). As we remarked in the introduction, an advantage of the method of moments procedure used in

this paper is that the number of driving shocks can exceed the number of endogenous variables.

13. Concluding remarks

This paper uses a method of moments procedure to estimate an aggregate demand/aggregate supply
model with rational expectations for various European economies. The results indicate that permanent
demand shocks are the predominant source of variance in output growth in most of these economies
(France is the exception) though permanent supply shocks have important effects on covariance patterns,
while the temporary shocks are also significant in France and Italy. Permanent supply shocks are also

very significant determinants of the variance and autocorrelation in inflation.
14. Appendix 1

Proof of Theorem 1

For convenience, we rewrite the equation (23) that is to be solved for the equilibrium inflati®resate

15 Temporary supply shocks contribute to the negative contemporaneous covariance between output growth and inflation in all
countries, but affect other lead or lag covariances only in France, and even then only slightly. In Italy, temporary demand
shocks are an important contributor to covariance between output growth and inflation at a number of leads and lags.
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(P+ I')(l—FL—l)(l—pL)Pt =T (1-pL)(v;+1,—T,_)—(1-WL)({; +&—&_1)— (42)

1
[8,—61L+6,L7] { > Kyl iK€+ KV +K4iTt—i)}
i=0

We have, for =0,

ﬁl_‘lzt—i =+ Fl it R ({+Ey) (43)
1—|1-L—18t‘i =g tFe gt tFay( te) (44)
#Vt—i =V tFV gt AR (v +T) (45)
1—I§L—1Tt‘i =T Pt HFID (Vi + 1)) (46)

Since the stochastic processes are now stationary, we can use (43)—(46) to iRleh ¢i-the right

side of (42). We find that equilibriuf will indeed be given by (26) so long as tiecoefficients satisfy:

(P+M)mM = —(1-YF)(1-a,F)—(8,-9,F +6,F2)[ (K081 + Kgdo) + (K118; +Kp185)F] 47)
(P+M)1My, = P+(0;—6,F)K 10— (0,—6,F +0,F2)K (48)
(P+IM)1M5=0,K11—0,5(K gt K44F) (49)

(P+M)TM5=-0,K 4 (50)
(P+M)T,p=—(1-PF)(1-a,F) — (858, F +0,F?)[ (K1 g8y + Kppds) + (K113, +Koq85)F] (51)
(P+T)15; = 1+ P(1-F) +(8;-0,F)K,0—(85—6,F +6,F?)k (52)

(P+M)Tp = =P +6;Ky—05(Kyg+ Ky F) (53)

(P+M)T5=-0,Ky, (54)

(P +T)T0 =T (1-pF)(1-b,F)—(85-6,F +6,F2)[(K3gb; + K 400,) + (K310, +K 41b,)F] (55)
(P+)1M5, = —pl +(0,;—6,F)K55—(8,—0,F +6,F?)K3, (56)

(P+M)T, = 0,K31—05(K5p+Kg4F) (57)

(P+M)Ty5=—0,K4; (58)

(®+T) Ty =T (1-pF)(1—b,F)—(87—0;F +0,F2)[(Kggb; + K 40b5) + (Kg1by +K4qD,)F] (59)
(®+M)1y, =T —plM(1-F) +(0;—08,F)K 49— (0,-6,F +6,F2)K 4, (60)
(P+M)1Ty, =Pl +0,K41—05(K40+Ky4F) (61)

(P+M)Ty5=—-0,K,q (62)
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Now usex;q = Tgo, and expressions (24) fey, to find:
K118 K185 = (T 1= Thy) 38, —(Th 1 ~Thy) @y, = 0 (63)
K31D1 K 4105 = (Tig1~T01) o0, ~(T~T4 )0y b, = 0 (64)

so that equations (47)—(62) can be simplified to:

(P+T +6,-8,F +0,F) T o= (P+T +6,-06,F +8,F2) 10,5 = ((1-YF)(1-a,F) (65)
[®+T +a,(6,-0,F +0,F2)]m,; = Y+(0;—6,F) 1,5 +(8,-6,F +6,F?)T,,a, (66)
[®+T +a,(8,—6,F +8,F2)|1r,, = Y+ (1-YF) +(8;—-6,F )1, + (0,8, F +0,F2) 1,2, (67)
(P+I)1my, = (8,-6,F) (11, -T,,)a,—6,1 4 (68)

(P+M)1M,, =——(6,-6,F) (1, —T1,;)a, —6,T 4 (69)
(P+)15=—0,(T7 1, —T1y) 8y (70)

(P+M)T,5=0,(T1 -,y (71)

(®+T+6,-0,F +6,F2) 15, = (P +T +6,-8,F +6,F2) 1,5 =T (1-pF)(1-b,F) (72)
[®+T +b,(6,—6,F +8,F2)]1t5, = —pl +(8;—6,F) 155+ (8,-6,F +6,F2)1,,b, (73)

[®+T +b, (8,0, F +0,F2)] 1y, = —pl - (1—pF) +(8;—0,F ) T30+ (8,0, F +6,F2) b, (74)

(P+M)115, = (8, —6,F) (113, —1141) b,— 0,115, (75)
(P+T)1y, =PI —=(8,-6,F) (T3, -T4)b; -0, (76)
(P+T)Ti33 = —8,(T13;-T14)b; (77)
(P+)Ty5=0,(T3,—T141) b, (78)

Theoretical second moments

To obtain the autocovariancesRyforY;, first solve for the covariances betwégmrY,; and the first three
lags ofz' = [As; n; Ad; oy]. Multiply (27) and (29) by each shock and take expectations to obtairxBvo 4

matricesN; andN, of covariance$® For example, write the covariancesRpfvith z, .1, z.», 7.3 as

520 0 0
0020 0
0 0020
0 0 007

[COU( R, 2) COM R, 2, ;) COM( P2 ) COV( R, g)] = \ (79)

where the coefficient matricés are given by (80):

18- For notational convenience, we extdhglwith a column of zeros so boflh, andrl, are &«4.
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1 pp2p°

N;=M|0 1 PP (80)
001p
0001

Now multiply (27) and (29) by lagged valuesRyfor Y, and take expectations to find:

10000 0 00

01000 0 Y2

0Opl10000Vz2 4

0 0-p10 0 0= Mynic? (81)
000-p10 0y, =t

000 0-p1 0

000001

i ~Yig

Whereogj is the variance of tfth component of, I'Iij (of dimension 41) is the transpose of tih row

of M, and, if we use&\lijk for thg,K)-th element of;, the &4 matricesV; are defined by:

NN NS NG
0 N'NIENTT
0 0 NN/
M;; = i (82)
0 0 ON
000 O
0 00O
0 0 0 O

Finally, multiply (27) by (29), (27) bY,.4, ..., Yis and (29) byP, 4, ..., P.g and take expectations to get
13 equations focouP,,Y)), y:P: coU Y, P;_}) andyEY =coUR,Y,) k=1,2,...,6:
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=
Yo -
_ il | Mo
2 p p 0 0 0 0O O 0 0 0 0 OfPY Hy '
» 1 0 0 0 0 0 0 0 0 0 0 0,4 [PV
» 0 1 0 0 O O O O O O o o 1
0 0 1 0 0 0 0 0 0 0 0 o\ [H] _
0 0 p 0 1 0 0 0 0 0 0 0 Ofvyg |4P¥o?
0 0 0p o0 1 0 0 0 0 0 o0 o] 7]
0 0 0 0p 0 1 0 0 0 0 0 Oly|=|Hs] (83)
0 0 0 0 0-p 0 1 0 0 0 0 0fva Y o
0 0 0 0 0 0-p 0 1 0 0 0 off |/ o7
0 0 0 0 0 0 0—-p 0 1 0 0 O0fVal |,
00 0 0 0 0 0 0-p 0 1 0 0¥ |,
0 0 0 0 0 0 0 0 0-p 0 1 0f-J1|,
(0 0 0 0 0 0 0 0 0 0-p 0 1]¥V| |,
YP
Ye | | O]
Vo'

Ho=diag[M,@,] Hy" =diag Ny(:,1:3)M,(;,2:4)] H:" = diag Ny(:,1:3) 1,(:, 2:4)]
where Ha = diag] N (:,1:2) M,(;,3:4)]  H5 " = diag] Ny(:, 1:2) [, (:, 3:4)]
HYF = diag] Ny (:, 1) 1 ,(:,4)] HEY = diag] N(:, 1) @, (:, 4)]
Proof of Theorem 3

The equation to be solved for the equilibrium inflation Rytean now be written as:

(®+M)(1-FL)(1-pL)P, = T (1—pL) (v +T,—T,_1)«(1-WL)({ +&—€_1)— (84)
[6,—6,L+8,L7[P,—E,_;P]
Equilibrium P, will again be a linear function of current and laggegl v andt, but it will now involve

an additional lag. In particular, in place of (1&), E,_;P;) will now be a linear sum involving two lags:
Pi—E 1Py = Tl + Tk + TV + TyoT T4 (G 1 —Ey_1i1) +Tha(€ 1 —E_18_4) (85)

TGy (Vi1 B qVio 1) T (T B 1T ) +T00(G =By 18 0) +Th(8 o~y 1€ )

2

FTp(Vi 2 =By Vi 2) +Tua(T o= B 1Ty )= ) (Kyiloj +Kp€ +KgVe i +Ky T )
i=0
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Since at-1 individuals now Know, 3, W3, &.3, T3, AS.0 = (o + €10 — €123, S = (i1 + €1 —

A5 =V, + Tpo — Tz andAd,; = Vi q + Ti1 —Tio, they effectively observg., + €5, (i1 + €1 — &t

Vio + Typ andvy g + 1.1 — Tio. Projecting onto these variables they would obtain:

B 11 = (g tE_1—8_p) Ta(l_o+E )
Ei_182= @1({o1tE_1—p) tax({ o+ )
Ei_1Gi—o = ag1({_1 t&_1—& o) tag(li_»*&_p)
Ei_ 180 = @31({ior tE_1—E_p) tay({ ot € o)
Ei_1Vi1 T Dp(Via t T T o) +0yp(Vi o+ T )
B 11 = 0op (Ve g + T =Ty p) +boo(Vi 5+ T, _5)
Ei_1Vi2 = b3a(Vi 1+ T =T ) +D3p(Vi 5+ T )
B 1T = Dya(Vea + T =T o) + 00V 5+ T )

where the coefficients; andb; satisfy’

ap1 817 oz O
8y 8,)|02+202 —0?2 _ 02 0
dgq Agy —O'g O'Z2+0'g 0 O'%
341842 —-02 072
b1 057 o 0
b,,b,4|02+202 —02 | |02 0
b31b32 _GTZ O'%+O'T2 0 0'\2)'
D41 b4 —02 0?2

(86)
(87)
(88)
(89)
(90)
(91)
(92)
(93)

(94)

(95)

Substituting (86)—(93) into (85) we also deduce kjaandr;, i = 1,2 are related by the equations:

K11 1-a;, —ay, —ag; —a,  |my My
Kaf_| 2 1-ay —a3; A [Ty _ ATl
K12 —aq- -y, 1-a,, —ay,, um T,
Kog | Q17812 83 831733 1+ =8y Ty

17-Note that equations (94) and (95) imply thgt+ a,; = 0,bg; + by, = 0,85, + a4, = 1 andog, + by, = 1.
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K31 1-byy -0,y —b3; Dy ||y [Ty

Kgq _ —byy 1-by, —b3; Dy ||Tyy B Ty, _ @7)
K3 —by, —b,, 1-bs, by [T T3

Kag | Pra=bip  DBpi=bop  D3y—=bzy 14Dy —byymyy Ty,
Using the projection equations (86)—(93) updated one period we find; &yr

1
1-FL!

+Fiag (+e—8,_y) +agy(C_1+&_ )] +F[ag({+&—&_1)+a({_1+&_4)]

Gioi = Qo +F G jeg - +FI20 L, (98)

1
1-FL

+FI 1 ay (G+ e _q) +asp(L_ g +&_1)] +F[ay (L +e—8_ 1) +an(l;_+& )]

€= &_itFE 1t ... tF 2%, (99)

while
#Zt—l = 85, (L;+&—€_1) *ao(L_1+&_ 1) +Flag (L +&—€ 1)+ (1 +& )] (100)
e = Al e )+l ) PRl et ) @ e )] (10)
1_—|1-|_—_11t = a1 (it —8_g) ta({_1tE_q) (102)
Fll_—lat = 8p1(Ct&—€_1) Ta({;_1 T € 7). (103)

Also note that, since the combination of shoGks e, — &1 is known at:

1

i‘_F—T_‘_i(Zt t&—€_q1) = (& —E_1—F[ay({ & —€_1) tay(l;_1+&_4)] (104)

1
m(zt—l+£t—l_st—2) =Co_+€r_1 €1 FF (e 1) —F @y ({ &€ +an({;_1*+€&_p)] . (105)

Similar expressions can be derived for the demand shocks.

The operator (1IFL™) can again be inverted on the right side of (84), allowing us to deduce that equilib-
rium P, will indeed be given by (40) so long as tijecoefficients satisfy the following system of equa-
tions (with matriceé\ andB defined in (96) and (97)).

The five coefficientst o = T, andllg= [Ty Th4 T4, T,] Satisfy the five simultaneous equations:
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ag;+ay,F

ay1+apF
(az,+ay,F)F
(841+ @, F)F]

(8,—6,F +6,F2)M A

= —(1-YF)(1-a,F)

agytag ok
ayptayk

(8,—6,F +6,FA)I A
oot ) (ag+ay,F)F

| (ag2+ay,F)F|

(0,—=6,F)[1+(a;,+a,)F] M o+ (P+1) 1My, = P+a,,F(1-YF)

(80—6,F +6,F2)M A

a3,—8g1+(a,—ayg)F

Q=841+ (8x—ay)F
[a,—a3,+(a1,—ay;)FIF
[a2—841+ (82—, F]F|

(8,-8,F)[1+(agp+ay,—ay—ay) ) F] T o+ (P+ )Ty,

+{Bp(agtay)—

=1+Y(1-F)+(ay,—a,)F(1-YF)

—(6,-6,F)

0
(8,—0,F +6,F2)
0

0
~(8,-6,F)
0
(8,—6,F +6,F?)

Similarly, 1o = Ty, andlly = [T Ty, T, TY,] satisfy the five simultaneous equations:
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‘A +0,m+(P+M)mM,=0

+0,T o +H(P+ )T, =Y

+{Bp(a+a—ag—a)—

(106)

(107)

(108)

(109)

(110)



bs, +by,F (111)
(6,—6,F+ 92F2) nys 04+059F +[DP+T+(8,—6,F+ GZFZ)(b11+ b,1)]TT5g
(b3, +by,F)F
(043 b,,F)F]
b3y +byF (112)
(0,-6,F+8,F2)n 8| 22*P2" | g ip -
(bgo+by,F)F
| (Dga+byoF)F|
b3,—bg3; +(by—by )F (113)
—b..+ _ F
[bg,—bg3; +(by,—byy)FIF
i [045—byy +(0p—D5)F] F|
(8,-8,F)[1+(byp+byp—by1—by) ) F] Higp+(P+ )Ty,
= —pl(1-F)-T (by,—by)F(1-pF)
—(6,—-6,F)
0
MyB +0,T,+(P+IM)T, =0 (114)
— O -
) . )
(8,-8,F
a8 | 10 ") +0,m o+ (P+I)Ty, = pl (115)
(85-6,F +6,F2)

The remainingt coefficients satisfy the following equations that are separable from the above systems:
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(1\S]

+(@+T)M=0

+(@+T)T3=0

+(®+MNm,=0

+(P+T)T,,= 0

+(P+T)T5=0

+(P+MNm;=0

+(P+MNm,=0

+(®+IMm,,=0
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15. Appendix 2 - data sources

The data for this paper were obtained from the International Monetary Fund’s International Financial Sta-
tistics (IFS) or from the BIS. In the case of West Germany, industrial production was taken from the BIS,
series SBBBDE91, and producer prices were also taken from the BIS, series VBBBDEOZ2; data were
available from 1962 through 1994. In the cases of the Netherlands and the United Kingdom, data were
taken from IFS (line numbers @5and 63), and data were available from 1960 through 1994. For lItaly,
data were taken from IFS and were available from 1960 through the third quarter of 1993. For France,
data on industrial production were taken from IFS, while data on producer prices were taken from the
BIS, series VBNBFRO02; data were available from 1970 through 1994.

There were several reasons for our choice of quarterly data. First, preliminary analysis of the data for our
largest economy, Germany, showed that after conversion to logs, first differencing and removal of a trend,
the output series contained considerable month-to-month negative autocorrelation. In our view, this
month-to-month negative correlation represents the effects of weather, changes in the number of working
days per month as we go from year to year, and perhaps measurement error, and not the business cycle
phenomena that are our focus. Second, we expect the lags involved in business cycle fluctuations to last
more than a year and perhaps several years. However, the computational burden of fitting long lags is
increased when monthly data are used and there are many more autocorrelations and cross correlations t
be fit. Third, in the case of France, the only consistent data series on producer prices that covered the
period we wished to focus on was not available on a monthly basis. And finally, using quarterly data
makes it easier to make comparisons with the results in Cooley and Ohanian (1991) and Kydland and
Prescott (1990).

As discussed in the text, unit-root tests indicated that the log of the raw series contained a single unit root;
accordingly, all the series were first-differenced. To further ensure stationarity, each differenced series
was regressed onto a constant, a linear trend, and seasonal dummies, and the residuals from these regre

sions were used as our measures of output and prices in the manufacturing sector.
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Figure 1: Germany
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Figure2: France
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Figure 3: United Kingdom
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Figure4: Netherlands
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Figure5: Italy
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