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1 Introduction

An important question for central banks is how they should report the uncertainty
of their forecasts. The Fed in the release of its minutes reports ranges of its
economic forecasts along with central tendencies. Projections are collected from
each member of the Board of Governors and each president of a Federal Reserve
bank, up to 19 in all. The ranges are taken from these projections. The ranges
measure differences of opinions among the participants. These ranges, while
interesting, are not measures of uncertainty of an economic forecast. To get at
uncertainty, the Fed presents a table of average historical projection error ranges.
These are “measured as plus or minus the root mean squared error of projections
for 1993 through 2012 that were released in the winter by various private and
government forecasters.”1 The variables considered are the change in real GDP, the
unemployment rate, and total consumer prices. Given this table, each participant
provides judgments as to whether the risks to its projections are above, equal to, or
below the average historical error ranges in the table. The error ranges are for one-
through four-year-ahead forecasts.

This paper discusses a more rigorous way in which a central bank (CB) could
report the uncertainty of its forecasts in a world in which it used a single macroe-
conometric model to make its forecasts and guide its policies. Suggestions are then
made as to what might be feasible for a CB to report given that it is unlikely to be
willing to commit to a single model. A particular model is used as an illustration.

The general model is presented in Section 2; estimation is discussed in Sec-
tion 3; and solution is discussed in Section 4. Stochastic simulation, a tool that
can be used to estimate uncertainty, is discussed in Section 5. The solution of
optimal control problems in the deterministic case is discussed in Section 6, and
stochastic simulation and optimal control are discussed in Section 7. The example
is presented in Section 8. Section 9 then provides suggestions for what a CB might
be able to do in practice.

A key procedure in this paper is the use of certainty equivalence. When a
nonlinear model is solved setting the errors to their expected values (assumed to
be zero throughout this paper), the solution value of a variable is not its expected

1 Federal Reserve Board (2013), p. 12, notes to Table 2.
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value. The assumption in this paper is that the difference between the two values
is small enough to be ignored. Expected values can be estimated using stochastic
simulation, and when this is done it is usually the case for macroeconometric
models that the estimated expected value is close to the solution value with the
errors set to zero.2 The use of stochastic simulation in this paper is not to improve
upon estimates of expected values, but to estimate uncertainty.

2 A General Model

The general model considered in this paper is dynamic, nonlinear, simultaneous,
and may have rational (model consistent) expectations:

fi(yt ,yt−1, . . . ,yt−p,Et−1yt ,Et−1yt+1, . . . ,Et−1yt+h,xt ,αi) = uit

i = 1, . . . ,n, t = 1, . . . ,T,
(1)

where yt is an n–dimensional vector of endogenous variables, Et−1 is the conditional
expectations operator based on the model and on information through period t−1,
xt is a vector of exogenous variables, and αi is a vector of coefficients. The first
m equations are assumed to be stochastic, with the remaining equations identities.
The vector of errors, ut = (u1t , . . . ,umt)

′, is assumed to be iid. The function fi may
be nonlinear in variables, coefficients, and expectations. ui will be used to denote
the T –dimensional vector (ui1, . . . ,uiT )

′. α will be used to denote the vector of all
the coefficients in the model. The vector xt can include lagged values of exogenous
variables as well as values for period t.

This specification is fairly general. It includes as a special case the VAR model.
It also incorporates autoregressive errors. If there are no expectation variables on
the right hand side in an equation i and if the original error term in the equation
follows a rth order autoregressive process, say wit = ρ1iwit−1 + . . .+ρriwit−r +uit ,
then the equation can be assumed to have been transformed into one with uit on the
right hand side. The autoregressive coefficients ρ1i, . . . ,ρri are incorporated into
the αi coefficient vector, and additional lagged variable values are introduced. This
transformation makes the equation nonlinear in coefficients if it were not otherwise,

2 See, for example, Fair (2004, Table 9.4, p. 127).
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but this adds no further complications because the model is already allowed to be
nonlinear. The coefficient vector α thus includes any autoregressive coefficients.
The assumption that ut is iid is thus not as restrictive as it would be if the model
were required to be linear in coefficients. If there are expectation variables on
the right hand side of an equation, the treatment of autoregressive errors is more
complicated because there is now more than one viewpoint date. The treatment in
this case is discussed in Fair and Taylor (1983, 1990). In what follows the model in
(1) will be called a “RE” model if there is at least one right-hand-side expectation
variable in at least one of the equations.

3 Estimation

One method for estimating the model in (1) is two-stage least squares (2SLS)
equation by equation. For an equation i with no right-hand-side expectation
variables, the 2SLS estimate of αi is obtained by minimizing

Si = u′iZi(Z′iZi)
−1Z′iui (2)

with respect to αi, where Zi is a T ×Ki matrix of first stage regressors. The first
stage regressors can be a subset of the predetermined variables in the model, where
the predetermined variables are assumed to be correlated with the right-hand-side
endogenous variables in the equation but not with the error term.

If there are right-hand-side expectation variables, Hansen’s (1982) method
can be used to estimate αi. For example, say that Et−1y2t+1 and Et−1y2t+2 are
postulated to be explanatory variables in equation i. If it is assumed that variables
in a matrix Zi are used in part by agents in forming their (rational) expectations,
then Hansen’s method in this context is simply 2SLS with adjustment for the
moving average process of the error term. The expectations variables are replaced
by the actual values y2t+1 and y2t+2, and the first stage regressors are the variables
in Zi. Consistent estimation does not require that Zi include all the variables used
by agents in forming their expectations. The requirement for consistency is that

www.economics-ejournal.org 4
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Zi be uncorrelated with the expectation errors, which is true if expectations are
rational and Zi is at least a subset of the variables used by the agents.3

Another estimation method is full information maximum likelihood (FIML).
Under the assumption that ut is independently and identically distributed as multi-
variate normal N(0,S), FIML estimates of α are obtained by maximizing

L =−T
2

log |S|+
T

∑
t=1

log |Jt | (3)

with respect to α , where S is the m×m covariance matrix of the errors and Jt is
the n×n Jacobian matrix for period t. The i j element of S is (1/T )∑

T
t=1 uitu jt .

For non RE models estimates of ut , t = 1, . . . ,T, can be obtained from (1) given
the data and a value of α . The elements of the Jacobian can also be computed.
For a given value of α , L can thus be computed, and so the FIML maximization
problem can be turned over to a nonlinear maximization algorithm. My experience
is that the Parke (1982) algorithm works well for large models.

For RE models estimates of ut cannot be obtained until the expectations have
been computed. The first step given the data and a value of α is to compute
the expectations. This can be done using the EP method discussed in the next
section. Given the expectations, estimates of ut and of the Jacobian elements can be
obtained. Since the expectations have viewpoint date t−1, they are predetermined
from the point of view of taking derivatives for the Jacobian. For RE models L can
thus be computed for a given value of α , and the problem can be turned over to
a maximization algorithm. The extra work for RE models is solving for a given
value of α the expectations for each of the T viewpoint dates. Various tricks to
lessen computational time are discussed in Fair and Taylor (1990). FIML estimates
have the advantage of incorporating all the nonlinear restrictions on the reduced
form coefficients. For RE models, for example, all the nonlinear restrictions are
used in computing the expectations.

3 For more details, including the case in which uit is serially correlated, see Fair (1993) or Fair (1994),
pp. 65–70.
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4 Solution

For non RE models the solution of (1) is trivial. Consider the solution for period t.
Given an estimate of α , given values of the lagged endogenous variables (values
for periods t−1 and back), given values of the variables in xt , and given values of
the errors ut , values for yt can be computed using a technique like Gauss-Seidel.
A solution for period t + 1 is dynamic if the solution values of the endogenous
variables for period t are used in computing the solution values for period t +1,
where values of xt+1 and ut+1 are also needed. A static solution for period t +1 is
one in which the actual values of yt are used. The values of the errors are usually
set to their expected values, which, as mentioned in Section 1, are taken to be zero
in this paper.

For RE models the solution for period t requires that the expectations for
periods t, t +1, . . ., t +h be computed first. Agents are assumed to solve the model
to compute these expectations given values they choose before solution of the
current and future values of the exogenous variables and errors. It does not have
to be the case that the values they use for xt are the values used in the solution of
the model for period t, but for simplicity this will be assumed here. It will also be
assumed that the agents always use zero for the errors.

Consider solving the model for period t. A popular method is the extended
path (EP) method in Fair and Taylor (1983). The method iterates over solution
paths. Values of the expectations for period t through period t +h+ k+h are first
guessed, where h is the maximum lead in the model and k is chosen as discussed
below. Given these guesses, the model can be solved for periods t through t +h+k
in the usual ways (usually period by period using the Gauss-Seidel technique).
This solution provides new values for the expectations through period t +h+ k,
namely the solution values. Given these new values, the model can be solved again
for periods t through t + h+ k, which provides new values for the expectations,
and so on. Convergence is reached when the predicted values for periods t through
t +h from one iteration to the next are within a prescribed tolerance level of each
other. (There is no guarantee of convergence, but in most applications convergence
is not a problem.)

In this process the guessed values of the expectations for periods t +h+ k+1
through t +h+ k+h (the h periods beyond the last period solved) have not been

www.economics-ejournal.org 6
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changed. If the solution values for periods t through t +h depend in a nontrivial
way on these guesses, then overall convergence has not been achieved. To check
for this, the entire process can be repeated for k one larger. If increasing k by
one has a trivial effect (based on a tolerance criterion) on the solution values for
t through t + h, then overall convergence has been achieved; otherwise k must
continue to be increased until the criterion is met. In practice what is usually done
is to experiment to find the value of k that is large enough to make it unlikely that
further increases are necessary for any experiment that might be run and then do
no further checking using larger values of k. Since for a given k agents solve the
model through period t +h+ k, values of the exogenous variables and errors are
needed through this period. Agents most have expectations of these values before
solving the model.

After the expectations are computed the model can be solved for period t.
In fact, if the agents use the same value of xt as is used for the solution of the
model, which is assumed here, the model has already been solved for t, namely
the computed expectation for t. Given the solution for t, one can move on to the
solution for t +1. If the solution is dynamic and if agents use the same exogenous
variable values as are used for the solution of the model, the solution for t +1 has
already been computed, namely the computed expectation for t +1.

For FIML, T uses of the EP method are required per evaluation of L since
the solution is static. Note regarding certainty equivalence that this procedure for
computing FIML estimates for RE models is based on the assumption that the
solution values are the expected values. Note also that values of the exogenous
variables and errors are required beyond the last observation T because expectations
beyond T have to be computed. For example, for the solution for the last period T ,
values are needed for T +1 through T +h+ k, where k is defined in the previous
section.

5 Stochastic Simulation or Bootstrapping

The solutions described above are deterministic in that the errors have been set
to fixed values and the model solved once per period. Estimates of uncertainty
can be made by using stochastic simulation. Stochastic simulation has a long
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history in macroeconomics. The seminal paper in this area is Adelman and Adel-
man (1959), which introduced the idea of drawing errors to analyze the properties
of econometric models. Closely related to stochastic simulation is the bootstrap
procedure, introduced in statistics in 1979 by Efron (1979). In Fair (2003 and 2004,
Chapter 9) I discuss the relationship between these two literatures and integrate for
a model like (1) the bootstrap approach to evaluating estimators and the stochastic
simulation approach to evaluating models’ properties.

When solving a model there are two sources of uncertainty of the predicted
values. One is from the fact that the coefficients are only estimated rather than
known, and the other is from the additive errors. Much of the stochastic-simulation
literature has taken the coefficients to be fixed and focused on the additive errors.
The bootstrap literature has been concerned with evaluating estimators. In this
paper uncertainty from the coefficient estimates is not taken into account. It is
straightforward to do this—see Fair (2004, Chapter 9)—but beyond what a central
bank is likely to do.

The aim in this paper, as should be the aim of a CB, is to estimate as precisely
as possible standard errors of the forecasts. The complication regarding a CB is
that it controls a key variable in the model, namely the short-term interest rate. For
present purposes there are at least three assumptions that can be made about CB
behavior when computing standard errors. One is that a CB simply sets a path of
the short-term interest rate and never deviates from this path. This is, of course, an
unrealistic assumption since a CB does respond to surprise changes in the economy.
The second is that a CB at the beginning of each period solves an optimal control
problem in choosing the interest rate path. The third is that a CB uses an interest
rate rule, which then simply makes the interest rate an endogenous variable in the
model. This section will assume that an interest rate rule is being used, and the
next section discusses optimal control.

First assume that a CB has made at the beginning of period T +1 a “baseline”
forecast for T +1 and beyond. This forecast would be based on a set of coefficient
estimates, lagged endogenous variables, and choices of current and future values of
the exogenous variables and errors. As noted above, for RE models values of the
exogenous variables and errors are needed beyond the end of the forecast horizon.

For a model estimated for periods 1 through T , estimates of ut , t = 1, . . . ,T ,
are available. These are the estimated residuals. One way of doing stochastic

www.economics-ejournal.org 8
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simulation is to draw from these errors. A vector of errors, u j
t , can be drawn

with replacement from the T vectors of estimated errors, with probability 1/T of
drawing any particular vector. Another way of doing stochastic simulation is to
assume that ut is distributed N(0, Ŝ), where Ŝ is the estimated m×m covariance
matrix. u j

t would be a random draw from this distribution. The first procedure has
the advantages that it is distribution free and uses the actual historical residuals.
The second procedure has the advantage that it is consistent with the assumptions
behind the estimation of the model. For present purposes all that needs to be
assumed is that u j

t can be drawn in some way.
Consider the solution for period T +1 for a non RE model. For a given draw

u j
T+1 the model can be solved, producing solution values y j

T+1. Doing this J times
produces a distribution of solution values, from which measures of central tendency
and dispersion can be computed. The mean for endogenous variable i is

ȳiT+1 =
1
J

J

∑
j=1

y j
iT+1 (4)

and the variance is

σ
2
iT+1 =

1
J

J

∑
j=1

(y j
iT+1− ȳiT+1)

2 (5)

Ignoring simulation error from the fact that J is finite, ȳiT+1 is the expected value
of yiT+1. Again, however, the main reason for doing stochastic simulation is not to
compute more accurate expected values but measures of dispersion.

For a dynamic simulation of, say, two periods, errors would be drawn for
periods T + 1 and T + 2 and the model solved for the two periods using these
draws. Solution values for the two periods would be computed for each endogenous
variable, which is one trial. J trials would be done, producing J values of the
predictions for each of the two periods. As many periods ahead can be done
as desired. If a CB were doing this, the interest rate rule would presumably be
deterministic, and so errors would not be drawn for it.

For RE models if agents do not observe the error draw and continue to form
expectations using zero values for the errors for periods T + 1 and beyond, the
story for period T + 1 is the same as for non RE models. The expectations are

www.economics-ejournal.org 9
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predetermined regarding the draws. For a dynamic simulation the story for period
T +2 is different. Using the error draw for T +1, the final solution values of the
endogenous variables for T +1 are different from what the agents expected them
to be, unlike in the deterministic case. At the beginning of T +2 they would use
the observed (solution) values of the endogenous variables for T +1 in forming
their expectations for T + 2 and beyond. The EP method must thus be used for
each period solved, not just for period T + 1 as in the deterministic case. For a
horizon of r periods, r error vectors would be drawn and the EP method used r
times. This is one trial. After J trials there would be J solution values of each
endogenous variable for each period, as in the non RE case.

6 Optimal Control: Deterministic Case

Now consider the case in which a CB sets the short-term interest rate by solving
an optimal control problem. For a linear non RE model and a quadratic objective
function, analytic, closed-form solutions are available—see, for example, Chow
(1975). In this case, if a CB reported the feedback equation, the coefficients in the
model, and the covariance matrix of the errors, users would have all the information
they need to compute means and variances.

In practice models are not linear, objective functions are generally not quadratic,
and there may be rational expectations. The following is a more general problem.
The deterministic case is considered in this section and the stochastic case in the
next. Assume that the horizon is t = T +1, . . . ,T + r and that the objective is to
maximize the expected value of W , where W is

W = g(yT+1, . . . ,yT+r,xT+1, . . . ,xT+r) (6)

In most applications the objective function is assumed to be additive across time,
which means that (6) can be written

W =
T+r

∑
t=T+1

gt(yt ,xt) (7)

Assume that the control variable of a CB, the short-term interest rate, is variable
x1t , and let z=(x1T+1, . . . ,x1T+r). If all the errors are set to zero, then for each value

www.economics-ejournal.org 10
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of z one can compute a value of W by first solving the model for yT+1, . . . ,yT+r and
then using these values along with the values for xT+1, . . . ,xT+r to compute W in (6)
or (7). Stated this way, the optimal control problem is choosing values (the elements
of z) to maximize an unconstrained nonlinear function. By substitution, the
constrained maximization problem is transformed into the problem of maximizing
an unconstrained function of the control variables:

W = Φ(z) (8)

where Φ stands for the mapping z−→ yT+1, . . . ,yT+r,xT+1, . . . ,xT+r −→W . Given
this setup, the problem can be turned over to a nonlinear maximization algorithm
like DFP. For each iteration of the algorithm, the derivatives of Φ with respect to
the elements of z, which are needed by the algorithm, can be computed numerically.
An algorithm like DFP is generally quite good at finding the optimum for a typical
control problem.4

Regarding the choice of r, the end of the horizon, it is sometimes the case
that unusual results are obtained near the end of the horizon because there is no
tomorrow. In practice the end of the horizon should be taken to be large enough
so that end-of-horizon effects have small effects on the earlier control values of
interest. It will be assumed that this has been done in the following discussion.
r should thus be thought of as much larger than the actual horizon of interest.

In practice a CB would solve its control problem at the beginning of T + 1
and implement x∗1T+1, the optimal value of the short-term interest rate for period
T +1. It could also announce its plans for periods after that: x∗1T+2, . . . ,x

∗
1T+r. In

the deterministic case this would be it. A CB would simply implement the optimal
values for T +2 and beyond as the time came. To look ahead to the next section,
however, the world is not deterministic, and in practice the economy in T + 1
would not be what a CB expected it to be when it solved its control problem. After
period T +1 is over, a CB at the beginning of T +2 could reoptimize. The optimal
value for T +2 would no longer be the value it computed at the beginning of T +1
because the errors for T +1 would not in general be zero, which was what a CB
was assuming at the beginning of T + 1. A CB could thus behave by solving a

4 See Fair (1974) for various applications of this procedure.

www.economics-ejournal.org 11



conomics: The Open-Access, Open-Assessment E-Journal

series of open-loop optimal control problems, one at the beginning of each new
period.

Turn now to the RE case and assume that the agents know what a CB is doing.
It is still the case that one can compute a value of W given a value of z. The extra
work in the RE case is that the EP method must be used in the solution of the
model. For a given z the expectations would be computed first and then the model
solved. A CB would assume zero current and future errors when solving its control
problem, as would the agents in computing their expectations. The DFP algorithm
could still be used to find the optimal value of z, and this value would be consistent
with the expectations of the agents.

7 Stochastic Simulation and Optimal Control

Consider non RE models first. One trial is a draw of u j
T+1, . . . ,u

j
T+r. At the

beginning of T +1 the computed optimal value of z is not affected by the draws
because a CB assumes zero current and future errors. x∗1T+1 is implemented at
the beginning of T +1. The solution of the model for T +1 uses this value and
the error draw for T +1. Then at the beginning of T +2 the process is repeated,
where a CB uses the solution values of the endogenous variables for T + 1 and
the assumption of zero errors for T +2 and beyond. x∗1T+2 is implemented at the
beginning of T +2, and when the model is solved the error draw for T +2 is used.
The optimal value of x1T+2 is different from what a CB computed at the beginning
of T + 1 because the actual error draws for T + 1 are not in general zero. This
process is repeated r times. This is one trial, so each trial requires the solution
of r optimal control problems. After J trials are preformed, the J values of each
endogenous variable for each period can be used to compute variances. These
variances would incorporate the optimal behavior of a CB.

Now consider the RE case. Since agents also use zero current and future errors
in computing their expectations, the expectations solved at the beginning of T +1
are the same as in the deterministic case since the optimal value of the control
variable for T +1 is the same. Again, for each value of z tried by the algorithm, the
EP method must be used. At the beginning of T +2 the process is repeated, just
as in the non RE case, where the agents, along with a CB, use the solution values

www.economics-ejournal.org 12
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of the endogenous variables for T +1, which are affected by the error draw. The
process is done r times, which is then one trial.

The RE case is thus no different from the non RE case except that the EP
method must be used each time W is computed. This is expensive, and various
tricks would probably be needed in practice to lessen computational time.

8 An Example

A structural multicountry macroeconometric model, denoted the “MC” model, is
used for this example. The MC model uses the methodology of structural macroe-
conometric modeling, sometimes called the “Cowles Commission” (CC) approach,
which goes back at least to Tinbergen (1939). I have gathered my research in
macroeconomics in one document, Macroeconometric Modeling, November 11,
2013 (MM) (Fair 2013), on my website, and this document contains a complete
description and listing of the MC model. MM is written using the current version of
the MC model (November 11, 2013), where published results using earlier versions
of the model have been updated.5 The MC model is not explained in this section,
and one should think of MM as an appendix to this section. This section is thus
not self contained. It is too much to try to put all the relevant information here,
hence the use of MM as an appendix. The methodology of the CC approach is also
discussed and defended in MM [1.1].

There are 39 countries in the MC model for which stochastic equations are
estimated. There are 25 stochastic equations for the United States and up to 13
each for the other countries. The total number of stochastic equations is 310, and
the total number of estimated coefficients is about 1,300. In addition, there are
1,379 bilateral trade share equations estimated, so the total number of stochastic
equations is 1,689. The total number of endogenous and exogenous variables, not
counting various transformations of the variables and the trade share variables, is
about 2,000. Trade share data were collected for 59 countries, and so the trade
share matrix is 59×59.
5 Users can work with the MC model on line or can download the model and related software to
work with it on their own computers. If the model is downloaded, it can be modified and reestimated.
Many of the results in MM can be duplicated on line.
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The estimation periods begin in 1954 for the United States and as soon after
1960 as data permit for the other countries. Data permitting, they end as late
as 2013:3. The estimation technique is 2SLS except when there are too few
observations to make the technique practical, where ordinary least squares is used.
The estimation accounts for possible serial correlation of the error terms. When
there is serial correlation, the serial correlation coefficients are estimated along
with the structural coefficients.

There are 24 endogenous asset-price variables in the MC model—23 exchange
rates and a variable measuring the nominal value of capital gains or losses on the
equity holdings of the U.S. household sector. The estimated equations explaining
these variables explain very little of their variances, and the equations are not too
different from estimated random walks with drift. There are also 11 important ex-
ogenous asset-price variables—10 export price variables of oil exporting countries
and a variable measuring the ratio of U.S. housing prices to an aggregate price
deflator. For purposes of the example here, equations have been estimated for these
11 variables and added to the model. The change in the log of each variable has
been regressed on a constant, so the variables have been modeled as random walks
with drift. When these 11 equations are added to the model, there are a total of
1,700 stochastic equations, of which 35 are asset-price equations.

When the MC model is stochastically simulated with and without the 35 asset-
price equations, the differences in the estimated variances are large. About a third
of the forecast-error variances of output growth and inflation over 8 quarters are
due to asset-price changes—MM [4.3]. The estimates in the present example thus
incorporate the uncertainty from asset-price changes, which seems appropriate
since they are essentially unpredictable.

For each estimated equation there are estimated residuals over the estimation
period. Let ût denote the 1700-dimension vector of the estimated residuals for
quarter t.6 Most of the estimation periods have the 1972:1–2007:4 period—144
quarters—in common, and these 144 observations on ût are used for the draws in
the procedure discussed below.7

6 For equations estimated using annual data, the error is put in the first quarter of the year with zeros
in the other three quarters (which are never used).
7 If an estimation period does not include all of the 1972:1–2007:4 period, zero errors are used for
the missing quarters.
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The present results are based on a forecast I made on November 11, 2013 using
the MC model. The forecast is based on a particular set of exogenous variable
values and zero error values. It yields a predicted value of each endogenous variable
for each quarter. These values are available on my website.8 The period for the
present experiment is 2014:1–2022:4–36 quarters. The interest here is estimating
the uncertainty around each predicted value. Each trial of the stochastic simulation
procedure is as follows. First, 36 error vectors are drawn with replacement from
the 144 vectors of residuals, each with probability 1/144. (Each vector consists of
1,700 residuals.) Using these error vectors, one per quarter, the model is solved
dynamically for the 2014:1–2022:4 period. The same set of exogenous variable
values is used as was used for the baseline forecast. The solution values are
recorded. This is one trial. The procedure is then repeated, say, J times. This gives
J values of each endogenous variable for each quarter, from which measures of
dispersion can be computed.

Results are presented in Table 1. They are based on 1000 trials. (There were
no solution failures on any of the trials.) The measure of dispersion used in the
table is as follows. Rank the J values of a given variable for a given quarter by
size. Let mr denote the value below which r percent of the values lie. The measure
of dispersion is (m.8413−m.1587)/2. For a normal distribution this is one standard
error.

In the MC model there is an estimated interest rate rule for each major country—
MM [3.6.10, 3.7.2]—including the United States, and so monetary policy is en-
dogenous in the model. For the results in Table 1 errors were drawn for the interest
rate rules except for the rule for the United States. For the United States the
estimated rule without any errors was taken to be the exact rule that the Fed uses.
When for a particular draw the rule called for a negative interest rate, zero was
used instead.

Remember that the results in Table 1 are based on historical residuals between
1979 and 2007, i.e., historically observed uncertainty. The residuals are assumed
to be iid since, as discussed above, serial correlation has been removed when
necessary by estimating autoregressive error coefficients.

8 For countries other than the United States data were not available as late as 2013:3, and the overall
forecast began earlier 2013:4, with actual values used for the United States until 2013:4.
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Table 1
Estimated Standard Errors of Forecasts

for the MC Model
Values are in Percentage Points

qtr Y UR P D R

2014:1 0.48 0.21 0.40 0.41 0.31
2014:2 0.85 0.31 0.55 0.70 0.39
2014:3 1.16 0.44 0.68 1.00 0.36
2014:4 1.44 0.65 0.91 1.32 0.49
2015:1 1.67 0.85 1.00 1.59 0.70
2015:2 1.86 0.97 1.11 1.87 0.81
2015:3 1.99 1.05 1.24 2.13 0.83
2015:4 2.08 1.12 1.43 2.36 0.93

2016:4 2.25 1.20 2.02 2.97 1.12

2017:4 2.36 1.26 2.41 3.42 1.22

2018:4 2.41 1.29 2.81 3.81 1.31

2022:4 2.76 1.40 4.44 5.52 1.45

Y = real GDP. GDPR in MM.
UR = unemployment rate. UR in MM.
P = GDP deflator. GDPD in MM.
D = nominal federal debt/nominal GDP. AGZGDP in MM.
R = three-month Treasury bill rate. RS in MM.
Results based on 1000 trials

The estimated standard errors in Table 1 increase with the length of the horizon,
as expected. After four quarters the standard errors are 1.44 for real GDP, 0.65
for the unemployment rate, 0.91 for the GDP deflator, 1.32 for the debt/GDP ratio,
and 0.49 for the interest rate. After eight quarters the respective standard errors are
2.08, 1.12, 1.43, 2.36, and 0.93. Note that even though no errors are drawn for the
Fed interest rate rule, there is still considerable variation in the interest rate as the
Fed reacts to the shocks.

The results in Table 1 are thus illustrative of what the Fed could report. Even
though the MC model is large, the time taken per solution is modest, and the 1000
trials for Table 1 took about 6 hours on a high-end laptop. The time would, of
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course, be larger if the model were a RE model or if optimal control problems were
solved for each trial.

9 What Could a Central Bank Do in Practice?

Interest rate rules, as estimated and used in the MC model, are likely too simple an
explanation of CB behavior. The solution of formal optimal control problems is
likely too complicated. The following is something in between that a CB might do
that would allow uncertainty estimates to be computed.

First, the CB must begin with a baseline forecast using a model. The model
could, however, be subjectively adjusted by using non zero values of various current
and future errors. Error values could be chosen to have the forecast from the model
be what the CB thinks is most likely. These error values would then be taken to
be exogenous. This baseline forecast would include the CB’s chosen interest rate
path. Second, the CB must have a way of drawing values of the errors in the model.
This could be from a set of historically estimated residuals or from an assumed
probability distribution with a computed covariance matrix.

The procedure could then be as follows. At the beginning of T +1 draw error
vectors for T + 1 through T + r and solve the model using these errors and the
baseline path of the interest rate. The error values added would be on top of any
of the exogenous error values discussed above. If the model is an RE model, the
EP or similar method would have to be used in the solution. This solution path
will obviously differ from the baseline path, and it is likely that if this path actually
occurred, the CB would not pick the baseline interest rate path. The next step is
thus for the CB to change the interest rate path to be the one it would pick if the
particular error draw occurred. This could possibly be done by hand, with a few
iterations needed to find the desired path. Or possibly this could be turned over to
an algorithm. At any rate, at the end the interest rate path would be consistent (in
the eyes of the CB) with the particular error draws. This is one trial. Now do this J
times and compute measures of uncertainty for the J values of each endogenous
variable for each period and for the interest rate.
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The CB could also do this for more than one model and report more than one
set of results. This is likely to be more informative than to try to average uncertainty
estimates across models and report the averages.

A key advantage of a procedure like this is that there is a different interest rate
path for each set of error draws, namely a path appropriate to that particular set.
The path could be chosen by a rule, by solving optimal control problems, or in the
in between manner discussed above. It is obviously not appropriate to keep the
baseline interest rate path the same for each set of draws, and a key part of any
reporting should be estimates of the variances of the interest rate.

The Fed appears to be set up to run the procedure just described. Yellen
(2012) reports stochastic simulation results using the FRB/US model. She also
reports some optimal control results (although without stochastic simulation).
Reifschneider and Williams (2000) discuss the stochastic simulation of the FRB/US
model. The model is a RE model, and for computational reasons they log-linearize
it and use linear techniques for solution. In future work it should be possible to
use the EP method discussed in Section 4 and avoid having to linearize the model.
Chung et al. (2012) also discuss stochastic simulation of the FRB/US model. In
this work, however, they do not impose model consistent expectations. Instead,
expectational terms are generated using forecasts from a small-scale VAR model.
Again, in future work it should be possible to use the EP method to impose model
consistent expectations.

The procedure discussed here differs from that of the Bank of Norway. The
Bank of Norway—Aastveit et al. (2011) and Gerdrup and Nicolaisen (2011)—
reports forecast densities. It has 221 models for forecasting GDP and 171 models
for forecasting the CPI. Each model produces density forecasts, and these densities
are then combined into one for each of the two variables. The combined forecasts
are then fed into a DSGE model (NEMO) for policy analysis. The policy analysis
in NEMO is conditional on these forecasts and judgment. The density forecasts
from the individual models are not affected by the policy rate, and so the procedure
used by the Bank of Norway is not the same as the one recommended above. No
single model is used in the analysis. The final density forecasts from NEMO are in
part based on the individual model’s density forecasts and in part on judgment. An
alternative procedure would be to use a single model for the entire analysis, as just
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outlined, but then report results from many different models. There would then be
consistency within each model.

10 Conclusion

Using certainty equivalence, it is feasible to compute measures of dispersion using
stochastic simulation. This can be done for large nonlinear simultaneous equations
models, including those with rational expectations. It is also possible to incorporate
optimal control behavior into the analysis. This framework, or an approximation to
it, could be used by monetary authorities in reporting uncertainty estimates. The
key ingredients needed are 1) a model, possibly subjectively adjusted, 2) a set of
historically estimated errors for drawing or an estimated probability distribution of
errors, and 3) a way of changing the optimal path of the interest rate when errors
are drawn, either an interest rate rule, optimal control, or something in between.

The procedure proposed here does not have to replace other procedures, like
the use of historical forecasting errors discussed in Section 1. As Reifschneider and
Tulip (2007) point out, model-based procedures rely on a particular model, which
may not be a good approximation of the economy. Given a model, the present
procedure is consistent within the model and thus rigorous and objective in this
sense. It would be informative to add results using this procedure to results using
other ways of reporting uncertainty—at least as a check on the other ways. And, of
course, results from a number of models could be reported as robustness checks.
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