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Abstract

We study a sequential screening problem where the agent produces an object con-

sisting of multiple items and has a multidimensional type that he learns over time.

Depending on the strength of complementarity/substitutability of the items, the op-

timal allocation features a di¤erent pattern of distortions. For mild complements or

substitutes, a simple solution procedure picks up the optimum.

1 Introduction

1.1 Motivation

Consider a landowner contemplating to construct a house on her land. A constructor is

contacted to build the house. The plans for the house are relatively complex; a variety of

decisions have to be taken. To �x ideas, suppose there are two broad issues relating to the
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exterior and the interior design. The landowner�s ideas for the exterior design are relatively

standard, but her tastes for interior designs are quite particular. As a result, the constructor

knows the costs of completing the exterior parts, but he only has a vague idea about the

costs relating to the interior parts. However, he will learn these costs as time goes by.

This is a natural situation, in particular in large scale procurement environments, but the

situation arises equally naturally in the context of price discrimination. Consumers thinking

about buying a (new generation) smart phone know quite well how they value the services

and applications they have already been consuming on their old phones. However, they

may only have a vague idea about their valuation for new applications. Broadly speaking, a

consumer switching from a standard mobile phone to a smart phone knows how many calls

he needs to make but only time will tell how much data he will download with the phone.

Moreover, casual evidence suggests that �rms respond to this information structure.1

In this paper, we would like to advance our understanding of contracting solutions in

these types of environments. We study a model where a principal contracts with an agent

to trade a bundle of services. Moreover, the agent has private information about the costs of

producing one item in the bundle from the outset and privately learns the cost of producing

the other item later on. Optimal contracting is dynamic; principal and agent get together

both at the outset as well as later on when more information is available. At the outset,

the agent decides whether or not he will eventually deliver the bundle of services, but the

precise terms of the contract may still be left open at this time. At the second get-together,

the remaining details of the contract are speci�ed. The services are produced when all

information is available - or, earlier, if the principal should prefer this - and the agent is paid

when all services have been produced.

The literature has analyzed problems that share some, but not all the ingredients of our

problem. In a nutshell, our problem is a convex combination of a tractable multidimensional

problem of screening à la Armstrong and Rochet (1999) and a sequential screening problem

1E.g., service provider Orange UK o¤ers a choice of pay as you go services and monthly plans. Moreover,

selecting into one of these plans limits the options to choose from later on. In particular, conditional on

the selected plan a consumer has the possibility to buy one out of a given variety of additional bundles of

services.

Speci�c examples of such options include plans Dolphin and Monkey http://www.best-mobile-

contracts.co.uk/networks/orange.html. Dolphin o¤ers di¤erent bundles of classical services with modern

services, i.e. texts, minutes and data volume. Monkey o¤ered bundles of free music and texts.

The key properties for our purposes are that a bundle of services is traded and that the choice from options

is made sequentially.
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à la Courty and Li (2000). To the best of our knowledge, this is the �rst paper that takes

this approach. We describe the relevant literature in much greater depth below.

We raise and answer the following basic questions. What constraints does incentive

compatibility impose in this environment; put di¤erently, what is the set of implementable

allocations in the present context? Moreover, what are the qualitative properties of an

optimal allocation from the principal�s perspective? Is it natural to expect the classical

downward distortions in economic activity due to asymmetric information? What are the

implications of di¤erent timings of production; in particular, how do optimal allocations and

utility di¤er when the principal needs to have construction works on her house start before

all information is available?

1.2 Main �ndings

To answer the �rst question, we begin with a detailed analysis of binding incentive and

participation constraints in our framework. It is instructive to analyze the principal�s design

problem in two steps. In the �rst step, the allocation is taken as given and we search for the

least cost way of implementing the given allocation. In the second step, we optimize over

the allocations.

The problem of implementing given allocations is rich. In particular, one needs to un-

derstand systematically which deviations are most tempting for the agent as a function of

the allocation that the principal wishes to implement. As is well known, in multidimen-

sional problems the set of binding constraints at the optimum changes with the allocation.

However, the timing of the agent�s learning process simpli�es our problem. Assuming that

the agent�s cost parameters are positively correlated, we can identify from the outset - for

any incentive compatible allocation - two constraints that must be binding in any optimal

contract. In particular, the agent with a high cost of constructing the exterior parts of the

house is indi¤erent between participating and not participating; the agent with the low cost

of exterior construction is indi¤erent between reporting this parameter truthfully or not and

moreover obtains a rent. The level of this rent depends on what the agent with an initial low

cost realization would report in the second round of communication, had he falsely reported

his cost of constructing the exterior parts as high. Depending on how sensitive the alloca-

tion variables respond to information that arrives late, the agent�s best deviation features

truthtelling or lying after a false report in the �rst round of communication.2

2It is important to point out that an appropriate version of the revelation principle (Myerson (1986))

3



Once the pattern of binding constraints for given allocations is known, it is straight-

forward to optimize with respect to the allocation the principal wishes to implement. The

solution depends crucially on the nature and strength of interactions between the items in the

bundle in the principal�s payo¤ function. For mild complements, optimal allocations induce

truthtelling in the second period regardless of �rst period reports and display the classical

downward distortions relative to the �rst-best allocation. For mild substitutes, truthtelling

after a false �rst period report constitutes a binding constraint and the optimal allocation

displays both up and downward distortions. For strong complements or strong substitutes,

the optimal allocation triggers a second period lie after a �rst period lie. Moreover, the

allocation can feature both up and downward distortions even in the very case where goods

are strong complements for the principal.

Which of these cases are economically most relevant? What are reasonable assumptions

on the strength of interactions between the items in the bundle the principal consumes?

We obtain guidance from the comparative statics properties of the �rst-best allocation if we

are willing to impose that changes in marginal costs of producing one item have more of an

impact on the level of that item rather than the other one. If moreover the support of second

period information is at least as wide as the support of �rst period information, then only

the case of mild complements and substitutes is relevant. For applications in which these

assumptions make sense, we provide a strikingly simple cook-book recipe: optimal contracts

can be found by imposing truth-telling constraints on and o¤ equilibrium path and the

procedure picks up the optimum even if the truthtelling constraints o¤ path are binding.

This latter result strikes us as pretty surprising, because -as cannot be stressed enough - it

has nothing to do with the revelation principle but rather emerges from the solution of the

overall maximization problem.

It is essentially a corollary of our results that beginning construction works before the

constructor has all information comes at a loss to the principal, unless the principal values

each item in the bundle independently of the other item. That is, there is a strictly positive

applies in our environment. However, the principle implies only that the agent �nds it optimal to announce

both parameters truthfully, which implies in particular, that he will report the second parameter truthfully

once he has been truthful about the �rst parameter. The dynamic literature has termed this behavior

truthfulness on equilibrium path. The revelation principle has no implications whatsoever on what the agent

does o¤ equilibrium path, that is after a �rst period lie. Clearly, the agent has by de�nition an incentive

to remain on equilibrium path. However, the utility loss to the principal to ensure such remaining on path

depends on the agent�s best alternative to truthtelling. Therefore, the o¤-path behavior becomes a crucial

ingredient to the analysis.
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option value of waiting if the items in the bundle are strict complements or substitutes for

the principal. Given complementarity or substitutability, the e¢ cient level of production of

both items depends on the costs of producing both items. Even though waiting enables the

agent to deviate in more complicated ways, the added �exibility is always valuable to the

principal.

1.3 Literature

Our analysis builds on two strands of the literature: multidimensional screening on the one

hand and sequential screening on the other hand. Armstrong and Rochet (1999) analyze a

tractable model of two-dimensional screening. In their approach, the agent is endowed with

all his information from the outset; our agent starts out with only one piece of information

and obtains the remaining information later on. Moreover, screening is (optimally) static

in their approach, while there are two rounds of contracting in our problem.3 In Courty

and Li (2000) an agent is initially endowed with a vague idea about his onedimensional

preference parameter and later on re�nes this information to a particular realization that he

privately observes. Moreover, the principal and the agent get together twice - each time new

information arrives - as in the present problem. The main di¤erence is that there is only

one payo¤ relevant parameter in Courty and Li (2000), while there are two in the present

context. Moreover, there are also two allocation choices in the present context instead of

one in their problem. So, our assumptions capture a di¤erent set of problems; Courty and Li

(2000) analyze problems where information about one payo¤ relevant parameter is re�ned

while we are interested in collecting multiple informational parameters over time to design

a multidimensional object.

Closely related to sequential screening is the literature on dynamic mechanism design.

Baron and Besanko (1984) and Battaglini (2005) provide the �rst general analysis of optimal

contracts in this dynamic framework. Battaglini (2005) studies monopolistic selling to con-

sumers whose tastes follow a Markov process. Pavan et al. (2013) provide a general model

of dynamic mechanism design. In each period, new information arrives and the designer

chooses a set of allocation variables as a function of current information and past reports.

In each period, the agent�s private information is captured by a onedimensional parameter.

3A second di¤erence is that we allow for substitutability and complementarity between the goods but

restrict attention to positive correlation between the informational parameters, while Armstrong and Rochet

(1999) consider neutral goods but allow for arbitrary correlations. See also Dana (1993) and Severinov (2008)

for further static models of screening in the 2x2-model.
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This is the key di¤erence to our problem, where there are two payo¤relevant parameters that

simultaneously a¤ect the agent�s payo¤. Under this assumption, we obtain a natural tax-

onomy of cases featuring binding constraints with respect to one-shot deviations or double,

dynamic deviations, respectively. The latter case, by de�nition, fails to satisfy the version

of the one-stage-deviation principle by Pavan et al. (2013), which applies precisely when the

best deviation for the agent is to lie once and then to return to truthful reporting strategies

forever after. So, ultimately the qualitative di¤erences of our contracting solutions as com-

pared to those in Pavan et al. (2013) are due to the one-stage-deviation principle applying

or failing, respectively. In turn, multidimensionality provides a natural reason for the failure

of the one-stage-deviation principle.

Complementary to this paper is contemporaneous work by Battaglini and Lamba (2013)

who argue that there are important interactions between the regularity conditions imposed on

the screening problem and the length of the time horizon. In the dynamic screening problem

separation may not be feasible even though it would be feasible in the static counterpart of the

model. In particular, Battaglini and Lamba (2013) provide natural examples where locally

optimal contracts fail to satisfy global incentive constraints. Unlike in our model it is the

within period incentive constraints that become binding beyond the local ones; in our model,

within period incentive compatibility is standard, but the dynamic incentive constraints

become binding beyond the local ones. Similar to the present approach, their analysis allows

them to explain allocations that could not be rationalized using local constraints only, in

particular, dynamic pooling: initial separation followed by pooling in later periods.

The literature on dynamic and sequential screening has analyzed problems that share

some of our model�s features but not all. We are by no means the �rst ones to analyze

sequentially optimal lying strategies; however, to the best of our knowledge, this is the

�rst paper that bridges the gap between the multidimensional and the sequential screening

literature, and in this context dynamic lying strategies arise naturally. Sequentially optimal

lies are also analyzed in Es½o and Szentes (2007a,b, 2013). In their framework, an agent who

misreported early information will also misreport information that arrives later on. More

speci�cally, the agent undoes his earlier lie so that he receives the same allocation as if he had

been truthful at each instance. This is di¤erent in our context, and hence optimal allocations

re�ect di¤erent trade-o¤s. Krähmer and Strausz (2008) provide an analysis of the case where

it is impossible to undo an earlier lie in the Courty and Li (2000) model, because the support

of late information depends on the realization of early information. As in our model, the

optimal mechanism induces at times lies o¤ the equilibrium path. However, the model and
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questions they address are quite di¤erent from ours. For more recent analyses of sequential

screening models, see also Boleslavsky and Said (2012), Krähmer and Strausz (2012,2013)

and Li and Shi (2013); for a combined model of moral hazard and adverse selection, see

Garrett and Pavan (2013). Bhaskar (2013) analyzes dynamic deviation strategies in the pure

moral hazard model. A question related to our timing application is addressed in Krähmer

and Strausz (2012), where it is shown that ex post participation constraints eliminate the

value of sequential screening in that there is bunching with respect to early information. In

that sense, the principal could simply wait for de�nite information to arrive and not screen

until then. Note that this is di¤erent in our context where early information is directly

payo¤ relevant; not screening early would expose the principal to a static multidimensional

screening problem later on; hence, this is suboptimal in our model.

We clearly do not do any justice to the multidimensional literature in this short account.

For an in depth survey, see Rochet and Stole (2003); for general approaches, see Armstrong

(1996) and Rochet and Choné (1998).4

The paper is organized as follows. In section two, we present the model and state the

buyer�s problem. Section three presents and solves the buyer�s problem. Section four discusses

the structure of optimal allocations in regular cases where the strength of complementar-

ity/substitutability of goods in the buyer�s utility function is limited. Section �ve gives an

example that is outside this regular structure. In section six, we discuss the optimal timing of

productive decisions in our model. The �nal section concludes. Lengthy proofs are gathered

in the appendix.

2 The Model

2.1 Setup

A buyer contracts with a supplier to obtain two goods in quantities x and y: The buyer�s

utility is

V (x; y)� T;

where T is a transfer made to the seller. The seller�s payo¤ is

T � �x� �y;
4See also Pavan et al. (2013) for a much more extensive survey of the literature on dynamic mechanism

design.
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where � and � are cost shifters.

Contracting is a sequential process. At date 1; the seller knows the realization of � (but

not of �) and the conditional distribution of � given �; whereas the buyer only knows the joint

distribution of types. The cost realizations are binary, so that � 2
�
�; �
	
and � 2

�
�; �
	
;

where � > � > 0 and � > � > 0: The joint distribution is completely characterized by

Pr (� = �) = � and � (�) � Pr
�
� = � j�

	
: At date 2, � becomes known to the seller but not

to the buyer. Also, goods are produced and traded in exchange for the transfer T at that

date. The game and the information structure is common knowledge.5

We place no assumptions on V (x; y) for the time being except that V (x; y) is jointly

concave in x and y and that the �rst unit of consumption is extremely valuable to the buyer,

that is limx!0 V1 (x; y) =1 for all y and limy!0 V2 (x; y) =1 for all x:6 Further assumptions

will be discussed as we go along.

2.2 The Buyer�s Problem

Invoking the appropriate revelation principle (Myerson (1986)), it is without loss of generality

to analyze optimal contracting in terms of direct, incentive compatible mechanisms, where

the agent announces each piece of information when it arrives. Thus, the contracting game

is dynamic and involves two rounds of communication. In the �rst round at date 1, the seller

reports a value �̂ 2
�
�; �
	
; in the second round at date 2, the seller reports a value �̂ 2

�
�; �
	
:

The seller is given incentives to announce these values truthfully. This implies in particular,

that truthfulness about � is optimal after a truthful report about �: To rule out all feasible

deviations by the seller, we need to analyze also what the seller would announce about �

o¤ equilibrium path, that is, had he falsely reported � in the �rst round of communication.7

Since the optimal behavior of the agent in the second round depends on the �rst round

report, �̂, the �rst round true type, �, and the second round true type, �, we need to

distinguish between the incremental information that arrives in round two and the agent�s

5In our model there are two choice variables, x and y; that interact with two informational variables, �

and �: The essential di¤erence to Courty and Li (2000) is that �x enters the agent�s payo¤ function.
6Throughout the paper, Vi (x; y) and Vij (x; y) for i; j = 1; 2 denote partial and cross derivatives of the

function V with respect to its arguments.
7It is important to notice that the revelation principle does not have any implications on reporting o¤

equilibrium path, except for the fact that the agent chooses the optimal report to send as part of his strategy.

So, to assess the value of a deviation in the �rst round of communication, we need to consider the possibility

that the optimal thing to do in the second round after a �rst round lie is to lie again.
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private information. That is, in the second period, the agent privately knows which node,

identi�ed by the triple
�
�; �̂; �

�
; in the game tree has been reached. We let �̂�

�
�; �̂; �

�
for

�̂ 6= � denote the optimal report at node
�
�; �̂; �

�
and treat these reports as choice variables

(subject to incentive compatibility constraints) of the principal.

It is easy to show that the optimal mechanism is nonstochastic. This is because the

principal is risk averse (with respect to lotteries over x and/or y) while the agent only cares

about the expected values of such lotteries. Even though the equilibrium concept is a bit

di¤erent, the proof essentially follows from Myerson (1986).

We can now state the buyer�s problem:

max
x(�;�);y(�;�);T (�;�);�̂�(�;�;�)

E�E�j� [V (x (�; �) ; y (�; �))� T (�; �)] (1)

s.t.

T
�
�; �
�
� �x

�
�; �
�
� �y

�
�; �
�
� T

�
�; �
�
� �x

�
�; �
�
� �y

�
�; �
�
; (2)

T
�
�; �
�
� �x

�
�; �
�
� �y

�
�; �
�
� T

�
�; �
�
� �x

�
�; �
�
� �y

�
�; �
�

(3)

T
�
�; �
�
� �x

�
�; �
�
� �y

�
�; �
�
� T (�; �)� �x (�; �)� �y (�; �) (4)

T (�; �)� �x (�; �)� �y (�; �) � T
�
�; �
�
� �x

�
�; �
�
� �y

�
�; �
�

(5)

E�j� [T (�; �)� �x (�; �)� �y (�; �)] (6)

� E�j�
�
T
�
�; �̂�

�
�; �; �

��
� �x

�
�; �̂�

�
�; �; �

��
� �y

�
�; �̂�

�
�; �; �

���
;

E�j�
�
T
�
�; �
�
� �x

�
�; �
�
� �y

�
�; �
��

(7)

� E�j�
�
T
�
�; �̂�

�
�; �; �

��
� �x

�
�; �̂�

�
�; �; �

��
� �y

�
�; �̂�

�
�; �; �

���
;

E�j� [T (�; �)� �x (�; �)� �y (�; �)] � 0; (8)

E�j�
�
T
�
�; �
�
� �x

�
�; �
�
� �y

�
�; �
��
� 0; (9)

and for � 6= �̂
�̂�
�
�; �̂; �

�
2 argmax

�̂
T
�
�̂; �̂
�
� �x

�
�̂; �̂
�
� �y

�
�̂; �̂
�

(10)

for all �; �̂ 2
�
�; �
	
and � 2

�
�; �
	
:

Constraints (2) through (5) are the second period constraints after a truthful report in

the �rst period: after such a truthful report in period one, the seller must �nd it optimal to

be truthful about � as well. We term these constraints �on-path constraints�for the obvious
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reason. (6) and (7) are the �rst period incentive constraints. As of date one, the seller

anticipates that after having misreported � in the �rst period, he chooses the second period

report optimally, as captured by (10) : Since nodes
�
�; �̂; �

�
for � 6= �̂ are o¤ the equilibrium

path (on equilibrium path, the �rst report is truthful), we term constraints ensuring any

particular behavior at such o¤-path nodes �o¤-path incentive constraints�. (8) and (9) are

the participation constraints.

Before diving into the quite intricate analysis, it is useful to take a bird�s eye view of the

problem. At the �rst time of contracting, there are only two possible types - because the

seller only knows � but not yet �: Moreover, the seller decides whether or not he wishes to

participate at that date. He anticipates optimal behavior at date 2, so each report gives rise

to a continuation value. Due to this structure, our model has much in common with the

simple (static) binary model of screening, so much of the logic of that model will carry over.

The essential complication relative to the static counterpart is that the continuation values

are endogenous and there is no simple shortcut to determine these values.

It is instructive to understand the properties of the �rst-best allocation.

2.3 The �rst-best

If the buyer and the seller both know � at the outset and both learn � at date two, then

both (8) and (9) are binding at the optimum and the optimal allocation satis�es

V1 (x (�; �) ; y (�; �)) = � (11)

and

V2 (x (�; �) ; y (�; �)) = � (12)

for � 2
�
�; �
	
and � 2

�
�; �
	
:

To sharpen our intuition for �relevant�cases in the second-best, it proves useful to ask

how the �rst-best solution depends on the cost parameters. Obviously, x and y move in

the same direction in response to changes in the parameters if x and y are complements

and move in opposite directions if x and y are substitutes. Beyond that, it is important to

understand how strongly these choices respond to information that is learned in period 2.

Lemma 1 If x and y are complements (V12 (x; y) � 0 for all x; y), then the �rst-best allo-
cation, de�ned by (11) and (12), satis�es

y
�
�; �
�
� y (�; �) � (�)x

�
�; �
�
� x (�; �)
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for arbitrary � � � > 0 if and only if V12 (x; y) � (�)� V11 (x; y) for all x; y:
If x and y are substitutes, (V12 (x; y) � 0 for all x; y), then the �rst-best allocation satis�es

y
�
�; �
�
� y (�; �) � (�)�

�
x
�
�; �
�
� x (�; �)

�
for arbitrary � � � > 0 if and only if V12 (x; y) � (�)V11 (x; y) for all x; y:

If the utility function of the buyer features interactions that are not too strong, then a

change in � has a stronger impact on y than on x: We believe this is the natural case, but

other cases are possible.8

We now address the buyer�s problem under asymmetric information.

3 Analysis

We assume that the low cost producer in the �rst period is better to the buyer than the high

cost producer in the sense of a weakly positive correlation

Assumption 1: � and � are weakly positively correlated, that is � (�) � �
�
�
�
:

First-order stochastic dominance is a regularity condition that is commonly used in the

sequential screening literature. Assumption 1 implies the following Lemma:

Lemma 2 If � (�) � �
�
�
�
; then (8) is automatically satis�ed if (9) is.

The argument is essentially the same as in a static two-type model. We can use the �rst

period incentive constraint (6) to show that an allocation that satis�es (9) automatically

also satis�es (8) :

Clearly, at least one participation constraint must be binding; otherwise all payments

could be lowered and the buyer�s payo¤ could be increased. From Lemma 2 we can deduce

that constraint (9) is binding at the optimum. Likewise, at least one of the �rst period

incentive constraints must be binding. Otherwise we could again reduce some payments in a

way that keeps incentive compatibility satis�ed and increases the buyer�s expected payo¤. It

8In the context of strategic interactions, the natural case would generate stability of a system of best

replies; see, e.g., Tirole (1988) for a discussion. Note moreover that joint concavity with respect to x and y

requires that V11V22 � V 212 � 0; so a concave function cannot be �irregular�both with respect to changes in
� and �:
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is easy to see that the critical constraint is (6) : Which other constraints bind is a relatively

complex matter. The reason is that the implications of optimal o¤-path reporting are quite

intricate. We begin with a discussion of the implications of the on-equilibrium path incentive

constraints.

Lemma 3 �̂�
�
�; �; �

�
= � for x

�
�; �
�
� x

�
�; �
�
and �̂�

�
�; �; �

�
= � for x

�
�; �
�
� x (�; �) :

Likewise, �̂�
�
�; �; �

�
= � for x

�
�; �
�
� x

�
�; �
�
and �̂�

�
�; �; �

�
= � for x

�
�; �
�
� x (�; �) :

The on-path constraints have some, however limited, implications for the optimal reports

o¤path. In particular, it is never the case that the agent �nds it optimal to lie at all o¤-path

nodes in the second period. Depending on the monotonicity properties of the x�allocation,
there are always some nodes at which truthtelling about the second period incremental

information is automatically - by implication of the on-path constraints - induced. The

intuition is quite simple. E.g., the on-path constraints of type
�
�; �
�
make reporting �̂ = �

optimal for that type. At node
�
�; �; �

�
; the agent has an even stronger incentive to report

�̂ = � if x
�
�; �
�
� x

�
�; �
�
; because that boosts his extra rent from having exaggerated � in

round one.

The di¢ culty at this stage is of course that the monotonicity of the x�allocation with re-
spect to � is not known and endogenous. Our solution strategy is as follows. Building on the

insights from static models of screening, we aim for a reduced problem, where constraints (9)

and (6) hold as equalities, while (7) (in addition to (8)) is slack. We solve this reduced prob-

lem and provide su¢ cient conditions such that its solution satis�es the neglected constraint

(7) : In turn, the reduced problem is tackled in a two step procedure, where we determine at

step one the cheapest way to implement a given allocation and then determine the optimal

allocation in step two. In the �rst step problem we simultaneously optimize over payments

and o¤-path reports.

3.1 The reduced problem

If the agent with �rst period cost � is indi¤erent between participating and not, the agent

with �rst period type � is indi¤erent between being truthful and lying about �; and the

remaining �rst period constraints are slack, then the principal faces the standard trade-o¤

between the e¢ ciency of the allocation and the rent that needs to be given to ex ante type �:

Denote this rent as �: It is useful to split the principal�s problem into two steps. In the �rst

step, we take the allocation as given and determine optimal payments that implement the

12



allocation. Implementability of the allocation includes that the incentive constraint of the

ex ante type � needs to be satis�ed as well. Formally, letting 
 denote the expected pro�t

ex ante type � can make by mimicking type �; we require that 
 � 0: Once the optimal

payments are known, we maximize with respect to the allocation that the principal wishes

to implement.

Identifying the minimal payments, while straightforward in the static model, is pretty

involved in the present context. The reason is that implementation is much more �exible

in the multidimensional context and so the pattern of binding constraints is not obvious.

The reader who is not interested in the details of this step can skip subsection 3.1.1, consult

Lemma 4 for the solution to the problem, and continue reading from subsection 3.1.2 onwards

on a �rst go. However, to ultimately understand the structure of optimal allocations in

sections 4 and 5 below, the reader needs to go back to subsection 3.1.1 to relate the pattern

of binding constraints to the underlying model primitives.

3.1.1 Implementing given allocations at lowest cost

For a given allocation (x; y)9; payments to types
�
�; �
�
and optimal o¤-path reporting at

nodes
�
�; �; �

�
for � 2

�
�; �
	
solve the following problem:

� � min
fT(�;�);�̂�(�;�;�)g

�2f�;�g

E�j�
�
T
�
�; �̂�

�
�; �; �

��
� �x

�
�; �̂�

�
�; �; �

��
� �y

�
�; �̂�

�
�; �; �

���
(13)

s:t:

�̂�
�
�; �; �

�
2 argmax

�̂
T
�
�; �̂
�
� �x

�
�; �̂
�
� �y

�
�; �̂
�
for � 2

�
�; �
	

E�j�
�
T
�
�; �
�
� �x

�
�; �
�
� �y

�
�; �
��
= 0;

(2) ; and (3) :

The buyer minimizes the rent that needs to be given to the seller with ex ante type �; taking

into account that the optimal reporting strategy of this type in period two can be to misreport

his parameter � when he has misreported his parameter � in the �rst period. However, if

the buyer wishes to implement such a sequential lying strategy - because expected payments

can be reduced this way - then he needs to explicitly make sure that the strategy is optimal

from the seller�s perspective as well.

9Throughout the paper we denote by (x; y) the allocation for all types (�; �) 2
�
�; �
	
�
�
�; �
	
.
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Once the solution to the �rst program is found, we can choose payments to types (�; �)

and the optimal reporting at nodes
�
�; �; �

�
for � 2

�
�; �
	
to render constraint (7) as slack

as can be. Formally, given the payments and reports
�
T
�
�; �
�
; �̂�
�
�; �; �

�	
�2f�;�g that solve

program (13), payments and reports
�
T (�; �) ; �̂�

�
�; �; �

�	
�2f�;�g solve the problem:


 � min
fT (�;�);�̂�(�;�;�)g

�2f�;�g

E�j�
�
T
�
�; �̂�

�
�; �; �

��
� �x

�
�; �̂�

�
�; �; �

��
� �y

�
�; �̂�

�
�; �; �

���
(14)

s:t:

�̂�
�
�; �; �

�
2 argmax

�̂
T (�; �̂)� �x (�; �̂)� �y (�; �̂) for � 2

�
�; �
	

E�j� [T (�; �)� �x (�; �)� �y (�; �)] = �;
(4) , and (5) ;

Notice that we solve problem (14) only after having solved problem (13) : This procedure

re�ects our solution strategy that is based on reduced problems where constraint (7) is slack.

As long as (7) is slack - formally, as long as 
 � 0 - only the solution of problem (13) is

directly payo¤ relevant. For this reason, we focus primarily on program (13) in the main

text and relegate the solution to program (14) entirely to the appendix. We come back to

these results only when we verify that the neglected constraint, (7) ; is indeed satis�ed.

The solution to the programs depends on the allocation that the buyer wishes to imple-

ment. In particular, de�ne �x (�) � x
�
�; �
�
� x (�; �) ; �y (�) � y

�
�; �
�
� y (�; �) ; and the

following sets

Xi (�) �
n
f(x (�; �) ; y (�; �))g�2f�;�g j

�
� � �

�
�y (�) �

�
� � �

�
�x (�) � 0

o
;

Xii (�) �
n
f(x (�; �) ; y (�; �))g�2f�;�g j

�
� � �

�
�y (�) � �

�
� � �

�
�x (�) � 0

o
;

Xiii (�) �
n
f(x (�; �) ; y (�; �))g�2f�;�g j

�
� � �

�
�x (�) �

�
� � �

�
�y (�) � 0

o
;

Xiv (�) �
n
f(x (�; �) ; y (�; �))g�2f�;�g j �

�
� � �

�
�x (�) �

�
� � �

�
�y (�) � 0

o
:

For future reference, also de�ne Xintj (�) for j = i; : : : ; iv as these same sets when all the

de�ning inequalities are strict, Xj � Xj (�) [ Xj
�
�
�
for j = i; : : : ; iv; and �nally X (�) �

[ivj=iXj (�) : These sets are depicted in the following graph:
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Figure 1. The space of implementable allocations is divided into four regions, i through iv,

for each type � 2
�
�; �
	
: The cost minimizing payments that implement allocations within

each regime depend on the regime itself.

Only y-allocations that are monotonic in � are incentive compatible. Hence, we only need

to consider such allocations. From Lemma 3 we know that depending on the monotonicity

of the x-allocation, truthful reporting is automatic at some nodes o¤ path. Whether it is

optimal to induce truthful reporting at the remaining nodes o¤path depends on which of the

sets Xj (�) for � 2
�
�; �
	
and j = i; : : : ; iv contain the allocation x; y that is implemented.

Note that the sets Xj (�) for j = i; : : : ; iv are de�ned for both values of �: The solution to
program (13) depends on which set Xj

�
�
�
contains the allocation o¤ered to ex ante type

�; the solution to (14) depends on Xj (�) : Very conveniently, the dividing lines between the
sets have isomorphic representations. The complete set of implementable allocations is thus

given by Xj (�) � Xk
�
�
�
for j; k = i; ii; iii; iv; leaving us with 16 possibilities. However, it

turns out that under very natural conditions, the solution of the overall problem has the

property that j = k; so there are only 4 cases economically relevant in our model. Therefore,

to economize on space, we just present our result anticipating this result:

Lemma 4 For (x; y) 2 Xi

� = �i � E�j�
��
� � �

�
x
�
�; �
��
+
�
� (�)� �

�
�
�� �

� � �
�
y
�
�; �
�

incentive compatibility constraints (2) and (5) are binding and all types report truthfully o¤

path;

for (x; y) 2 Xii

� = �ii � E�j�
��
� � �

�
x
�
�; �
��
+
�
� (�)� �

�
�
�� �

� � �
�
y
�
�; �
�
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all types report truthfully o¤ path and the agent is indi¤erent between truthfully reporting

and lying at nodes
�
�; �; �

�
and

�
�; �; �

�
;

for (x; y) 2 Xiii

� = �iii �
�
� � �

�
x
�
�; �
�
+
�
1� �

�
�
�� �

� � �
�
y
�
�; �
�
� (1� � (�))

�
� � �

�
y
�
�; �
�

incentive compatibility constraints (2) and (5) are binding and �̂�
�
�; �; �

�
= �̂�

�
�; �; �

�
= �

and �̂�
�
�; �; �

�
= �̂�

�
�; �; �

�
= �;

for (x; y) 2 Xiv

� = �iv �
�
� � �

�
x
�
�; �
�
+ � (�)

�
� � �

�
y
�
�; �
�
� �

�
�
� �
� � �

�
y
�
�; �
�

incentive compatibility constraints (3) and (4) are binding and �̂�
�
�; �; �

�
= �̂�

�
�; �; �

�
= �

and �̂�
�
�; �; �

�
= �̂�

�
�; �; �

�
= �;

Allocations in Xi induce truthtelling o¤ path automatically in the sense that we can
naïvely assume truthtelling o¤ path. Solving program (13) under this hypothesis, we �nd

that payments are minimized if constraint (2) is binding. In turn, for these payments, it is

straightforward to verify that �̂�
�
�; �; �

�
= �: Taken together with Lemma 3, this implies

the result. Intuitively, suppose that x is independent of �: In this case, truthtelling about �

is simply a question of monotonicity of y in �: This intuition generalizes to all allocations in

Xi that share the property that x and y move in the same direction and y is more sensitive
to changes in � than x is.

For allocations in Xii conjecturing truthtelling naïvely would prove to be false; the seller
would not report truthfully o¤ path if we simply took such behavior as given. While the

optimal report o¤ path at nodes
�
�; �; �

�
and

�
�; �; �

�
is indeed to tell the truth, this needs

to be ensured explicitly with the appropriate constraints at nodes
�
�; �; �

�
and

�
�; �; �

�
.

Moreover, these constraints are binding at the optimum. Finally, when the dependency of the

x�allocation on information � becomes strong, it becomes too costly to insist on truthtelling
at all nodes o¤ path. Instead, the cheapest way to implement any given allocation in sets

Xiii and Xiv induces some type to lie o¤ path. Intuitively, take again the extreme cases
within sets Xiii and Xiv and suppose y is independent of �: Clearly, there is no way to induce
truthtelling about � in period 2 in this case. Instead, the seller chooses the report that

maximizes his rent from being able to produce x at lower cost, so he chooses the report that

maximizes x (�; �̂). E.g., for (x; y) 2 Xiii the seller always reports �̂ = �:
The functional form of the minimal rents that the agent with �rst period type � depends

on which of the regimes i through iv prevails. The cases are ordered by increasing complexity.
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Case i (where (x; y) 2 Xi) is the standard one, where the agent announces � truthfully in
period two regardless of the report about �. The expected rent of an agent with parameter

� = � consists of two parts. First, the agent has a lower cost of producing x than the agent

with � = �: The expected cost advantage is E�j�
��
� � �

�
x
�
�; �
��
; because � (which will be

announced truthfully) is not yet known when � is announced: Secondly, type � has a higher

probability of being relatively more e¢ cient at producing y:Moreover, in period two, an agent

with a parameter � = � receives a higher utility than an agent with parameter �; because this

agent could always overstate his cost of producing y: At the optimum, the agent of type
�
�; �
�

is exactly indi¤erent between reporting the truth and mimicking type
�
�; �
�
; so the di¤erence

between type
�
�; �
�0
s and type

�
�; �
�0
s utility is exactly

�
� � �

�
y
�
�; �
�
: The expected

additional gain - due to having a low type � in period one - from this rent arising from having

a low rather than a high value of � is exactly equal to
�
� (�)� �

�
�
�� �

� � �
�
y
�
�; �
�
:10

Case ii still features truthtelling on and o¤ equilibrium path, but the agent must be kept

indi¤erent between reporting honestly and exaggerating his � parameter at two nodes; in

particular at node
�
�; �; �

�
:We can again split the agent�s expected rent as of the �rst period

into the expected direct gain from misreporting �; E�j�
��
� � �

�
x
�
�; �
��
, and the expected

additional gain arising from the combined facts that an agent with a low parameter � obtains

a rent in period two and that an agent with parameter � = � forms expectations based on

a more favorable distribution of � than an agent with parameter � = � does. Formally,

the di¤erence in utilities between types
�
�; �
�
and

�
�; �
�
is set so as to keep the agent who

has exaggerated � in the �rst period from exaggerating � in the second period and so this

di¤erence equals
�
� � �

� �
x
�
�; �
�
� x

�
�; �
��
+
�
� � �

�
y
�
�; �
�
: Multiplying this term by the

di¤erence in distributions,
�
� (�)� �

�
�
��
; and simplifying, we obtain �ii:

In cases iii and iv; the allocation and the associated cost minimizing payments induce the

agent to lie o¤ equilibrium path. To avoid repetition, we focus on case iii only. In this case,

the most tempting deviation to the agent with � = � is to exaggerate � and to underreport � at

node
�
�; �; �

�
: Put di¤erently, a double deviation involving both parameters is strictly better

to the agent with type � than a single deviation. As a result, the expected cost advantage

due to having a low rather than a high value of � is simply equal to
�
� � �

�
x
�
�; �
�
; because

the agent reports �̂ = � for both realizations of �. Moreover, he obtains the utility level

10Pavan et al. (2013) have termed the latter expression an �impulse response function�, because the term

measures the impact of the agent�s current information on future allocation choices.

In our problem, both x and y are determined at date two, so things are slightly di¤erent, but the intuition

is similar.
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that type
�
�; �
�
obtains,

�
1� �

�
�
�� �

� � �
�
y
�
�; �
�
; minus the expected loss in case he has

a higher � realization in period two than the type he imitates, (1� � (�))
�
� � �

�
y
�
�; �
�
:

The optimal payments and the value of the second minimization problem can be found

in the appendix. The reason we do not state these things in the main text is that we do not

need these results for the discussion of the reduced problem that we now solve.

3.1.2 Optimal allocations in the reduced problem

We can now turn to the design of the optimal allocations in the reduced problem(s). Since we

are neglecting constraint (7) ; we allow for any f(x (�; �) ; y (�; �))g�2f�;�g 2 X (�) : Formally,
the reduced problem for each constraint set is

Wj � max
f(x(�;�);y(�;�))g

�2f�;�g
2Xj(�)

f(x(�;�);y(�;�))g�2f�;�g2X(�)

E�E�j� [V (x (�; �) ; y (�; �))� �x (�; �)� �y (�; �)]� ��j;

(Pj)

where �j is de�ned in Lemma 4. The principal faces a classical trade-o¤ between e¢ ciency

and rent extraction, with the complication that the functional form of the rent expression

depends on the qualitative features of the allocation that is being implemented, as explained

in Lemma 4.

The overall optimum for the buyer is

W = max fWi;Wii;Wiii;Wivg :

The solution has the following simple structure:

Proposition 1 Suppose that either V12 (x; y) � 0 for all x; y or V12 (x; y) � 0 for all x; y: If
in addition V12 (x; y) 2

h
V11 (x; y)

���
��� ;�V11 (x; y)

���
���

i
for all x; y,then W = max fWi;Wiig :

Moreover, Wi � Wii if V12 � 0 for all x; y and Wii > Wi if V12 < 0 for all x; y:

The intuition is straightforward and easiest to understand with the help of �gure 2.
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Figure 2. Along the dividing line between any two regimes, payo¤s from adjacent programs

are equal.

The idea to prove the results is as follows. The payo¤s in the various regimes have a

continuity structure that is displayed in the �gure. For allocations that are feasible in two

regions, say region i and region ii, the payo¤s from programs Pi and Pii are identical for a

given allocation. Formally, we have Wi = Wii for a given allocation that satis�es x
�
�; �
�
=

x
�
�; �
�
: Moreover, none of the programs Pj is ever so constrained that an allocation in

the origin of the diagram is implemented. Hence, we can use simple revealed preference

arguments to prove payo¤ dominance in the cases described in the proposition. For V12 < 0;

the solution to program Pi satis�es x
�
�; �
�
= x

�
�; �
�
; whereas the solution to program Pii

does not. Since, the allocation that maximizes program Pi is feasible also under program

Pii, but is not chosen, it follows by strict concavity of the problem that the value of the

objective under program Pii is strictly higher. Likewise, for V12 � 0; the solution to program
Pii satis�es x

�
�; �
�
= x

�
�; �
�
; so the same argument can be made. However, the subtle

di¤erence in this case is that the optimal allocation under program Pi might also lie on the

feasibility constraint x
�
�; �
�
= x

�
�; �
�
: However, since programs Pi and Pii are identical on

the feasibility constraint x
�
�; �
�
= x

�
�; �
�
; we have payo¤ dominance in the weak sense.

Essentially the same arguments can be used to compare payo¤s from programs Pi and Piii
and between programs Pii and Piv:

Complements versus substitutes are enough to determine whether program Pi or program

Pii gives a higher payo¤. The reason is as follows. We know from Lemma 4 that the rent

expression �j is identical in cases i and ii except for di¤erences in � (�) and �
�
�
�
: Thus, the

question is simply which set Xj
�
�
�
matches better with the complementarity/substitutability
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between the goods. If x and y are complements, then both x and y should be allowed to

move in the same direction in response to changes in �: If x and y are substitutes, then x and

y should be allowed to vary in opposite directions in response to changes in �: Moreover, the

proposition not only compares payo¤s between programs Pi and Pii but between all programs

Pj: Recall the conditions from Lemma 1 that make y more responsive to changes in � than

x: The conditions in Proposition 1 simply adjust the earlier conditions for di¤erences in

the supports of early and late information. In particular, the conditions are identical if the

supports of the parameters have the same width. A pattern of relatively larger variation in

y than in x matches better with the sets Xi
�
�
�
and Xii

�
�
�
than with the sets Xiii

�
�
�
and

Xiv
�
�
�
: Consequently, under the condition given in the proposition, the maximum of the

reduced problem is attained either by problem Pi or Pii:

The reader may verify that the su¢ cient condition in the proposition captures a relevant

parameter restriction with the help of the following example:

Example 1 V (x; y) = �2 � 1
2
(x� �)2 � 1

2
(y � �)2 + �xy:

In the example, the condition is satis�ed for V12 (x; y) = � 2
h
����
��� ;

���
���

i
: Note that the

utility function is jointly concave in x and y for � 2 [�1; 1] : Thus, for ���
��� � 1; the set of

parameter values that violate the condition becomes empty. Conversely, there is always a

nonempty set of parameter values that generate a concave buyer problem and satisfy the

su¢ cient condition even if
���
��� < 1. In this sense - at least in this example - the su¢ cient

condition isolates the important case rather than the pathological one. Therefore, we impose

henceforth

Assumption 2: either V12 (x; y) � 0 for all x; y or V12 (x; y) � 0 for all x; y and in

addition V12 (x; y) 2
h
V11 (x; y)

���
��� ;�V11 (x; y)

���
���

i
for all x; y:

We solve the full problem under this assumption. However, there are clearly cases that

violate Assumption 2. For that reason, we discuss a particular case that violates Assumption

2 in section 5 below.

3.2 The solution to the full problem

Obviously, the reduced problem is of interest only if it solves the overall problem; that is,

if the solution of the reduced problem satis�es the neglected constraint, (7) : Checking the

neglected constraint requires knowing the set Xj (�) that contains the allocation o¤ered to
the ex-ante type �, fx (�; �) ; y (�; �)g�2f�;�g. Note that this allocation corresponds simply
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to the �rst-best allocation for that type. Since intuition and proof for the following result

are essentially the same as for Lemma 1, we state without further discussion:

Lemma 5 The �rst-best allocation de�ned by (11) and (12) satis�es (x; y) 2

Xi if 0 � V12 (x; y) � �
���
���V11 (x; y) for all x; y;

Xii if 0 � V12 (x; y) �
���
���V11 (x; y) for all x; y;

Xiii if V12 (x; y) � �
���
���V11 (x; y) for all x; y;

Xiv if V12 (x; y) �
���
���V11 (x; y) for all x; y:

Moreover, the �rst-best allocation is in the interior of these sets if the corresponding inequal-

ities are strict.

Combining Proposition 1 and Lemma 5, we observe that the solution to the reduced

problem satis�es fx (�; �) ; y (�; �)g�2f�;�g 2 Xj (�) if and only if
�
x
�
�; �
�
; y
�
�; �
�	

�2f�;�g 2
Xj
�
�
�
for j = i; ii: Obviously, this was the reason to economize on space in Lemma 4 in the

�rst place. The reduced problem picks up the overall optimum under natural conditions.

Proposition 2 The solution to the reduced problem solves the overall problem under As-

sumption 2 if in addition either

I) goods are independent (V12 (x; y) = 0 for all x, y) or

II)

max
x;y

���� V12
V11V22 � V 212

(x; y)

���� � � � �
� � � minx;y

���� V22
V11V22 � V 212

(x; y)

���� ; (15)

and either

a) (x; y) 2 Xinti (which holds in particular for � small enough if x, y are strict complements

for all x; y); or

b) (x; y) 2 Xintii (which holds in particular for � small enough if x, y are strict substitutes

for all x; y) and in addition � (�) = �
�
�
�
:

For independent goods, Assumption 2 is enough to guarantee that the reduced problem

picks up the overall optimum. For strict complements or substitutes we need to impose

additional structure. For strict complements (substitutes) and � su¢ ciently small, the entire

allocation is an element of Xinti (Xintii ). The reason is that in the limit where � tends to zero,
the second best allocation converges to the �rst-best allocation, whose properties we have

described in Lemma 5. Building on this insight, we can go back to Lemma 4 (to be precise
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to the proof of Lemma 4 in the appendix) and check the precise functional form of the

neglected constraint, (7), and verify whether it is true that 
 � 0. Indeed, we have 
 � 0
for complements if condition (15) holds; we have 
 � 0 for substitutes if condition (15) holds
and on top of this the cost parameters are independent, � (�) = �

�
�
�
:11

Condition (15) restricts V12 relative to V22: The new condition is imposed because 


depends on the allocation o¤ered to both ex ante types, not just the one o¤ered to one

particular type. The condition is satis�ed in our example for � 2
h
� ���
��� ;

���
���

i
:The set

of parameters that satisfy both Assumption 2 and condition (15) is always nonempty. If
���
��� = 1; then the conditions are identical; otherwise, one set is a strict subset of the other.

4 The structure of optimal allocations

We can now investigate how the optimal allocation depends qualitatively on the interaction

between goods in the buyer�s utility function. To discuss this question in the simplest

possible case, we simply state the result for the case where the optimum for ex ante type �

is an allocation in Xinti
�
�
�
and Xintii

�
�
�
: In this case, the optimal allocation for ex ante type

� satis�es

V1
�
x
�
�; �
�
; y
�
�; �
��
= � +

�

(1� �)
�j

�
�
�
� �� � ��

V2
�
x
�
�; �
�
; y
�
�; �
��
= �

and

V1
�
x
�
�; �
�
; y
�
�; �
��
= � +

�

(1� �)
(1� �j)�
1� �

�
�
�� �� � ��

V2
�
x
�
�; �
�
; y
�
�; �
��
= � +

�

(1� �)

�
� (�)� �

�
�
���

1� �
�
�
�� �

� � �
�
;

where j = i; ii and by convention �i = � (�) and �ii = �
�
�
�
: The optimal allocation for ex

ante type � is given by (11) and (12) :

For the case of complements, the optimal allocation for ex ante type � displays the stan-

dard downward distortions relative to the �rst-best. For strictly positive complementarities,

11Note that the conditions in part II of the proposition are far from necessary. E.g., one can also derive

su¢ cient conditions for the case of substitutes and strictly positive correlation.
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all allocation variables are strictly below the �rst-best optimal levels. This is quite di¤er-

ent for the case of substitutes, which displays both upward and downward distortions. In

particular, x
�
�; �
�
is distorted downwards and as a result, y

�
�; �
�
is distorted upwards.

Building on the discussion following Lemma 4, the intuition for the �rst-order condi-

tions is straightforward. The �rst-order conditions for x
�
�; �
�
display the trade-o¤ be-

tween e¢ ciency and extraction of rents due to lower costs of producing x: (1� �)�
�
�
�
and

(1� �)
�
1� �

�
�
��
; respectively, are the probabilities that the cost realizations equal

�
�; �
�

and
�
�; �
�
; respectively. These are the weights attached to the e¢ ciency motive. On the

other hand, a change in the x allocation a¤ects the agent�s expected rent by �j
�
� � �

�
and (1� �j)

�
� � �

�
, respectively. A change in the y

�
�; �
�
allocation does not a¤ect the

agent�s rent, whereas a change in the y
�
�; �
�
allocation a¤ects the agent�s expected rent by�

� (�)� �
�
�
�� �

� � �
�
. These e¤ects are weighted by �; the probability that � = �:

5 The case of strong interactions

So far, we have characterized optimal allocations for regular cases, where the strength of

interactions between the goods is relatively mild. If the ratio
���
��� is relatively large, then

�most�utility functions will display relatively mild interactions between the goods in this

sense. This loose statement can be given a very precise meaning in the concrete example

of negative quadratic utility. For that case, all concave utility functions satisfy Assumption

2 if the support of second period information is wider than the support of �rst period

information. On the other hand, if the reverse is true, then one can give natural examples,

where an allocation outside the sets Xi [ Xii becomes optimal. Speci�cally, we have the
following result:

Proposition 3 Suppose that ���
��� < 1 and consider the quadratic utility function of Example

1 with � 2
�
���
��� ; 1

�
: For that utility function, for � su¢ ciently close to zero, the overall

optimal allocation satis�es (x; y) 2 Xiii.

For � 2
�
���
��� ; 1

�
; it follows from Lemma 5 that the solution of the reduced problem is

an element of Xintiii for � close to zero. Moreover, it is straightforward to verify that 
 � 0
in the example. Hence, we have shown that it can be strictly optimal to induce lying o¤

equilibrium path.
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Consider now the structure of the optimal allocation for the case where (x; y) 2 Xintiii :
The �rst-order conditions for the allocation o¤ered to ex ante type � are as follows:

V1
�
x
�
�; �
�
; y
�
�; �
��
= � +

�

(1� �)
1

�
�
�
� �� � ��

V2
�
x
�
�; �
�
; y
�
�; �
��
= � � �

(1� �)
(1� � (�))
�
�
�
� �

� � �
�

and

V1
�
x
�
�; �
�
; y
�
�; �
��
= �

V2
�
x
�
�; �
�
; y
�
�; �
��
= � +

�
�
1� �

�
�
��

(1� �)
�
1� �

�
�
�� �� � �� :

This allocation displays upwards distortions in the quantity y
�
�; �
�
; for given quantity

x
�
�; �
�
: Since we are considering complements, this upwards distortion does not arise sim-

ply as a compensating e¤ect due to a downward distortion in x
�
�; �
�
; but rather re�ects

the particular structure of binding incentive constraints for this particular case. Recall from

Lemma 4 that the best deviation of an agent with � = � is to report �̂ = � in period one and

�̂ = � in period two, regardless of the actual realization of �: Hence, the reduction in x
�
�; �
�

re�ects the fact that the conditional probability of receiving report �̂ = � is one; vice versa,

there is no rent reduction motive when choosing x
�
�; �
�
at all, because the agent with � = �

is never going to imitate type
�
�; �
�
: Recall moreover, that in addition to the rents from

producing x more e¢ ciently, the agent with type � = � obtains rents from producing y more

e¢ ciently; in particular, the agent would obtain (when deviating to �̂ = �), the utility level

that type
�
�; �
�
obtains,

�
1� �

�
�
�� �

� � �
�
y
�
�; �
�
; minus the expected loss in case he has

a higher � realization in period two than the type he imitates, (1� � (�))
�
� � �

�
y
�
�; �
�
: As

a result, all else equal (that is, for a given x-allocation), the principal reduces y
�
�; �
�
below

the �rst-best level and increases y
�
�; �
�
beyond the �rst-best level. Whether the overall

production levels are above or below �rst-best depends on the speci�c utility function.

6 Sequential screening and the value of waiting

What if x needs to be determined already in period one? We can obtain the optimal mech-

anism with sequential production from our problem if we add the requirement that

x
�
�; �
�
= x (�; �) for � 2

�
�; �
	
: (16)
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Technically, (16) is a consistency requirement in the sense that the level of x can only depend

on information that is available when the level of x is chosen.

It is straightforward to see that o¤-path lies are not an issue under this constraint. The

reason is that �x
�
�̂
�
is sunk by the time the report about � needs to be made and moreover

enters the seller�s pro�t in an additively separable way. So, seller types who have lied in

the past correspond to types with di¤erent �xed costs of producing the y good. However,

�xed costs do not change the seller�s incentive to report about �: So, the on-path incentive

constraints automatically ensure that reporting is truthful also o¤ path.

It is also obvious that sequential production cannot do better than delaying production

of both goods until all information is there. The reason is that we are simply adding another

constraint, (16) ; to the buyer�s problem and thereby eliminate some �exibility o¤equilibrium

path (precisely because the on-path constraints automatically imply a particular o¤-path

behavior).

Solving the transfer minimization problems (13) and (14) for given allocation choices

x and y, under the consistency condition (16) and its implication of truthfulness of path,

we �nd that at the solutions to these problems constraints (2) and (9) and (6) and (5) are

binding. Using the optimal payments, the buyer�s problem of �nding an optimal allocation

can be written as

max
x(�);y(�;�)

E�E�j� [V (x (�) ; y (�; �))� �x (�)� �y (�; �)]

��
��
� � �

�
x
�
�
�
+
�
� (�)� �

�
�
�� �

� � �
�
y
�
�; �
��

Moreover, the neglected incentive constraint (7) is equivalent to�
� (�)� �

�
�
�� �

� � �
� �
y
�
�; �
�
� y

�
�; �
��
�
�
� � �

� �
x
�
�
�
� x (�)

�
:

The following proposition is now obvious:

Proposition 4 Delayed and early production achieve the same payo¤ only for independent
goods. If V12 (x; y) > (<) 0 for all x; y; delayed production is strictly better than early pro-

duction.

The proof of the statement follows from the discussion in an obvious way and is therefore

omitted. The logic is simply that the allocation under sequential production is always feasible

under delayed production of both goods but is not chosen at the optimum, except for the

case of independent goods.
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It is instructive to take a closer look into the losses associated to sequential production.

The allocation o¤ered to ex ante type � is �rst-best e¢ cient; that is, there is no distortion

at the top. The allocation o¤ered to ex ante type � satis�es the �rst-order conditions

E�j�
�
V1
�
x
�
�
�
; y
�
�; �
���

= � +
�

1� �
�
� � �

�
;

V2
�
x
�
�
�
; y
�
�; �
��
= �;

and

V2
�
x
�
�
�
; y
�
�; �
��
= � +

�

1� �
� (�)� �

�
�
�

1� �
�
�
� �

� � �
�
:

The expected marginal bene�t of x
�
�
�
is equal to � + �

1��
�
� � �

�
: For given allocation

y
�
�; �
�
; this corresponds to the standard result that x

�
�
�
is distorted downwards relative

to the �rst-best. Likewise, for given allocation x
�
�
�
; y
�
�; �
�
is set e¢ ciently, while y

�
�; �
�

is distorted downwards. Whether the entire allocation is higher or lower than �rst-best

depends on the nature of interactions between the goods. For the case of independent

goods, the overall allocation relates exactly as stated to the �rst-best allocation.

For nonzero interactions between the goods, there are two sources of losses for the prin-

cipal due to choosing x early on. Firstly, it is simply the case that both allocation choices

should be adjusted to both cost conditions. Secondly, as we have explained at great lengths,

it is sometimes not optimal to insist on truthtelling o¤ path when both x and y are chosen

late. Intuitively, it becomes easier to screen the information in the second round of reporting

when the principal has more screening instruments available.

Note that in the case of weak substitutes in the sense of Proposition 2, the �rst-order

conditions di¤er only in that the marginal utilities interact with each other; the virtual

cost expressions on the right hand side are identical for both timing con�gurations.12 It is

then straightforward to see how the optimal allocations di¤er from each other in the more

�exible regime with delayed production and in the regime with early production of x: For an

allocation in the regime with delayed production in Xintii
�
�
�
; we have that y

�
�; �
�
> y

�
�; �
�

and x
�
�; �
�
> x

�
�; �
�
: If the x�allocation is now forced to take the common value x

�
�
�
;

then, heuristically, x
�
�; �
�
is reduced while x

�
�; �
�
is increased. Since the marginal utility

of consuming y still must take on the same value, the y�allocation has to respond more to
� than it does in the �exible regime. Hence, the variation in the level of y is increased in

response to the reduction in the variation in the level of x:

12In the case of complements, the virtual marginal cost of x
�
�; �
�
is increased while the virtual marginal

cost of x
�
�; �
�
is decreased for given level of y:
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Thus, if the buyer has a choice, then starting production before all information is avail-

able is never strictly better than waiting until all information is available. In other words,

our model features a nonnegative option value of waiting. The timing of production is irrel-

evant only in the case where the buyer�s utility is additively separable in the utilities from

consuming x and y:

7 Conclusion

This paper solves a tractable two-dimensional model of screening where the agent produces

two goods, knows one cost parameter from the outset, and learns a second one at some later

date. Depending on whether the goods are complements or substitutes and on how strongly

the goods interact, a di¤erent pattern of binding constraints arises at the optimum. For weak

complements, we obtain a standard solution, where the principal only needs to worry about

single deviations. As a result, the solution to the full problem could also be obtained by a

naive procedure that simply imposes truthtelling at all nodes of the game, even at those that

are not reached if the agent is truthful early on in the game. For weak substitutes, it is still

true that the solution can be obtained by imposing truthtelling on and o¤ equilibrium path.

However, now a truthtelling constraint o¤ equilibrium path is binding at the optimum. As

a result, the solution displays both upward and downward distortions. Finally, in the case

of strong interactions between the goods, it may become optimal for the principal to give

up on truthtelling o¤ path and let the agent lie again after a �rst lie. In this case, upward

distortions may arise even in the case of complements.

As a simple by-product of our work we compare our solution to the literature by varying

the timing of production in our model. It is always desirable to postpone all decisions until

all information is available, if that is feasible. The comparison to the static model of two-

dimensional screening is done in companion work. An interesting set of questions that we

do not address in this work relates to repeating the interaction between the buyer and the

seller.

Clearly, multidimensional problems are more complex than onedimensional ones. How-

ever, the timing of the information process imposes quite some structure on our problem.

If on top of this, we are willing to impose assumptions on the buyer�s utility function that

we would be happy to impose already on problems under complete information, then the

plethora of candidate solutions shrinks to only two possibilities. For mild complements, we

obtain classical results, for mild substitutes, the results are close to but not quite equal to
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the classical ones. However, perhaps more importantly, we can �nd the solution imposing

simple truthtelling constraints on and o¤ equilibrium path, a procedure that has no grounds

whatsoever in the revelation principle per se, but rather emerges from implementing given

allocations at lowest cost.

8 Appendix

Proof of Lemma 1. The �rst-best allocation x (�; �) ; y (�; �) satis�es the system of �rst-

order conditions (11) and (12) for � 2
�
�; �
	
and � 2

�
�; �
	
: De�ne a new, arti�cial system

of equations by

V1 (x (�; �) ; y (�; �)) = � (17)

V2 (x (�; �) ; y (�; �)) = �

for �; � 2
�
�; �
�
�
�
�; �
�
: Note that the domain of the arti�cal system is obtained by a

convexi�cation of the original domain of de�nition; hence, by construction, the extreme

points in the convexi�ed domain are the cost types in the model. However, on the convexi�ed

domain, we can use calculus to determine di¤erences between allocation choices. We prove

the claims by direct evaluation of the di¤erences. We focus on claim (i); the proof of claim

(ii) uses the same methods and is therefore omitted.

Proof of claim (i): Since (17) is de�ned on a convex domain, we can write (by the

fundamental theorem of calculus)

x (�; �)� x
�
�; �
�
=

�Z
�

@

@�
x (�; �) d�:

Totally di¤erentiating the system (17), we have

V11 (x (�; �) ; y (�; �)) dx+ V12 (x (�; �) ; y (�; �)) dy = 0

V21 (x (�; �) ; y (�; �)) dx+ V22 (x (�; �) ; y (�; �)) dy = d�

By Cramer�s rule
dx

d�
=

�V12
V11V22 � V 212
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so

x (�; �)� x
�
�; �
�
=

�Z
�

�V12
V11V22 � V 212

(�; �) d�:

So, for any � 2
�
�; �
�
; x (�; �) � x

�
�; �
�
for V12 � 0 and x (�; �) > x

�
�; �
�
for V12 < 0: Thus,

these inequalities hold in particular for � 2
�
�; �
	
:

Again using (17) ; the fundamental theorem, and Cramer�s rule, we obtain

y (�; �)� y
�
�; �
�
=

�Z
�

V11
V11V22 � V 212

(�; �) d�:

By concavity, we have y (�; �)� y
�
�; �
�
< 0:

Combining these arguments, we have, for any �;�
y
�
�; �
�
� y (�; �)

�
�
�
x
�
�; �
�
� x (�; �)

�
� 0

i¤ V12 � 0 and

0 �
�Z
�

V11 + V12
V11V22 � V 212

(�; �) d�;

which is satis�ed if V12 < �V11 for all (x; y) : Hence, these inequalities hold in particular for
� 2

�
�; �
	
: Likewise, we have�

x
�
�; �
�
� x (�; �)

�
�
�
y
�
�; �
�
� y (�; �)

�
� 0

for � 2
�
�; �
	
if V12 > �V11 for all (x; y) :

Proof of claim (ii): Similarly, one shows that for V12 < 0 we have�
y
�
�; �
�
� y (�; �)

�
� �

�
x
�
�; �
�
� x (�; �)

�
� 0

if V12 � V11 for all (x; y) and

�
�
x
�
�; �
�
� x (�; �)

�
�
�
y
�
�; �
�
� y (�; �)

�
for V12 � V11 for all (x; y) :
Proof of Lemma 2. Note �rst that at least one participation constraint must be binding;

otherwise all payments could be reduced by the same amount, resulting in higher buyer
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surplus. To prove the statement, it su¢ ces to show the standard result that (9) together

with (6) imply (8). This is true if � (�) � �
�
�
�
.

Let u (�; �) denote equilibrium utility.

From (6) ; we have

E�j� [u (�; �)]

= E�j� [T (�; �)� �x (�; �)� �y (�; �)]
� E�j�

�
T
�
�; �̂�

�
�; �; �

��
� �x

�
�; �̂�

�
�; �; �

��
� �y

�
�; �̂�

�
�; �; �

���
On the other hand

E�j�
�
T
�
�; �̂�

�
�; �; �

��
� �x

�
�; �̂�

�
�; �; �

��
� �y

�
�; �̂�

�
�; �; �

���
� E�j�

�
T
�
�; �
�
� �x

�
�; �
�
� �y

�
�; �
��

since �̂�
�
�; �; �

�
and �̂�

�
�; �; �

�
are chosen optimally. Moreover,

E�j�
�
T
�
�; �
�
� �x

�
�; �
�
� �y

�
�; �
��

= E�j�
�
u
�
�; �
�
+
�
� � �

�
x
�
�; �
��

� E�j�
�
u
�
�; �
��
;

where the last inequality follows since production is non-negative.

Hence, from (6) ; we have that

E�j� [u (�; �)] � E�j�
�
u
�
�; �
��
:

Now, from (2) it is straightforward to see that

u
�
�; �
�
� u

�
�; �
�
+
�
� � �

�
y
�
�; �
�
;

and thus u
�
�; �
�
� u

�
�; �
�
: Using �(�) � �(�); we have moreover that

E�j�
�
u
�
�; �
��
� E�j�

�
u
�
�; �
��
:

(9) written in terms of equilibrium utilities amounts to

E�j�
�
u
�
�; �
��
� 0;

which proves the claim.
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Proof of Lemma 3. The proof is by direct inspection. We consider all four o¤-path types

in sequence.

Recall that u (�; �) denotes the equilibrium utility of type (�; �) :

Consider type
�
�; �; �

�
; that is an agent with preference parameters �; � who has sent a

�rst period report �̂ = �: By reporting �̂ = �, he obtains utility

T
�
�; �
�
� �x

�
�; �
�
� �y

�
�; �
�
= u

�
�; �
�
+
�
� � �

�
x
�
�; �
�

If he reports �̂ = �; then he obtains utility

T
�
�; �
�
� �x

�
�; �
�
� �y

�
�; �
�
= u

�
�; �
�
+
�
� � �

�
x
�
�; �
�
�
�
� � �

�
y
�
�; �
�
:

Type
�
�; �; �

�
prefers to report �̂ = � if

u
�
�; �
�
+
�
� � �

�
x
�
�; �
�
� u

�
�; �
�
+
�
� � �

�
x
�
�; �
�
�
�
� � �

�
y
�
�; �
�

From the on equilibrium path constraint 3, we know that

u
�
�; �
�
� u

�
�; �
�
�
�
� � �

�
y
�
�; �
�
:

adding
�
� � �

�
x
�
�; �
�
to both sides we get

u
�
�; �
�
+
�
� � �

�
x
�
�; �
�
� u

�
�; �
�
+
�
� � �

�
x
�
�; �
�
�
�
� � �

�
y
�
�; �
�
;

which implies that �̂�
�
�; �; �

�
= � if

x
�
�; �
�
� x

�
�; �
�
:

It is easy to demonstrate the other results by the exact same procedure. In particular:

�̂�
�
�; �; �

�
= � follows from the on-path constraint (2) if x

�
�; �
�
� x

�
�; �
�
;

�̂�
�
�; �; �

�
= � follows from the on-path constraint (4) if x (�; �) � x

�
�; �
�
; and

�̂�
�
�; �; �

�
= � follows from the on-path constraint (5) if x

�
�; �
�
� x (�; �) :

Proof of lemma 4. We split the proof into two cases, depending on whether x
�
�; �
�
�

x (�; �) is nonnegative or nonpositive. For both cases, we �rst prove the part concerning the

allocations of type �. Afterwards we turn to the allocation for type �.

Preliminaries:

For convenience, note that the on-path constraints (2)� (5) can be rewritten as follows:

T
�
�; �
�
� T

�
�; �
�
� �

�
x
�
�; �
�
� x

�
�; �
��
+ �

�
y
�
�; �
�
� y

�
�; �
��

(18)
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T
�
�; �
�
� T

�
�; �
�
� �

�
x
�
�; �
�
� x

�
�; �
��
+ �

�
y
�
�; �
�
� y

�
�; �
��

(19)

T
�
�; �
�
� T (�; �) � �

�
x
�
�; �
�
� x (�; �)

�
+ �

�
y
�
�; �
�
� y (�; �)

�
(20)

T
�
�; �
�
� T (�; �) � �

�
x
�
�; �
�
� x (�; �)

�
+ �

�
y
�
�; �
�
� y (�; �)

�
(21)

Likewise, the o¤-path constraints take the following form:

Type
�
�; �; �

�
prefers to report �̂ = � if

T
�
�; �
�
� T

�
�; �
�
� �

�
x
�
�; �
�
� x

�
�; �
��
+ �

�
y
�
�; �
�
� y

�
�; �
��
: (22)

and prefers to report �̂ = � if

T
�
�; �
�
� T

�
�; �
�
� �

�
x
�
�; �
�
� x

�
�; �
��
+ �

�
y
�
�; �
�
� y

�
�; �
��
: (23)

Type
�
�;�; �

�
prefers to report �̂ = � if

T
�
�; �
�
� T

�
�; �
�
� �

�
x
�
�; �
�
� x

�
�; �
��
+ �

�
y
�
�; �
�
� y

�
�; �
��

(24)

and prefers to report �̂ = � if

T
�
�; �
�
� T

�
�; �
�
� �

�
x
�
�; �
�
� x

�
�; �
��
+ �

�
y
�
�; �
�
� y

�
�; �
��
: (25)

Type
�
�; �; �

�
prefers to report �̂ = � if

T
�
�; �
�
� T (�; �) � �

�
x
�
�; �
�
� x (�; �)

�
+ �

�
y
�
�; �
�
� y (�; �)

�
(26)

and prefers to report �̂ = � if

T
�
�; �
�
� T (�; �) � �

�
x
�
�; �
�
� x (�; �)

�
+ �

�
y
�
�; �
�
� y (�; �)

�
: (27)

Type
�
�; �; �

�
prefers to report �̂ = � if

T
�
�; �
�
� T (�; �) � �

�
x
�
�; �
�
� x (�; �)

�
+ �

�
y
�
�; �
�
� y (�; �)

�
(28)

and prefers to report �̂ = � if

T
�
�; �
�
� T (�; �) � �

�
x
�
�; �
�
� x (�; �)

�
+ �

�
y
�
�; �
�
� y (�; �)

�
: (29)

Now we are ready to begin with the proof of the Lemma.

32



Suppose that
�
x
�
�; �
�
� x

�
�; �
��
� 0: By Lemma 3 this implies that �̂�

�
�; �; �

�
= �.

Adding the expected utility of the high type (which is zero by (9)) to the objective, we

obtain the following problem:

� � min
fT(�;�)g

�2f�;�g;�̂
�(�;�;�)

8>><>>:
(�(�)��(�))(T(�;�)��x(�;�)��y(�;�))+�(�)(���)x(�;�)

+(1��(�))(T(�;�̂�(�;�;�))��x(�;�̂�(�;�;�))��y(�;�̂�(�;�;�)))

�(1��(�))[T(�;�)��x(�;�)��y(�;�)]

9>>=>>;
subject to (18) ; (19) ; and

either (22) if �̂�
�
�; �; �

�
= �

or (23) if �̂�
�
�; �; �

�
= �:

Consider now both possible o¤-path reports. If �̂�
�
�; �; �

�
= �; then the objective is

min
T(�;�)�T(�;�)

�
� (�)� �

�
�
�� �
T
�
�; �
�
� �x

�
�; �
�
� �y

�
�; �
��
+ � (�)

�
� � �

�
x
�
�; �
�

�
�
� (�)� �

�
�
�� �
T
�
�; �
�
� �x

�
�; �
�
� �y

�
�; �
��
+ (1� � (�))

�
� � �

�
x
�
�; �
�

subject to the constraints (18) ; (19) ; and (22) : Note that (19) is automatically satis�ed if

(22) is. There exists a solution to the problem only if the constraint set is non-empty, that

is, if the right-hand side of (22) is weakly larger than the right-hand side of (18) : This is the

case for
�
x
�
�; �
�
; y
�
�; �
�	

�2f�;�g 2 Xi
�
�
�
: In this case (18) is binding. Using (9) and (18)

to solve for the optimal payments, we have 
T
�
�; �
�

T
�
�; �
�! =  �x ��; ��+ �y ��; ��+ �1� � ���� �� � �� y ��; ��

�x
�
�; �
�
+ �

�
�
�
�y
�
�; �
�
+
�
1� �

�
�
��
�y
�
�; �
� ! : (30)

Substituting back into the objective we have obtain

�i =
�
� (�)� �

�
�
�� �

� � �
�
y
�
�; �
�
+ E�j�

��
� � �

�
x
�
�; �
��
:

On the other hand, if �̂�
�
�; �; �

�
= �; then the problem is

minT(�;�)�T(�;�)
�
1� �

�
�
�� �

T
�
�; �
�
� T

�
�; �
�	

+
�
� � �

�
x
�
�; �
�
� (1� � (�))

�
� � �

�
y
�
�; �
�

�
�
1� �

�
�
�� �

�
�
x
�
�; �
�
� x

�
�; �
��
+ �y

�
�; �
�
� �y

�
�; �
��

subject to the constraints (18) ; (19) ; and (23) : The right-hand side of (18) is weakly larger

than the right-hand side of (23) for
�
x
�
�; �
�
; y
�
�; �
�	

�2f�;�g 2 Xiii
�
�
�
and the reverse is
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true for
�
x
�
�; �
�
; y
�
�; �
�	

�2f�;�g 2 Xi
�
�
�
: Clearly, the right-hand side of (19) is always

larger than the right-hand side of (18) : Therefore, for
�
x
�
�; �
�
; y
�
�; �
�	

�2f�;�g 2 Xiii
�
�
�
;

at the solution of the problem, constraint (18) holds as an equality. It follows that for

�̂�
�
�; �; �

�
= � and

�
x
�
�; �
�
; y
�
�; �
�	

�2f�;�g 2 Xiii
�
�
�
; the transfers can be taken from

(30) so that the objective takes value

�iii =
�
� � �

�
x
�
�; �
�
� (1� � (�))

�
� � �

�
y
�
�; �
�
+
�
1� �

�
�
�� �

� � �
�
y
�
�; �
�
:

For
�
x
�
�; �
�
; y
�
�; �
�	

�2f�;�g 2 Xi
�
�
�
the o¤-path constraint (23) is binding. Substituting

for the transfers implies that in this case

�̂i =
�
� (�)� �

�
�
�� �

� � �
�
y
�
�; �
�
+ E�j�

��
� � �

�
x
�
�; �
��
:

Since �̂i � �i if and only if
�
x
�
�; �
�
; y
�
�; �
�	

�2f�;�g 2 Xi
�
�
�
, for a given allocation�

x
�
�; �
�
; y
�
�; �
�	

�2f�;�g 2 Xi
�
�
�
the optimal payments are given by (30), �̂�

�
�; �; �

�
= �

and the information rent by �i.

Next consider the second problem for the case where x
�
�; �
�
� x (�; �) : By lemma 2 this

implies that �̂�
�
�; �; �

�
= �: So, the problem can be written as


 = min
fT (�;�)g�2f�;�g;�̂

�(�;�;�)

8>><>>:
�(�)[T(�;�̂�(�;�;�))��x(�;�̂�(�;�;�))��y(�;�̂�(�;�;�))]

+(1��(�))[T (�;�)��x(�;�)��y(�;�)]

�E�j�[T (�;�)��x(�;�)��y(�;�)]+�

9>>=>>;
subject to

(20) ; (21) ; and either

(26) if �̂�
�
�; �; �

�
= �; or

(27) if �̂�
�
�; �; �

�
= �;

where the objective is obtained from substituting the constraint (6) as an equality into the

objective.

Consider �rst the case where �̂�
�
�; �; �

�
= �: In this case, the problem is

min
T(�;�)�T (�;�)

�
�
� (�)��

�
�
�� �

T
�
�; �
�
� T (�; �)

	
+
�
� (�)��

�
�
�� �
�x
�
�; �
�
+ �y

�
�; �
�
� �x (�; �)� �y (�; �)

�
�
�
1��

�
�
�� �

� � �
�
x (�; �)� � (�)

�
� � �

�
x
�
�; �
�
+�:
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subject to the constraints (20) ; (21) and (26) : The right-hand side of (20) is weakly smaller

than the right-hand side of (26) : Hence, the constraint set is nonempty if the right hand

side of (26) is weakly smaller than the right-hand side of (21) ; which is exactly true for

fx (�; �) ; y (�; �)g�2f�;�g 2 Xi (�) : So, in this case, (21) is binding at the solution to the
problem. Solving for the transfers from (21) and (6) ; we obtain 

T
�
�; �
�

T (�; �)

!
=

 
�+ �x

�
�; �
�
+
�
� (�) � + (1� � (�)) �

�
y
�
�; �
�

�+ �x (�; �) + �y (�; �)� � (�)
�
� � �

�
y
�
�; �
�! : (31)

Substituting these transfers back into the objective, we obtain


i = ��
�
�
� �
� � �

�
x
�
�; �
�
�
�
� (�)��

�
�
�� �

� � �
�
y
�
�; �
�
�
�
1��

�
�
�� �

� � �
�
x (�; �)+�:

For future reference, we note that for (x; y) 2 Xi; this can be written as


i = E�j�
��
� � �

�
x
�
�; �
��
�E�j�

��
� � �

�
x (�; �)

�
�
�
� (�)��

�
�
�� �

� � �
� �
y
�
�; �
�
� y

�
�; �
��
:

Consider next the case where �̂�
�
�; �; �

�
= �: In this case, the problem becomes

min
T(�;�)�T (�;�)

�� (�)
�
T
�
�; �
�
� T (�; �)

	
�
�
� � �

�
x (�; �) + �

�
�
� �
� � �

�
y (�; �)

+ � (�)
�
�x
�
�; �
�
� �x (�; �) + �y

�
�; �
�
� �y (�; �)

�
+�:

subject to the constraints (20) ; (21) and (27) : The right-hand side of (27) is larger than the

right-hand side of (21) for fx (�; �) ; y (�; �)g�2f�;�g 2 Xiii (�) : In this case, the feasible set is
nonempty and at the solution (21) is binding; hence the transfers are given by (31) and the

objective takes value


iii = �� (�)
�
� � �

�
y
�
�; �
�
�
�
� � �

�
x (�; �) + �

�
�
� �
� � �

�
y (�; �)

+ � (�) �
�
x
�
�; �
�
� x (�; �)

�
+�:

Again, for future reference, if (x; y) 2 Xiii; then we can write


iii = �� (�)
�
� � �

�
y
�
�; �
�
+ �

�
�
� �
� � �

�
y (�; �)

+ � (�) �
�
x
�
�; �
�
� x (�; �)

�
� (1� � (�))

�
� � �

�
y
�
�; �
�
+
�
1� �

�
�
�� �

� � �
�
y
�
�; �
�
:
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For fx (�; �) ; y (�; �)g�2f�;�g 2 Xi (�), the right-hand side of (27) is smaller than the right-
hand side of (21) : Moreover, the feasible set is always nonempty and thus at the solution

constraint (27) is binding. Hence, we can substitute

T
�
�; �
�
� T (�; �) = �

�
x
�
�; �
�
� x (�; �)

�
+ �

�
y
�
�; �
�
� y (�; �)

�
into the objective and obtain


̂i = �� (�)
��
� � �

� �
x
�
�; �
�
� x (�; �)

�
+
�
� � �

�
y (�; �)

	
�
�
� � �

�
x (�; �) + �

�
�
� �
� � �

�
y (�; �) + �:

We have 
i � 
̂i for fx (�; �) ; y (�; �)g�2f�;�g 2 Xi (�) ; so �̂�
�
�; �; �

�
= � is cheaper to

implement in that case.

Next consider the case where
�
x
�
�; �
�
� x

�
�; �
��
� 0: By Lemma 3, this implies that

�̂�
�
�; �; �

�
= �: Adding and subtracting the expected utility of type �; we can write the

objective as

� � min
fT(�;�)g

�2f�;�g;�̂
�(�;�;�)

8>><>>:
�(�)(T(�;�̂�(�;�;�))��x(�;�̂�(�;�;�))��y(�;�̂�(�;�;�)))

�(�(�)��(�))(T(�;�)��x(�;�)��y(�;�))+(1��(�))(���)x(�;�)

��(�)[T(�;�)��x(�;�)��y(�;�)]

9>>=>>;
subject to

(18) ; (19) and either

(24) if �̂�
�
�; �; �

�
= �; or

(25) if �̂�
�
�; �; �

�
= �:

Consider �rst the case where the o¤-path report is �̂�
�
�; �; �

�
= �: In this case, the objective

is

� � min
T(�;�)�T(�;�)

8<: (�(�)��(�))(T(�;�)��x(�;�)��y(�;�))+�(�)(���)x(�;�)

�(�(�)��(�))(T(�;�)��x(�;�)��y(�;�))+(1��(�))(���)x(�;�)

9=;
subject to the constraints (18) ; (19) ; and (24) : The right-hand side of (24) is always at least

as large as the right-hand side of (18) (by the fact that
�
x
�
�; �
�
� x

�
�; �
��
� 0): Hence, the

constraint set is nonempty if the right-hand side of (19) is at least as large as the right-hand

side of (24) ; which is precisely the case for
�
x
�
�; �
�
; y
�
�; �
�	

�2f�;�g 2 Xii
�
�
�
: Since the

objective is increasing in T
�
�; �
�
� T

�
�; �
�
and we are minimizing �; T

�
�; �
�
� T

�
�; �
�
is
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set as small as possible, implying that (24) is binding. We can compute the transfers from

(24) and (9) : We obtain0@T(�;�)

T(�;�)

1A =

0@��(�)[(���)y(�;�)�(���)(x(�;�)�x(�;�))]+�x(�;�)+�y(�;�)+�(x(�;�)�x(�;�))+�(y(�;�)�y(�;�))

��(�)[(���)y(�;�)�(���)(x(�;�)�x(�;�))]+�x(�;�)+�y(�;�)

1A :
(32)

Substituting these transfers back into the objective, we obtain

�ii �
�
� (�)� �

�
�
�� ��

� � �
�
y
�
�; �
��
+ E�j�

��
� � �

�
x
�
�; �
��
:

For
�
x
�
�; �
�
; y
�
�; �
�	

�2f�;�g 2 Xiv
�
�
�
; no solution with �̂�

�
�; �; �

�
= � exists.

Suppose thus that �̂�
�
�; �; �

�
= �: In this case, the objective is

��minT(�;�)�T(�;�)f�(�)(T(�;�)��x(�;�)��y(�;�)�[T(�;�)��x(�;�)��y(�;�)])+(���)x(�;�)+�(�)(���)y(�;�)g

subject to (18) ; (19) ; and (25) : The right-hand side of (19) is weakly smaller than the right-

hand side of (25) for (x; y) 2 Xiv: Since the objective is decreasing in T
�
�; �
�
� T

�
�; �
�
and

we seek to minimize the objective function, at the optimum (19) must be binding. Thus, we

can compute the optimal transfers from (19) and (9) : We obtain

T
�
�; �
�
= �x

�
�; �
�
+ E�j��y

�
�; �
�

(33)

T
�
�; �
�
= �x

�
�; �
�
+ E�j��y

�
�; �
�
� �

�
y
�
�; �
�
� y

�
�; �
��

Substituting these transfers back into the objective, we obtain

�iv � ��
�
�
� �
� � �

�
y
�
�; �
�
+
�
� � �

�
x
�
�; �
�
+ � (�)

�
� � �

�
y
�
�; �
�
:

For
�
x
�
�; �
�
; y
�
�; �
�	

�2f�;�g 2 Xii
�
�
�
; the right-hand side of (25) is weakly smaller than

the right-hand side of (19). Thus, (19) is slack. The right-hand side of (18) is smaller than

the right-hand side of (25), which implies that constraint (25) must be binding and we obtain

rent �ii.

Consider next the second problem in case where x
�
�; �
�
� x (�; �) : By lemma 3, this
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implies that �̂�
�
�; �; �

�
= �: The objective then becomes


 = min
fT (�;�)g�2f�;�g;�̂

�(�;�;�)

0BB@ �(�(�)��(�))[T(�;�)��x(�;�)��y(�;�)]��(�)(���)x(�;�)

+(1��(�))(T(�;�̂�(�;�;�))��x(�;�̂�(�;�;�))��y(�;�̂�(�;�;�)))

�(1��(�))[T (�;�)��x(�;�)��y(�;�)]+�

1CCA
subject to

(21) ; (20) ; and either

(28) if �̂�
�
�; �; �

�
= �; or

(29) if �̂�
�
�; �; �

�
= �:

where we have added the di¤erence between the right- and the left-hand side of (6) ; which

is zero by the fact that this constraint binds.

Consider �rst the possibility that �̂�
�
�; �; �

�
= �: In that case the problem becomes


 = min
T(�;�)�T (�;�)

0BB@ �(�(�)��(�))[T(�;�)��x(�;�)��y(�;�)]

+(�(�)��(�))(T (�;�)��x(�;�)��y(�;�))

��(�)(���)x(�;�)�(1��(�))(���)x(�;�)+�

1CCA
subject to (21) ; (20) and (28) :

The right-hand side of (28) is always weakly smaller than the right-hand side of (21) :

Hence, (21) cannot become binding at the optimum. Moreover, the constraint set is non-

empty exactly for fx (�; �) ; y (�; �)g�2f�;�g 2 Xii (�) : Since the objective is decreasing in
T
�
�; �
�
� T (�; �) ; at the optimum, (28) is binding and we can compute the transfers from

(28) and (6) : 
T(�;�)

T (�;�)

!
=

0@�+(1��(�))[�(x(�;�)�x(�;�))+�(y(�;�)�y(�;�))]+�(�)(�x(�;�)+�y(�;�))+(1��(�))[�x(�;�)+�y(�;�)]

���(�)[�(x(�;�)�x(�;�))+�(y(�;�)�y(�;�))]+�(�)(�x(�;�)+�y(�;�))+(1��(�))[�x(�;�)+�y(�;�)]

1A
Since (28) is binding, we can substitute for

T
�
�; �
�
� T (�; �) = �

�
x
�
�; �
�
� x (�; �)

�
+ �

�
y
�
�; �
�
� y (�; �)

�
into the objective and obtain


ii = �E�j�
��
� � �

�
x (�; �)

�
+��

�
� (�)� �

�
�
�� �

� � �
�
y
�
�; �
�
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If (x; y) 2 Xii; then this can be written as


ii = E�j�
��
� � �

�
x
�
�; �
��
�E�j�

��
� � �

�
x (�; �)

�
�
�
� (�)� �

�
�
�� �

� � �
� �
y
�
�; �
�
� y

�
�; �
��
:

Consider �nally the possibility that �̂�
�
�; �; �

�
= �: In that case the problem becomes


 = min
T(�;�)�T (�;�)

0@ (1��(�))fT(�;�)��x(�;�)��y(�;�)�[T (�;�)��x(�;�)��y(�;�)]g
�(1��(�))(���)y(�;�)�(���)x(�;�)+�

1A
subject to (21) ; (20) ; and (29) :

The right-hand side of (20) is weakly larger than the right-hand side of (29) exactly

for fx (�; �) ; y (�; �)g�2f�;�g 2 Xiv (�) : Moreover, for such allocations, the constraint set is
nonempty, and at the solution of the problem T

�
�; �
�
� T (�; �) reaches its lower bound, so

(20) is binding. The transfers can then be computed from (6) and (20) : 
T
�
�; �
�

T (�; �)

!
=

 
�+ (1� � (�))

�
� � �

�
y (�; �) + �x

�
�; �
�
+ �y

�
�; �
�

�+ �x (�; �) +
�
� (�) � + (1� � (�)) �

�
y (�; �)

!

Since (20) is binding, we can substitute

T
�
�; �
�
� T (�; �) = �

�
x
�
�; �
�
� x (�; �)

�
+ �

�
y
�
�; �
�
� y (�; �)

�
into the objective and obtain


iv = (1� � (�))
�
� � �

�
y (�; �)�

�
1� �

�
�
�� �

� � �
�
y
�
�; �
�
�
�
� � �

�
x
�
�; �
�
+�

For future reference, if (x; y) 2 Xiv; then we can write


iv = �� (�)
�
� � �

� �
y (�; �)� y

�
�; �
��
�
�
� � �

� �
x
�
�; �
�
� x

�
�; �
��

� �
�
�
� �
� � �

� �
y
�
�; �
�
� y

�
�; �
��
�
�
� � �

� �
y
�
�; �
�
� y (�; �)

�
:

For fx (�; �) ; y (�; �)g�2f�;�g 2 Xii (�) ; the right-hand side of (29) is weakly larger than
the right-hand side of (20). Moreover, since the right-hand side of (29) is smaller than the

right-hand side of (21) ; the constraint set is nonempty. At the solution, (29) is binding, so

we can substitute for

T
�
�; �
�
� T (�; �) = �

�
x
�
�; �
�
� x (�; �)

�
+ �

�
y
�
�; �
�
� y (�; �)

�
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into the objective and obtain


̂ii = (1� � (�))
�
� � �

� �
x
�
�; �
�
� x (�; �)

�
�
�
� (�)� �

�
�
�� �

� � �
�
y
�
�; �
�
�
�
� � �

�
x
�
�; �
�
+�

Since 
ii � 
̂ii for any fx (�; �) ; y (�; �)g�2f�;�g 2 Xii (�) ; implementing �̂
� ��; �; �� = �; the

principal cannot gain by implementing this report.

Proof of Proposition 1. The proof of the �rst statements is given in three parts. Part

I establishes properties of the solution of program Pii; part II does likewise for program Pi;

�nally, part III compares the value of the objectives. The proof of the fact that Wiv � Wii

and Wiii � Wi is not given here but is available upon request from the authors; it uses

essentially the same arguments.

Part I) Consider program Pii. Up to a constant, the Lagrangian of program Pii can be

written as

(1� �)E�j�
�
V
�
x
�
�; �
�
; y
�
�; �
��
� �x

�
�; �
�
� �y

�
�; �
��

� �
�
�
�
�
� �
� � �

�
x
�
�; �
�
+
�
� (�)� �

�
�
�� �

� � �
�
y
�
�; �
�
+
�
1� �

�
�
�� �

� � �
�
x
�
�; �
�	

+ �
�
x
�
�; �
�
� x

�
�; �
��
+ �

��
� � �

� �
y
�
�; �
�
� y

�
�; �
��
�
�
� � �

� �
x
�
�; �
�
� x

�
�; �
��	

The conditions of optimality are�
(1� �)�

�
�
� �
V1
�
x
�
�; �
�
; y
�
�; �
��
� �
�
� ��

�
�
� �
� � �

�
� �+ �

�
� � �

��
= 0 (34)�

(1� �)
�
1� �

�
�
�� �

V1
�
x
�
�; �
�
; y
�
�; �
��
� �
�
� �

�
1� �

�
�
�� �

� � �
�
+ �� �

�
� � �

��
= 0

(35)�
(1� �)�

�
�
� �
V2
�
x
�
�; �
�
; y
�
�; �
��
� �
�
+ �

�
� � �

��
= 0 (36)�

(1� �)
�
1� �

�
�
�� �

V2
�
x
�
�; �
�
; y
�
�; �
��
� �
�
� �

�
� (�)� �

�
�
�� �

� � �
�
� �

�
� � �

��
= 0:

(37)

We show by contradiction that at most one constraint binds at the optimum of program ii.

Suppose both constraints bind. If �; � > 0; then x
�
�; �
�
= x

�
�; �
�
= x

�
�
�
and y

�
�; �
�
=

y
�
�; �
�
= y

�
�
�
and the conditions of optimality imply that�

V1
�
x
�
�
�
; y
�
�
��
� �
�
� �

1� �
�
� � �

�
= 0 (38)

and  
V2
�
x
�
�
�
; y
�
�
��

��
�
�
�
� �

�
1� �

�
�
��
� � �

1��
�
� (�)� �

�
�
�� �

� � �
� ! = 0: (39)
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Using (36) ; the Kuhn-Tucker-�rst-order-optimality-condition for y
�
�; �
�
and substituting

(39) we have for � 6= 0�
(1� �)�

�
�
��
�
�
�
�
� +

�
1� �

�
�
��
� +

�

1� �
�
� (�)� �

�
�
�� �

� � �
�
� �
�
+ �

�
� � �

��
= 0

which simpli�es to

(1� �)�
�
�
���

1� �
�
�
��
+

�

1� �
�
� (�)� �

�
�
���

= ��

This implies � < 0 which contradicts the supposition that both constraints bind at the

optimum. It follows that at most one constraint binds at the optimum of program ii.

Further results require a case distinction between V12 < 0 and V12 � 0:
Case I) V12 � 0:
First, we show that if V12 � 0, then either constraint x

�
�; �
�
� x

�
�; �
�
� 0 or constraint�

� � �
� �
y
�
�; �
�
� y

�
�; �
��
�
�
� � �

�
x
�
�; �
�
�x

�
�; �
�
� 0 binds at the optimum of program

Pii.

Suppose no constraint binds. Then the �rst-order conditions with respect to y are given

by

V2
�
x
�
�; �
�
; y
�
�; �
��
� � = 0

V2
�
x
�
�; �
�
; y
�
�; �
��
� � �

�
�
� (�)� �

�
�
��

(1� �)
�
1� �

�
�
�� �� � �� = 0:

The �rst-order conditions with respect to x are given by

V1
�
x
�
�; �
�
; y
�
�; �
��
� � � �

1� �
�
� � �

�
= 0

V1
�
x
�
�; �
�
; y
�
�; �
��
� � � �

1� �
�
� � �

�
= 0

which imply

V1
�
x
�
�; �
�
; y
�
�; �
��
= V1

�
x
�
�; �
�
; y
�
�; �
��
: (40)

By concavity, V11 < 0; and x
�
�; �
�
� x

�
�; �
�
> 0; we have

V1
�
x
�
�; �
�
; y
�
�; �
��
< V1

�
x
�
�; �
�
; y
�
�; �
��

(41)

Together conditions (40) and (41) imply

V1
�
x
�
�; �
�
; y
�
�; �
��
< V1

�
x
�
�; �
�
; y
�
�; �
��
: (42)
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By complementarity, V12 � 0, and y
�
�; �
�
� y

�
�; �
�
> 0; we have

V1
�
x
�
�; �
�
; y
�
�; �
��
� V1

�
x
�
�; �
�
; y
�
�; �
��

(43)

which contradicts (42).

It follows that at least one constraint must be binding at the optimum of program Pii.

Next, we show that if V12 � 0, then the optimal allocation satis�es�
� � �

� �
y
�
�; �
�
� y

�
�; �
��
�
�
� � �

� �
x
�
�; �
�
� x

�
�; �
��
> 0:

Suppose, contrary to our claim,�
� � �

� �
y
�
�; �
�
� y

�
�; �
��
�
�
� � �

� �
x
�
�; �
�
� x

�
�; �
��
= 0

and moreover � = 0 and � > 0.

The �rst-order conditions with respect to x are given by

V1
�
x
�
�; �
�
; y
�
�; �
��
� � �

��
�
�
� �
� � �

�
� �

�
� � �

�
(1� �)�

�
�
� = 0

V1
�
x
�
�; �
�
; y
�
�; �
��
� � �

�
�
1� �

�
�
�� �

� � �
�
+ �

�
� � �

�
(1� �)

�
1� �

�
�
�� = 0

implying that

V1
�
x
�
�; �
�
; y
�
�; �
��
< V1

�
x
�
�; �
�
; y
�
�; �
��

if and only if

��
�
�
� �
� � �

�
� �

�
� � �

�
(1� �)�

�
�
� <

�
�
1� �

�
�
�� �

� � �
�
+ �

�
� � �

�
(1� �)

�
1� �

�
�
��

()
0 < �:

However, we must have V1
�
x
�
�; �
�
; y
�
�; �
��
� V1

�
x
�
�; �
�
; y
�
�; �
��
.

To see this, note that by V11 < 0

V1
�
x
�
�; �
�
; y
�
�; �
��
> V1

�
x
�
�; �
�
; y
�
�; �
��
:

By V12 � 0
V1
�
x
�
�; �
�
; y
�
�; �
��
� V1

�
x
�
�; �
�
; y
�
�; �
��
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Together these imply that

V1
�
x
�
�; �
�
; y
�
�; �
��
> V1

�
x
�
�; �
�
; y
�
�; �
��
;

so that the conditions above would imply that � < 0; a contradiction.

It follows from these arguments that the optimal allocation for V12 � 0 satis�es x
�
�; �
�
=

x
�
�; �
�
:

Case II) V12 < 0:

If V12 < 0; then the solution to program Pii satis�es x
�
�; �
�
� x

�
�; �
�
> 0:

Suppose not. We know that �; � > 0 is not possible. So, if x
�
�; �
�
= x

�
�; �
�
; this would

have to imply that � = 0: So, we would have x
�
�; �
�
= x

�
�; �
�
= x

�
�
�
, y
�
�; �
�
< y

�
�; �
�

and � = 0. Adding up of conditions (34) and (35), the �rst-order conditions for x
�
�; �
�
and

x
�
�; �
�
; gives 
�
�
�
� �
V1
�
x
�
�
�
; y
�
�; �
��
� �
�
+
�
1� �

�
�
�� �

V1
�
x
�
�
�
; y
�
�; �
��
� �
�

� �
1��

�
� � �

� !
= 0: (44)

V12 < 0 and y
�
�; �
�
� y

�
�; �
�
> 0 imply that

V1
�
x
�
�
�
; y
�
�; �
��
< V1

�
x
�
�
�
; y
�
�; �
��
:

Together with (44) ; this implies that

V1
�
x
�
�
�
; y
�
�; �
��
< � +

�

(1� �)
�
� � �

�
< V1

�
x
�
�
�
; y
�
�; �
��
:

Plugging the �rst of these inequalities into (34) ; we obtain�
(1� �)�

�
�
� �

(1� �)
�
� � �

�
� ��

�
�
� �
� � �

�
� �+ �

�
� � �

��
> 0:

Plugging the latter of the inequalities into (35) ; we obtain�
(1� �)

�
1� �

�
�
�� �

(1� �)
�
� � �

�
� �

�
1� �

�
�
�� �

� � �
�
+ �� �

�
� � �

��
< 0;

which simpli�es to

�
�
� � �

�
> �:

For � = 0 this implies � < 0. Hence, V12 < 0 implies that x
�
�; �
�
� x

�
�; �
�
> 0:
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Part II) Consider program Pi. Up to a constant, the Lagrangian of program Pi can be

written as

(1� �)E�j�
�
V
�
x
�
�; �
�
; y
�
�; �
��
� �x

�
�; �
�
� �y

�
�; �
��

� �
(
(1� � (�))

�
� � �

�
x
�
�; �
�
+ � (�)

�
� � �

�
x
�
�; �
�

+
�
� (�)� �

�
�
�� �

� � �
�
y
�
�; �
� )

+ �
�
x
�
�; �
�
� x

�
�; �
��
+ �

" �
� � �

� �
y
�
�; �
�
� y

�
�; �
��

�
�
� � �

� �
x
�
�; �
�
� x

�
�; �
�� #

The conditions of optimality are given by 
(1� �)�

�
�
� �
V1
�
x
�
�; �
�
; y
�
�; �
��
� �
�

��� (�)
�
� � �

�
+ � � �

�
� � �

� !
= 0 (45)

(1� �)�
�
�
� �
V2
�
x
�
�; �
�
; y
�
�; �
��
� �
�
+ �

�
� � �

�
= 0 (46) 

(1� �)
�
1� �

�
�
�� �

V1
�
x
�
�; �
�
; y
�
�; �
��
� �
�

�� (1� � (�))
�
� � �

�
� � + �

�
� � �

� !
= 0 (47) 

(1� �)
�
1� �

�
�
�� �

V2
�
x
�
�; �
�
; y
�
�; �
��
� �
�

��
�
� (�)� �

�
�
�� �

� � �
�
� �

�
� � �

� !
= 0 (48)

�; � � 0

�
�
x
�
�; �
�
� x

�
�; �
��
= 0

�
��
� � �

� �
y
�
�; �
�
� y

�
�; �
��
�
�
� � �

� �
x
�
�; �
�
� x

�
�; �
���

= 0

First, we show by contradiction that at most one constraint binds at the optimum of program

Pi.

So suppose both constraints bind at the optimum, i.e. �; � > 0. If �; � > 0, then

y
�
�; �
�
= y

�
�; �
�
= y

�
�
�
and x

�
�; �
�
= x

�
�; �
�
= x

�
�
�
. Then

V1
�
x
�
�
�
; y
�
�
��
= � +

�

(1� �)
�
� � �

�
and

V2
�
x
�
�
�
; y
�
�
��
= �

�
�
�
� +

�
1� �

�
�
��
� +

�
�
� (�)� �

�
�
��

(1� �)
�
� � �

�
:

Using the �rst-order condition with respect to y
�
�; �
�
; (46) ; gives

V2
�
x
�
�
�
; y
�
�
��
= � � �

(1� �)�
�
�
� �� � �� :
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Substituting for V2
�
x
�
�
�
; y
�
�
��
gives

�
�
�
�
� +

�
1� �

�
�
��
� +

�
�
� (�)� �

�
�
��

(1� �)
�
� � �

�
= � � �

(1� �)�
�
�
� �� � ��

which simpli�es to

�
�
1� �

�
�
��
(1� �)�

�
�
�
� �

�
� (�)� �

�
�
��
�
�
�
�
= �;

implying that � < 0. It follows that at the optimum �; � > 0 is not true.

Further results require a case distinction between V12 < 0 and V12 � 0:
Case I) V12 < 0:

First, we show that if V12 < 0; then x
�
�; �
�
� x

�
�; �
�
= 0 at the solution to program Pi.

To show this, we establish �rst that V12 < 0 implies that at least one constraint binds.

Moreover, we show that
�
� � �

� �
y
�
�; �
�
� y

�
�; �
��
>
�
� � �

� �
x
�
�; �
�
� x

�
�; �
��
at the

optimum of program Pi.

Suppose no constraint binds at the optimum, i.e.
�
� � �

� �
y
�
�; �
�
� y

�
�; �
��
>�

� � �
� �
x
�
�; �
�
� x

�
�; �
��
> 0. Then � = � = 0: The �rst-order conditions with respect to

x are given by

V1
�
x
�
�; �
�
; y
�
�; �
��
� � � �� (�)

(1� �)�
�
�
� �� � �� = 0

V1
�
x
�
�; �
�
; y
�
�; �
��
� � � � (1� � (�))

(1� �)
�
1� �

�
�
�� �� � �� = 0

Since �(�)

�(�)
> (1��(�))
(1��(�))

; these conditions imply that

V1
�
x
�
�; �
�
; y
�
�; �
��
> V1

�
x
�
�; �
�
; y
�
�; �
��
: (49)

However, by V12 < 0 and y
�
�; �
�
� y

�
�; �
�
> 0

V1
�
x
�
�; �
�
; y
�
�; �
��
< V1

�
x
�
�; �
�
; y
�
�; �
��
: (50)

By V11 < 0 and x
�
�; �
�
� x

�
�; �
�
> 0

V1
�
x
�
�; �
�
; y
�
�; �
��
< V1

�
x
�
�; �
�
; y
�
�; �
��
: (51)

Taken together (50) and (51) imply that

V1
�
x
�
�; �
�
; y
�
�; �
��
< V1

�
x
�
�; �
�
; y
�
�; �
��
:
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which contradicts (49) derived previously from the �rst-order conditions.

It follows that at least one constraint must bind at the optimum of program Pi if V12 < 0.

Suppose that contrary to our claim, that the solution of program Pi satis�es�
� � �

� �
y
�
�; �
�
� y

�
�; �
��
=
�
� � �

� �
x
�
�; �
�
� x

�
�; �
��
> 0; � = 0 and � > 0: Adding

up (45) and (47) gives 
(1� �)�

�
�
� �
V1
�
x
�
�; �
�
; y
�
�; �
��
� �
�
� �� (�)

�
� � �

�
+(1� �)

�
1� �

�
�
�� �

V1
�
x
�
�; �
�
; y
�
�; �
��
� �
�
� � (1� � (�))

�
� � �

� ! = 0:
By V11 < 0 and x

�
�; �
�
� x

�
�; �
�
> 0

V1
�
x
�
�; �
�
; y
�
�; �
��
< V1

�
x
�
�; �
�
; y
�
�; �
��

By V12 < 0 and y
�
�; �
�
� y

�
�; �
�
> 0

V1
�
x
�
�; �
�
; y
�
�; �
��
< V1

�
x
�
�; �
�
; y
�
�; �
��
:

Taken together, we have

V1
�
x
�
�; �
�
; y
�
�; �
��
< V1

�
x
�
�; �
�
; y
�
�; �
��
:

Combining with the implications of the �rst-order conditions with respect to x we obtain�
V1
�
x
�
�; �
�
; y
�
�; �
��
� �
�
<

�

(1� �)
�
� � �

�
<
�
V1
�
x
�
�; �
�
; y
�
�; �
��
� �
�
:

Substituting into (45) ; using � = 0; and simplifying, we have

�
��
�
�
�
�
� � (�)

� �
� � �

��
> �

�
� � �

�
;

which would imply that v < 0; a contradiction.

It follows that for V12 < 0; the optimum of program Pi features x
�
�; �
�
� x

�
�; �
�
= 0:

Case II): V12 � 0:
If V12 � �V11

(���)
(���)

; then the optimum of program Pi features
�
� � �

� �
y
�
�; �
�
� y

�
�; �
��
>�

� � �
� �
x
�
�; �
�
� x

�
�; �
��
:

We know that both constraints cannot bind simultaneously.

Hence, if
�
� � �

� �
y
�
�; �
�
� y

�
�; �
��
=
�
� � �

� �
x
�
�; �
�
� x

�
�; �
��
; then necessarily x

�
�; �
�
�

x
�
�; �
�
> 0: Suppose this is the case, so � = 0 and � > 0. De�ne Y

�
�; �
�
= y

�
�; �
�
�
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(���)
(���)

�
x
�
�; �
�
� x

�
�; �
��
. For � 6= 0 the �rst-order conditions with respect to x are given by

0@ (1� �)�
�
�
� �
V1
�
x
�
�; �
�
; y
�
�; �
��
� �
�
� �� (�)

�
� � �

�
� (���)
(���)

�
(1� �)

�
1� �

�
�
�� �

V2
�
x
�
�; �
�
; Y
�
�; �
��
� �
�
� �

�
� (�)� �

�
�
�� �

� � �
��
1A

= 0

and0@ (1� �)
�
1� �

�
�
�� �

V1
�
x
�
�; �
�
; y
�
�; �
��
� �
�
� � (1� � (�))

�
� � �

�
+
(���)
(���)

�
(1� �)

�
1� �

�
�
�� �

V2
�
x
�
�; �
�
; Y
�
�; �
��
� �
�
� �

�
� (�)� �

�
�
�� �

� � �
��
1A

= 0:

These conditions imply 
(1� �)�

�
�
� �
V1
�
x
�
�; �
�
; y
�
�; �
��
� �
�
� �� (�)

�
� � �

�
+(1� �)

�
1� �

�
�
�� �

V1
�
x
�
�; �
�
; y
�
�; �
��
� �
�
� � (1� � (�))

�
� � �

� ! = 0: (52)

De�ne s such that s > 0, s = y
�
�; �
�
� y

�
�; �
�
and x

�
�; �
�
= x

�
�; �
�
+
(���)
(���)

s. Then by

V1
�
x
�
�; �
�
; y
�
�; �
��

= V1
�
x
�
�; �
�
; y
�
�; �
��
+

Z s

0

@V1

�
x
�
�; �
�
+
(���)
(���)

k; y
�
�; �
�
+ k

�
@k

dk

and

@V1

�
x
�
�; �
�
+
(���)
(���)

k; y
�
�; �
�
+ k

�
@k

=

0BB@
(���)
(���)

V11

�
x
�
�; �
�
+
(���)
(���)

k; y
�
�; �
�
+ k

�
+V12

�
x
�
�; �
�
+
(���)
(���)

k; y
�
�; �
�
+ k

�
1CCA

we have V1
�
x
�
�; �
�
; y
�
�; �
��
� V1

�
x
�
�; �
�
; y
�
�; �
��
since V12 � �V11

(���)
(���)

implies

@V1

�
x
�
�; �
�
+
(���)
(���)

k; y
�
�; �
�
+ k

�
@k

� 0 for all k > 0
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and x
�
�; �
�
�x

�
�; �
�
> 0. V1

�
x
�
�; �
�
; y
�
�; �
��
� V1

�
x
�
�; �
�
; y
�
�; �
��
implies by (52) that�

V1
�
x
�
�; �
�
; y
�
�; �
��
� �
�
� �

(1� �)
�
� � �

�
(53)

By (53) into (45)  
(1� �)�

�
�
�

�
(1��)

�
� � �

�
��� (�)

�
� � �

�
+ � � �

�
� � �

� ! � 0
which is equivalent to

��
�
� (�)� �

�
�
�� �

� � �
�
� �

�
� � �

�
which is true only if � < 0 since � = 0. Hence, we get a contradiction to � > 0 contradicting

that
�
� � �

� �
y
�
�; �
�
� y

�
�; �
��
�
�
� � �

� �
x
�
�; �
�
� x

�
�; �
��
binds in singularity at the

optimum of program Pi.

Part III) Comparison between the programs.

As a preliminary argument, note that if x
�
�; �
�
� x

�
�; �
�
= 0; then the objectives of

programs Pi and Pii become identical. To see this, note that the objectives are identical

up to the costs of implementation, �: Moreover, it is easy to verify from Lemma 3 that

�ii ��i = 0 for x
�
�; �
�
� x

�
�; �
�
= 0:

For V12 < 0; the maximum of program Pi satis�es x
�
�; �
�
� x

�
�; �
�
= 0; whereas the

maximum of program Pii satis�es x
�
�; �
�
� x

�
�; �
�
> 0: Hence, the solution of program Pi

is feasible but not chosen. By revealed preference, this implies that the solution to program

Pii is preferred.

Likewise, for V12 � 0 the optimum of program Pii satis�es x
�
�; �
�
� x

�
�; �
�
= 0: Hence,

the solution is feasible under program Pi. If the solution of program Pi is on the line

x
�
�; �
�
� x

�
�; �
�
= 0; then the objectives are identical and hence the solutions of programs

Pi and Pii are identical. If the solution of program Pi is o¤ the line x
�
�; �
�
� x

�
�; �
�
= 0;

then, by revealed preference, the solution of program Pi yields a strictly higher expected

payo¤ than the solution of program Pii. Taken together, this implies weak payo¤ dominance

of program Pi:

Proof of Lemma 5. The result is essentially a corollary to Lemma 1. By the same

arguments as given there, we have�
� � �

� �
y
�
�; �
�
� y (�; �)

�
>
�
� � �

� �
x
�
�; �
�
� x (�; �)

�
> 0
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i¤ V12 > 0 and

0 >

�Z
�

V11 +
(���)
(���)

V12

V11V22 � V 212
(�; �) d�;

which is satis�ed if V12 < �
(���)
(���)

V11 for all (x; y) :

The proof of the remaining statements uses identical arguments and is therefore omitted.

Proof of Proposition 2. We show that the neglected constraint is satis�ed under the

assumptions.

Preliminaries:

For convenience, recall that the unconstrained solution (in the sense of unconstrained by

the implementation sets Xj for j = i or j = ii, respectively) satis�es

V1 (x; y) (�; �) = � (54)

V2 (x; y) (�; �) = �

for � 2
�
�; �
	
and

V1 (x; y)
�
�; �
�
= � +

�

(1� �)
�j

�
�
�
� �� � �� (55)

V2 (x; y)
�
�; �
�
= �

V1 (x; y)
�
�; �
�
= � +

�

(1� �)
(1� �j)�
1� �

�
�
�� �� � �� (56)

V2 (x; y)
�
�; �
�
= � +

�

(1� �)

�
� (�)� �

�
�
���

1� �
�
�
�� �

� � �
�
;

where j = i; ii and by convention �i = � (�) and �ii = �
�
�
�
: De�ne the following arti�cial

systems of equations for �; � 2
�
�; �
�
�
�
�; �
�
:

V1 (x; y) (�; �) = � +
�

(1� �)
�j

�
�
�
� (� � �) (57)

V2 (x; y) (�; �) = �
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and

V1 (x; y) (�; �) = � +
�

(1� �) (� � �) (58)

V2 (x; y) (�; �) = � +
�

(1� �)

�
� (�)� �

�
�
���

1� �
�
�
�� �

� � �
�
:

Note that these systems are de�ned on convex domains. Moreover, the solution to (57) for

� = � corresponds to the solution of (54) ; and for � = � and � = �; the solution to (57)

corresponds to the solution of (55) : Likewise, for � = � and � = �; the solution to (58)

corresponds to the solution to (54) ; for � = � and � = �, the solution to (58) corresponds

to the solution of (55) for �j = �ii = �
�
�
�
; and for � = � and � = �; the solution to (58)

corresponds to the solution to (56) for �j = �ii = �
�
�
�
:

So, systems (57) and (58) are de�ned on convex domains. Moreover, the solutions to

the systems at extreme points of the domain correspond to the economically meaningful

solutions of (54) ; (55) ; and (56) ; respectively. Hence, we can conveniently apply calculus to

the arti�cal system (57) and (58) to determine di¤erences between allocation choices.

Part I) The case of independent goods: V12 = 0:

From Proposition 1 we know that program Pi solves the reduced problem for V12 = 0:

Hence, the neglected constraint takes the form�
� (�)� �

�
�
�� �

� � �
� �
y
�
�; �
�
� y

�
�; �
��

+
�
� � �

� �
E�j� [x (�; �)]� E�j�

�
x
�
�; �
���

� 0:

Su¢ cient conditions for the neglected constraint to hold are

y
�
�; �
�
� y

�
�; �
�
� 0

and �
E�j� [x (�; �)]� E�j�

�
x
�
�; �
���

� 0:

Moreover, we know again from Proposition 1 that x
�
�; �
�
= x

�
�; �
�
= x

�
�
�
at the solution.

So, the relevant �rst-order conditions describing the optimum simplify to

V1 (x (�; �)) = �

and

V2 (y (�; �)) = �
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for � 2
�
�; �
	
;

(1� �)
�
V1
�
x
�
�
��
� �
�
= �

�
� � �

�
;

and �nally

V2
�
y
�
�; �
��
= �

and

V2
�
y
�
�; �
��
= � +

�

(1� �)

�
� (�)� �

�
�
���

1� �
�
�
�� �

� � �
�
:

It is easy to see (by concavity of V ), that x
�
�; �
�
= x (�; �) > x

�
�
�
; so�

E�j� [x (�; �)]� E�j�
�
x
�
�; �
���

� 0: is satis�ed. By the same argument, we also have

y
�
�; �
�
� y

�
�; �
�
� 0:

Part II)

1. The case of complements.

For the case of complements with 0 � V12 < �V11
(���)
(���)

for all x; y;, by Lemmas 3 and 4,

the neglected constraint (7) is equivalent to�
� (�)� �

�
�
�� �

� � �
� �
y
�
�; �
�
� y

�
�; �
��

+
�
� � �

� �
E�j� [x (�; �)]� E�j�

�
x
�
�; �
���

� 0:

Su¢ cient conditions for the neglected constraint to hold are

y
�
�; �
�
� y

�
�; �
�
� 0

and �
E�j� [x (�; �)]� E�j�

�
x
�
�; �
���

� 0:

We now provide su¢ cient conditions such that the unconstrained solution satis�es these

monotonicity restrictions.

We can write

y
�
�; �
�
� y

�
�; �
�
= y

�
�; �
�
� y

�
�; �
�
+ y

�
�; �
�
� y

�
�; �
�
:

Incentive compatibility with respect to � alone requires that y
�
�; �
�
� y

�
�; �
�
: Hence, a

su¢ cient condition for y
�
�; �
�
� y

�
�; �
�
� 0 is that

�
y
�
�; �
�
� y

�
�; �
��
� 0: In turn, this

follows trivially from the fact that � + �
(1��)

�j

�(�)
(� � �) is increasing in � and thus that an

increase in � reduces x; which by complementarity reduces y:
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A su¢ cient condition for
�
E�j� [x (�; �)]� E�j�

�
x
�
�; �
���

� 0 is that

min
�2f�;�g

x (�; �) � max
�2f�;�g

x
�
�; �
�
;

which in turn holds if

x
�
�; �
�
� x (�; �) � x

�
�; �
�
� x

�
�; �
�
:

It is straightforward to see that x
�
�; �
�
� x (�; �) ; since x and y are complements. Sim-

ilarly, x
�
�; �
�
� x

�
�; �
�
follows from the fact that �(�)

�(�)
� (1��(�))
(1��(�))

and that x and y are

complements. So, we need to show that x (�; �) � x
�
�; �
�
: We can write

x (�; �)� x
�
�; �
�
= x (�; �)� x

�
�; �
�
+ x

�
�; �
�
� x

�
�; �
�
:

The di¤erences on the right-hand side of this equation can be conveniently computed from

(57) ; since we argued above that the types on the right-hand side correspond to extreme

points in the domain of de�nition of (57) : Di¤erentiating the system of equations (57) ; we

obtain

x (�; �)� x
�
�; �
�
=

�Z
�

�V12
V11V22 � V 212

(�; �) d� =
�
� � �

� �V12
V11V22 � V 212

(�; �̂) :

where the �rst equality follows from setting � = � in (57) and applying Cramer�s rule and

the second equality from the mean value theorem, for some �̂ 2
�
�; �
�
: Likewise, by setting

� = � in (57) and j = i so that �j = � (�) ; and applying Cramer�s rule, we have

x
�
�; �
�
� x

�
�; �
�
=

Z �

�

@x
�
�; �
�

@�
d� =

 
1 +

�

(1� �)
� (�)

�
�
�
�!Z �

�

V22
V11V22 � V 212

d�

= �
�
� � �

� 
1 +

�

(1� �)
� (�)

�
�
�
�! V22

V11V22 � V 212

�
�̂; �
�
:

for some �̂ 2
�
�; �
�
; where the last equality follows again by the mean value theorem.

So, we have x (�; �) � x
�
�; �
�
i¤

�
� � �

� �V12
V11V22 � V 212

(�; �̂)�
�
� � �

� 
1 +

�

(1� �)
� (�)

�
�
�
�! V22

V11V22 � V 212

�
�̂; �
�
� 0:
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In turn, this condition is satis�ed if�
� � �

��
� � �

�  1 + �

(1� �)
� (�)

�
�
�
�!min

x;y

�V22
V11V22 � V 212

(x; y)

� max
x;y

V12
V11V22 � V 212

(x; y) :

Since the left-hand side is increasing in �; the condition is hardest to satisfy for � = 0; which

is the condition given in the proposition.

2. The case of substitutes:

For 0 > V12 > V11
(���)
(���)

for all x; y; the neglected constraint is equivalent to �
� (�)� �

�
�
�� �

� � �
� �
y
�
�; �
�
� y

�
�; �
��

+
�
� � �

�
x
�
�; �
�
�
�
�
�
�
� �
� � �

�
x
�
�; �
�
+
�
1� �

�
�
�� �

� � �
�
x
�
�; �
�� ! � 0:

Equivalently, this can be written as �
� (�)� �

�
�
�� �

� � �
� �
y
�
�; �
�
� y

�
�; �
��

+
�
� � �

� �
x
�
�; �
�
� x

�
�; �
��
� �

�
�
� �
� � �

� �
x
�
�; �
�
� x

�
�; �
�� ! � 0:

Recall that for (x; y) 2 Xii; we have�
� � �

� �
y
�
�; �
�
� y (�; �)

�
� �

�
� � �

� �
x
�
�; �
�
� x (�; �)

�
� 0;

so the third term on the left-hand side is nonnegative. For the case where � (�) = �
�
�
�
, the

�rst term is zero and we only need to show that

x
�
�; �
�
� x

�
�; �
�
� 0:

We can write

x
�
�; �
�
� x

�
�; �
�
= x

�
�; �
�
� x

�
�; �
�
+ x

�
�; �
�
� x

�
�; �
�
:

The types on the right-hand side correspond to extreme points of the domain of de�nition

of (58) : Therefore, we obtain - by the same arguments as used for the complements case -

x
�
�; �
�
� x

�
�; �
�
=
�
� � �

� 
1 +

�

(1� �)

�
� (�)� �

�
�
���

1� �
�
�
�� !

�V12
V11V22 � V 212

�
�; �̂
�

+
�
� � �

� 1

1� �
V22

V11V22 � V 212

�
�̂; �
�
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for some values �̂ 2
�
�; �
�
and �̂ 2

�
�; �
�
: Hence, we have x

�
�; �
�
� x

�
�; �
�
� 0; if

� � �
� � �

 
1� �+ �

�
� (�)� �

�
�
���

1� �
�
�
�� !

min
x;y

V12
V11V22 � V 212

� max
x;y

V22
V11V22 � V 212

Since (
�(�)��(�))
(1��(�))

< 1; the expression on the left-hand side of the inequality is smallest for

� = 0; so the condition is satis�ed if
� � �
� � �

min
x;y

V12
V11V22 � V 212

� max
x;y

V22
V11V22 � V 212

:

Finally, we need to show that the optimal allocations that solve the reduced problems

Pi and Pii; respectively, are elements of Xinti or Xintii ; respectively. Recall from Lemma 4

that the �rst-best allocation is an element of Xinti or Xintii ; respectively, precisely under the
conditions that make either program Pi or Pii generate a higher value to the principal. Now

consider, for j = i; ii; iii; iv; the problems

max
(x;y)2[jXj

Pj

The solution to each of these problems converges uniformly to the �rst-best allocation as �

goes to zero. It follows that the solution of program Pi is in Xinti for � close enough to zero

if 0 < V12 < �
���
���V11 and that the solution of program Pii is in Xintii for � close enough to

zero if
���
���V11 < V12 < 0:

Proof of Proposition 3. From Lemma 4, we have conditions such that the �rst-best

allocation is in Xinti . Hence, in the limit as � goes to zero, the allocations that achieve the
maxima Wj are in Xintj . So, we need to show that these maximizers satisfy the neglected
constraint. We focus on the case of strong complements. Exactly the same argument can be

given for strong substitutes.

For the example, for � 2 (�1; 1) and � su¢ ciently large to generate interior solutions;
the �rst-best allocation is given by

x (�; �) = 1
1��2 (� (1 + �)� � � ��)

y (�; �) = 1
1��2 (� (1 + �)� � � ��)

The neglected constraint for (x; y) 2 Xiii takes the form

0 �
�
� � �

� �
x
�
�; �
�
� x (�; �)

�
+
�
� � �

� �
y
�
�; �
�
� y

�
�; �
��

+ � (�)
�
� � �

� �
y
�
�; �
�
� y

�
�; �
��
+ �

�
�
� �
� � �

� �
y (�; �)� y

�
�; �
��
:
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The �rst-best allocation is in Xiii for � >
(���)
(���)

: The buyer�s problem remains concave for

� < 1: Both conditions are satis�ed for a nonempty set of parameters only if (
���)
(���)

< 1: For

the example, the neglected constraint is equivalent to

0 �
�
� � �

�� 1

1� �2
�
�
�
� � �

�
+ �

�
� � �

���
+
�
� � �

�� 1

1� �2
�
�
�
� � �

���
+ � (�)

�
� � �

�� 1

1� �2
�
�
�
� � �

�
�
��
+ �

�
�
� �
� � �

�� 1

1� �2
��
� � �

�
�
��
;

which is satis�ed if � � (���)
(���)

: Since (
���)
(���)

> 1; this condition is automatically satis�ed.
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