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We provide an instrument test for a treatment model in which individuals
select into treatment based on unobserved gains (Imbens and Angrist 1994).
We augment a standard model by assuming that both a binary and a contin-
uous instrument are available. Under treatment monotonicity a parameter
that is closely related to the Marginal Treatment Effect (cf. Heckman and
Vytlacil 2005) is overidentified. We suggest a test statistic and characterize
its asymptotic distribution and behavior under local alternatives. In simu-
lations, we investigate the validity and finite sample performance of a wild
bootstrap procedure. Finally, we illustrate the applicability of our method
by studying two instruments from the literature on teenage pregnancies.

JEL codes: C21, C14

Keywords: treatment effects, unobserved heterogeneity, overidentification
test, instrumental variables, generated regressors, wild bootstrap, teenage
pregnancies

1. Introduction

The canonical treatment effect evaluation problem in Economics can be phrased as the
problem of recovering the coefficient β from the outcome equation

Y = α + βD, (1)
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Enno Mammen and Markus Frölich for constant support. We are grateful for comments from Steffen
Reinhold, Martin Huber, Allie Carnegie, Peter Aronow, Anne Leucht and Carsten Jentsch.
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where D is a binary indicator of treatment status, and α and β are random coefficients.
If the treatment effect β is known to be constant then β can be identified by classi-
cal instrumental variables methods. In this framework it is straightforward to test the
validity of the instruments by classical GMM overidentification tests (Hansen 1982, Sar-
gan 1958). In many applications the more natural assumption is to assume that the
treatment effect β is non-constant and correlated with D. Economically this means that
individuals differ in their gains from participating in the treatment and that when de-
ciding whether to participate or not individuals take into account possible gains from
participation. This setting is often referred to as one of essential heterogeneity (Heck-
man, Urzua, and Vytlacil 2006). It was first considered in the seminal papers by Imbens
and Angrist 1994 and Angrist, Imbens, and Rubin 1996. These authors give assumptions
under which a binary instrument identifies the average treatment effect for the subpop-
ulation of compliers which they dub the Local Average Treatment Effect (LATE). The
compliers are the individuals that respond to a change in the realizations of the binary
instrument by changing their participation decision. Different instruments may induce
different subpopulations to change their treatment status and therefore estimate differ-
ent LATEs. Hence, if a GMM overidentification test rejects, this no longer constitutes
compelling evidence that one instrument is invalid. Rather, it might as well be inter-
preted as evidence for a non-constant treatment effect (Heckman, Schmierer, and Urzua
2010).

In this paper we present an instrument test that is valid under essential heterogeneity.
A key assumption of Imbens and Angrist 1994, which we maintain as well, is treatment
monotonicity. Intuitively, this assumption says that individuals can be ordered by their
willingness to participate in the treatment. As we show below, an immediate consequence
of the monotonicity assumption is that the propensity score, i.e., the proportion of
individuals who participate in the treatment, subsumes all information about observed
outcomes that is included in a vector of instruments. This type of index sufficiency is
a testable restriction since both observed outcomes and propensity scores are identified
from the data. More concretely, we assume that a binary and a continuous instrument
are available. The purpose of the binary instrument is to split the population into
two subpopulations with distinct propensity scores in a way that is independent of
unobserved characteristics. We then test whether observed outcomes conditional on the
propensity score are identical in the two subpopulations. The reason why we assume
continuity of the second instrument is that this offers a plausible way to argue that the
supports of the propensity scores in the two subpopulations overlap.

Our test is related to the test of the validity of the matching approach suggested in
Heckman et al. 1996 and Heckman et al. 1998. Their test also exploits index sufficiency
under the null hypothesis. Moreover, the role that random assignment to a control group
serves in their testing approach is similar to the part that the binary instrument plays in
our overidentification result. The testing theory that we develop in this paper translates
with slight modifications to the testing problem of Heckman et al. 1996 and Heckman
et al. 1998. We hope that it will prove useful in other settings where the null hypothesis
imposes some kind of index sufficiency as well.

Our testable restriction in terms of a conditional mean function is closely related to
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a similar restriction in terms of the Marginal Treatment Effect (MTE, see Heckman
and Vytlacil 2005 for a discussion of the MTE). The characterization of the restriction
in terms of the MTE, while certainly the less practical one for testing, has a lot of
theoretical appeal as it illustrates that our test is based on the overidentification of a
structural parameter of the model.

We are not the first to consider the problem of testing instruments in a model with
essential heterogeneity. Following previous work by Balke and Pearl 1997, Kitagawa
2008 and Huber and Mellace 2011 consider testing the validity of a discrete instrument
in a LATE model. They test inequalities for the densities and the mean of the outcomes
for always takers and never takers, i.e. two subpopulations for which treatment status
is not affected by the instrument. In stark contrast, our test focuses on the subpop-
ulation which responds to the instrument. Angrist and Fernandez-Val 2010 develop a
LATE overidentification test under the additional assumption that the heterogeneity is
captured by observed covariates. We do not require such an assumption. Our test lends
itself naturally to testing continuous instruments, whereas previous tests can handle
continuous instruments only via a discretization.

Our method works if both a binary and a continuous instrument are available. This
is the case in many relevant applications. In this paper we apply our method to test
for the validity of instruments that have been used to investigate the effect of teenage
child bearing on high school completion. For another example of an evaluation problem
where our method would come to bear consider Carneiro, Heckman, and Vytlacil 2011.
They estimate returns to schooling using as instruments a binary indicator of distance
to college, tuition fees, as well as continuous measures of local labor market conditions.

Our test reduces to the problem of testing the equality of two nonparametric regression
curves. This is a problem with a rich history in the statistical literature (cf., e.g., Hall
and Hart 1990; King, Hart, and Wehrly 1991; Delgado 1993; Dette and Neumeyer 2001;
Neumeyer and Dette 2003). Our testing problem, however, does not fit directly into
any of the frameworks analyzed in the previous literature as it comes with the added
complication of generated regressors. We propose a test statistic and quantify the effect
of the first stage estimation error on the asymptotic distribution of the test statistic. We
find that in order to have good power against local alternatives we have to reduce the
nonparametric bias from the first stage estimation. With our particular choice of second
stage estimator no further bias reduction is necessary.

We propose a bootstrap procedure to compute critical values. In the context of a
treatment model with nonparametrically generated regressors Y. Lee 2013 establishes the
validity of a multiplier bootstrap that is based on the first order terms in an asymptotic
expansion of the underlying process. We suggest a wild bootstrap procedure that does
not rely on first order asymptotics and that is easy to implement in standard software.
In exploratory simulations our procedure is faithful to its nominal size in small and
medium sized samples.

The paper is structured as follows. Section 2 defines our heterogeneous treatment
model. In Section 3 we state our central overidentification result, discuss nonparametric
parameter estimation, and define the test statistic. The asymptotic behavior of our
test statistic is discussed in Section 4. Our simulations are presented in Section 5. In
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Section 6 we apply our approach to real data and study the validity of instruments in
the context of teenage child bearing and high school graduation. Section 7 concludes.

2. Model definition

Our version of a treatment model with unobserved heterogeneity in the spirit of Imbens
and Angrist 1994 is owed in large part to Vytlacil 2002. As in Abadie 2003 and Frölich
2007 we assume that our assumptions hold conditional on a set of covariates. We restrict
ourselves to covariates that take values in a finite set. Our main overidentification result
carries over to more general covariate spaces in a straightforward manner. The purpose
of the restriction is exclusively to facilitate estimation by keeping the estimation of
infinite dimensional nuisance parameters free of the curse of dimensionality. Without
loss of generality assume that we can enumerate all possible covariate configurations by
{1, . . . , Jmax} and let J denote the covariate configuration of an individual. Treatment
status is binary and is denoted by D. The latent outcomes are denoted by Y 0 and Y 1

and Y = (1 −D)Y 0 +DY 1 denotes the observed outcome. Note that by setting α = Y 0

and β = Y 1 − Y 0 we recover the correlated random effects model from equation (1).
Let S denote a continuous random variable and let Z denote a binary random variable.
Below, S and Z are required to fulfill certain conditional independence assumptions
that render them valid instruments in a heterogeneous treatment model. We observe a
sample (Yi,Di, Si, Zi, Ji)i≤n from (Y,D,S,Z, J). Treatment status is determined by the
threshold crossing decision rule

D = 1{rZ,J(S)≥V },

with rz,j a function that is bounded between zero and one and V satisfying

V ∼ U[0,1] and V á (S,Z) ∣ J. (I-V)

Under this assumption the function rz,j is a propensity score and V can be interpreted
as an individual’s type reflecting her natural proclivity to select into the treatment
group. As pointed out in Vytlacil 2002 the threshold crossing model imposes treatment
monotonicity.1 The assumption that V is uniformly distributed is merely a convenient
normalization that allows us to identify rz,j . The crucial part of this assumption is that
the instruments are jointly independent of the heterogeneity parameter V . This allows
us to use the instruments as a source of variation in treatment participation that is
independent of the unobserved types. Furthermore, we assume that for given V , Z and
J the latent outcomes are independent of S,

Y d á S ∣ V,Z, J d = 0,1. (CI-S)

Also, for given V and J the latent outcomes are independent of Z,

Y d á Z ∣ V, J d = 0,1. (CI-Z)

1Consider two types v1 ≤ v2. Under the threshold model v1 participates if v2 participates. This
is independent of the shape of the propensity score function. In particular, monotonicity of the
propensity score function in its parameters is not required.
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Intuitively, these assumptions state that once the unobserved type is controlled for, the
instruments are uninformative about latent outcomes. Note that we do not place any
restrictions on the joint distribution of potential outcomes and V . Economically this
means that unobserved characteristics such as personal taste that enter into the decision
to participate in the treatment are allowed to be correlated with the latent outcomes.
The more commonly assumed instrument condition is

(Y 0, Y 1, V ) á (S,Z) ∣ J

which implies the conditional independence assumptions stated above. To argue the
validity of an instrument it is helpful to split up the instrument condition in a way
that allows us to disentangle participation and outcome effects. In our application, for
example, assumptions CI-S and CI-Z seem quite plausible. The problematic assumption
is to assume that the variation in treatment participation induced by the instrument is
independent of the variation that is driven by the unobserved types.

Throughout, we let Ez and Ez,j denote the expectation operator conditional on Z = z,
and (J,Z) = (j, z), respectively.

3. Testing approach

Overidentification result

For z = 0,1 and j = 1, . . . , Jmax define mz,j(x) = Ez,j[Y ∣ rz,j(S) = x]. The propensity
score is identified from

rz,j(s) = Ez,j[D ∣ S = s].

and therefore mz,j is identified on the interior of the support of rz,j(S) ∣ Z = z. Our test
is based on the following overidentification result.

Proposition 1 (Overidentification): Fix j ∈ {1, . . . , Jmax} and suppose that condi-
tional on J = j x lies in the interior of the support of both r0,j(S) ∣ Z = 0 and
r1,j(S) ∣ Z = 1. Then mz,j does not depend on z, i.e., m0,j(x) = m1,j(x). Let mj(x)
denote the common value for all j and x that satisfy the assumption.

Proof

mz,j(x) =E[Y ∣ rz,j(S) = x,Z = z, J = j]
=(1 − x)E[Y 0 ∣ rz,j(S) = x,V > x,Z = z, J = j]
+ xE[Y 1 ∣ rz,j(S) = x,V ≤ x,Z = z, J = j]

=(1 − x)E[Y 0 ∣ V > x,Z = z, J = j] + xE[Y 1 ∣ V ≤ x,Z = z, J = j]
=(1 − x)E[Y 0 ∣ V > x, J = j] + xE[Y 1 ∣ V ≤ x, J = j]

Now note that the right hand side does not depend on z. ◻
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The result says that under the null hypothesis that the model is correctly specified the
parametermj can be identified from two different subpopulations. Under alternatives the
instruments have a direct effect on outcomes that is not mediated through the propensity
score. The overidentification restriction has some power to detect such alternatives
because in the two subpopulations distinct values of the instrument vector are used to
identify the same parameter.

Suppose that for j = 1, . . . , Jmax there are xj and x̄j , xj ≤ x̄j , and open sets Gj such
that

supp r0,j(S) ∣ Z = 0, J = j ∩ supp r1,j(S) ∣ Z = 1, J = j ⊇ Gj ⊇ [xj x̄j].
Proposition 1 implies that on [xj x̄j] we have

m0,j(x) −m1,j(x) = 0. (2)

We are testing this equality. For the test to have some bite we need [xj x̄j] to be non-
empty. Intuitively, what is required is that for fixed Z the continuous instrument is
strong enough to induce as many individuals to change their treatment status as would
be swayed to change their participation decision by a change in Z while keeping S fixed.
An important case where this is not possible is if Z is a deterministic function of S.

The basic idea of the overidentification result does not rely on the continuity of S.
However, continuity of S is crucial as it offers a way to ensure that the common support
of the propensity scores in the two subpopulations with Z = 0 and Z = 1 can plausibly
have positive probability. For a given j we refer to an interval [xj , x̄j] that satisfies the
above condition as a testable subpopulation. It consists of a set of unobserved types that
can be induced to select in and out of treatment by marginal changes in the continuous
instrument regardless of the value of the binary instrument. Therefore the types in this
interval are part of the complier population as defined in Angrist, Imbens, and Rubin
1996.

Proposition 1 is implied by the stronger result

Ej[Y ∣ S,Z] = Ej[Y ∣ rZ,j(S)] a.s.. (3)

This says that conditional on covariates, the propensity score aggregates all information
that the instruments provide about observed outcomes. In that sense, our approach can
be interpreted as a test of index sufficiency that is similar in spirit to the test of the
validity of the matching approach suggested in Heckman et al. 1996; Heckman et al.
1998. The equivalence (3) remains true if Y is replaced by a measurable function of
Y . By considering different functions of Y a whole host of testable restrictions can be
generated. One implication, for example, is that a conditional distribution function is
overidentified. In this paper we only consider overidentified conditional mean outcomes
and leave the obvious extensions to future research. Our testable restriction (2) is closely
related to the marginal treatment effect (MTE)

βj(x) = Ej[Y 1 − Y 0 ∣ V = x]

which has been proposed as a natural way to parameterize a heterogeneous treatment
model (Heckman and Vytlacil 2005). In fact, βj(x) = ∂xmj(x). Since we are testing for
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overidentification of a function, we are also testing for overidentification of its derivative.
If we were to base our test directly on the MTE instead of mean outcomes we would not
be able to detect alternatives where instruments are uncorrelated with the treatment
effect β but have a direct effect on the base outcome α. Another advantage of our mean
outcome approach over a test based on the MTE is that we avoid having to estimate a
derivative. In our nonparametric setting derivatives are much harder to estimate than
conditional means. However, if the econometrician is not interested in a direct effect
on the base outcome and if a large sample is available it might be beneficial to look at
βj rather than at mj . The reason is that as mj is a smoothed version of βj it might
not provide good evidence for perturbations of βj that oscillate around zero. Another
maybe more compelling reason to consider overidentification of βj is that it allows us to
investigate the source of a rejection of the null hypothesis. If a test based on mj rejects
while at the same time a test based on βj does not reject it seems likely that instruments
have a direct effect on the base outcome but not on the treatment effect. In this paper
we focus on the test based on conditional outcomes and leave a test considering the MTE
to future research.

It is helpful to think of alternatives as violations of the index sufficiency condition (3).
Economically this means that instruments have a direct effect on outcomes, i.e., instru-
ments have an effect on observed outcomes that can not be squared with their role as
providers of independent variation in the participation stage. To formalize how our test
detects such alternatives ignore covariates for the moment and define the prediction error
from regressing on the propensity score instead of on the instruments

ϕ(S,Z) = E[Y ∣ S,Z] −E[Y ∣ rZ(S)].

Now suppose that the model is correctly specified up to possibly a violation of the index
sufficiency condition. The restricted null hypothesis is

H0 ∶ ϕ(S,Z) = 0 a.s..

Using this notation we can rewrite the testable restriction (2) as

E[ϕ(S,Z) ∣ r0(S) = x,Z = 0] −E[ϕ(S,Z) ∣ r1(S) = x,Z = 1] = 0

for all x ∈ [x, x̄]. This is a necessary condition for

E[ϕ(S,Z) ∣ rz(S) = x,Z = z] = 0 for z = 0,1 and x ∈ supp rz(S) ∣ Z = z

which in turn is necessary for the restricted null. Since we are only testing a necessary
condition not all alternatives can be detected. As an extreme case consider the case of
identical propensity scores, i.e., r0 = r1. In this particular case our testable restriction
does not have the power to detect a direct effect of S on outcomes.

Parameter estimation and test statistic

Let m̂z,j denote an estimator of mz,j and let x = (x1, . . . , xJmax) and x̄ = (x̄1, . . . , x̄Jmax).
Suppose that under the null hypothesis mj is overidentified on [xj , x̄j] for j = 1, . . . , Jmax
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and define the test statistic

Tn = Tn(x, x̄) =
J

∑
j=1
∫

x̄j

xj

(m̂0,j(x) − m̂1,j(x))2πj(x)dx. (4)

Here πj is a weight function that can be used to fine-tune power against certain alter-
natives. What constitutes a sensible choice for πj will depend on the specifics of the
application. For simplicity we assume that πj is unity from here on. In the following
we will refer to the subsample with Ji = j and Zi = z as the (j, z)-cell. We estimate
m̂z,j by a two step procedure. In the first step we estimate the function rz,j by local
polynomial regression of S on D within the (j, z)-cell. We will refer to this step as
the participation regression. The first step estimator is denoted by r̂z,j . In the second
step we estimate mz,j by local linear regression of Y on the predicted regressors r̂z,j(Si)
within the (j, z)-cell. This step will be referred to as outcome regression. We let L and
K denote the kernel functions for the participation and outcome regression, respectively.
Also let g and h denote the respective bandwidth sequences. To reduce notational clut-
ter, we assume that the bandwidths do not depend on j and z. It is straightforward
to extend the model to allow cell dependent bandwidths. Let q denote the degree of
the local polynomial in the participation regression. It is necessary to choose q ≥ 2 to
remove troublesome bias terms. If these bias terms are not removed the test will behave
asymptotically like a linear test, i.e., it will favor the rejection of alternatives that point
into a certain direction. A formal definition of the estimators is provided in Appendix A.

In many applications the bounds x and x̄ are not a priori known and have to be
estimated. Below we show that replacing the bounds by a consistent estimator does not
affect the asymptotic distribution of the test statistic under weak assumptions. Since
we assume rz,j to be continuous, the set on which mj is overidentified will always be an
interval (xL,j , xU,j). To avoid boundary problems we fix some positive cδ and estimate
the smaller interval [xj , x̄j] = [xL,j + cδ, xU,j − cδ] by its sample equivalent.

Inference and bootstrap method

In Proposition 2 below we characterize the asymptotic distribution of the test statistic
under the null. However, as we explain below, we do not recommend to use this distri-
butional result as a basis for approximating critical values. In a related problem with
nonparametrically generated regressors Y. Lee 2013 establishes the validity of a mul-
tiplier bootstrap procedure. We conjecture that, building on the asymptotic influence
function from Lemma 3 in the appendix, a similar approach can be taken in our setting.
However, simulating the distribution by multiplier methods has some disadvantages.
First, as the approach is based on asymptotic influence functions no improvements be-
yond first order asymptotics can be expected. Secondly, the method requires significant
coding effort which makes it unattractive in applied work. This is why we propose a
wild bootstrap procedure that is straightforward to implement instead. We provide sim-
ulation evidence that illustrates that the procedure can have good properties in small
and medium sized samples. A theoretical proof of the validity of the method is beyond
the scope of the present paper and left to future research.
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First, estimate the bounds x and x̄. In the bootstrap samples these bounds can
be taken as given. For all j and all z estimate r̂z,j from the (j, z)-cell and predict

R0
i = r̂Zi,Ji(Si) and ζ̂0

i = Di − R0
i . Next, pool all observations with J = j and estimate

mj by local linear regression of Yi on R0
i with kernel K and bandwidth h. Predict

M0
i = m̂Ji(R0

i ) and ε̂0i = Yi −M0
i . Now generate B bootstrap samples in the following

way. Draw a sample of n independent Rademacher random variables (Wi)i≤n, let

(D
∗
i

Y ∗
i
) = (R

0
i

M0
i
) +Wi (

ζ̂0
i

ε̂0i
) ,

and define the bootstrap sample (Y ∗
i ,D

∗
i , Si, Zi, Ji)i≤n.

While we use Rademacher variables as an auxiliary distribution, other choices such
such as the two-point distribution from Mammen 1993 or a standard normal distribution
are also possible.

4. Asymptotic analysis

In this section we derive the asymptotic distribution of our test statistic. This analysis
gives rise to a number of interesting insights. First, it allows us to consider local alter-
natives. A lesson implicit in the existing literature on L2-type test statistics is that a
naive construction of such a statistic often leads to a test with the undesirable prop-
erty of treating different local alternatives disparately. Loosely speaking, such a tests
behaves like a linear test in that it only looks for alternatives that point to the same
direction as a certain bias term (cf. Härdle and Mammen 1993). We find that in order
to avoid such behavior it suffices to employ bias-reducing methods when estimating the
propensity scores. We recommend to fit a local polynomial of at least quadratic degree.
The outcome estimation does not contribute to the problematic bias term. Secondly,
our analysis allows us to consider the case when the bounds of integration x and x̄ are
unknown and have to be estimated. We show that, provided that the estimators satisfy
a very weak assumption, the asymptotic distribution is unaffected by the estimation.
Thirdly, our results allow us to make recommendations about the choice of the smooth-
ing parameters. Our main asymptotic result implies that our test has good power against
a large class of local alternatives if the outcome stage estimator oversmoothes compared
to the participation stage estimator but not by too much. For convenience of notation,
in the following we focus on the case Jmax = 1 and omit the j subscript. Proofs for the
results in this section can be found in the appendix.

Assumptions

Define the sampling errors ε = Y −E[Y ∣ rZ(S)] and ζ =D −E[D ∣ S,Z]. Under the null
hypothesis the conditional variances σ2

ε (x) = E[ε2 ∣ rZ(S) = x], σ2
ζ(x) = E[ζ2 ∣ rZ(S) = x]

and σεζ(x) = E[εζ ∣ rZ(S) = x] remain unchanged if the unconditional expectation
operator is replaced by the conditional expectation operator Ez, z = 0,1. Also note
that σ2

ζ(x) = x(1 − x). For our local estimation approach to work we have to impose
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some smoothness on the functions mz and rz. We now give conditions in terms of the
primitives of the model to ensure that the functions that we are estimating are sufficiently
smooth.

Assumption 1: Assume that m is overidentified on an open interval (xL, xU) and

(i) there is a positive ρ such that

E[exp(ρ ∣Y d∣)] < ∞, d = 0,1.

(ii) Conditional on Z = z, z = 0,1, S is continuously distributed with density fS∣Z=z and
rz(S) is continuously distributed with density fR∣Z=z. Moreover, fS∣Z=z is bounded
away from zero and has one bounded derivatives and fR∣Z=z is bounded away from
zero and is twice continuously differentiable.

(iii) E[Y 0 ∣ V > x] and E[Y 1 ∣ V ≤ x] are twice continuously differentiable on (xL, xU).

(iv) The functions E[(Y 0)2 ∣ V > x] and E[(Y 1)2 ∣ V ≤ x] are continuous on (xL, xU).

(v) rz, z = 0,1, is (q + 1)-times continuously differentiable on (xL, xU).

The assumption implies standard regularity conditions for m, σ2
ε and σεζ that are sum-

marized in Assumption 3 in the appendix. These conditions include that m is twice
continuously differentiable and that σ2

ε and σεζ are continuous. A consequence of As-
sumption 1(ii) is that xL and xU are identified by

xL = max{ infs r0(s), infs r1(s)} and

xU = min{ sups r0(s), sups r1(s)}.
(5)

Fix a small constant cδ > 0. We can choose x = xL + cδ and x̄ = xU − cδ. We also need
some assumptions about the kernel functions.

Assumption 2: K and L are symmetric probability density functions with bounded sup-
port. K has two bounded and continuous derivatives. The bandwidth sequences are
parametrized by g ∼ n−η∗ and h ∼ n−η.

Implicit in this assumption is that the bandwidths are not allowed to depend on z. In
particular, the bandwiths are tied to the overall sample size rather than the size of the
two subsamples corresponding to Z = z, z = 0,1. This is for expositional convenience
only.

Local alternatives

To investigate the behavior of the test under local alternatives we now consider a se-
quence of models that converges to a model in the null hypothesis.
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Definition 1 (Local alternative): A sequence of local alternatives is a sequence of
models

Mn = (Y 0,n, Y 1,n, V n, S,Z, r0, r1)
in the alternative that converges to a model

Mnull = (Y 0,null, Y 1,null, V null, S,Z, r0, r1)

in the null hypothesis in the following sense:

sup
x

E [(1{V n≤x} − 1{V null≤x})
2 ∣ S,Z] = Oa.s (c2

n) (6a)

E [(Y d,n − Y 0,null)2 ∣ S,Z] = Oa.s (c2
n) d = 0,1 (6b)

for a vanishing sequence cn. For n large enough there are positive constants ρ and C
such that

E[exp(ρ ∣Y d,n −E[Y d,n ∣ S,Z]∣) ∣ S,Z] ≤ C d = 0,1.

We let Y n and Y null denote the observed outcome under the model Mn and Mnull,
respectively.

Write ϕn for the index prediction error under the sequence of modelsMn and note that

ϕn(S,Z) = E[Y n ∣ S,Z] −E[Y n ∣ rZ(S)]
= E[Y n − Y null ∣ S,Z] −E[Y n − Y null ∣ rZ(S)] = Oa.s(cn)

so that index sufficiency holds approximately in large samples. Formally, we are testing
the sequence of local alternatives

H0,n ∶ ∆n(x) = 0 for x ∈ [x, x̄]

with

∆n(x) = E[ϕn(S,Z) ∣ rZ(S) = x,Z = 0] −E[ϕn(S,Z) ∣ rZ(S) = x,Z = 1].

To analyze the behavior of our test under local alternatives we suppose that we are
observing a sequence of samples where the n-th sample is drawn from Mn. For van-
ishing cn we interpret Mnull as a hypothetical data generating process that satisfies the
restriction of the null and that is very close to the observed model Mn. Our objective
is to show that our test can distinguishMn fromMnull. The fastest rate at which local
alternatives can be detected is cn = n−1/2h−

1/4. This is the standard rate for this type of
problem (cf. Härdle and Mammen 1993). At this rate the smoothed and scaled version
of the local alternative

∆K,h(x) = c−1
n ∫ ∆n(x + ht)K(t) dt

enters the asymptotic distribution of the test statistic.

11



Asymptotic behavior of the test statistic

Our main asymptotic result states that, provided that cn vanishes fast enough, the
asymptotic distribution of the test statistic can be described by the asymptotic distri-
bution of the statistic under the hypothetical model Mnull shifted by a deterministic
sequence that measures the distance of the observed model from Mnull. The behavior
of the test statistic under the null is obtained as a special case by choosing a trivial
sequence of local alternatives.

Proposition 2: Let cn = n−1/2h−
1/4 and consider a modelMnull satisfying Assumption 1

for xL < x < x̄ < xU and corresponding local alternatives Mn satisfying Definition 1.
Assume that the functions E[Y n ∣ rZ(S) = x] and E[Y n ∣ rZ(S) = x,Z = z], z = 0,1, are
Riemann integrable on (xL, xU). The bandwidth parameters η and η∗ satisfy

3η + 2η∗ < 1 (7a)

2η > η∗ (7b)

η∗ + η < 1/2 (7c)

η > 1/6 (7d)

(q + 1)η∗ > 1/2 (7e)

η∗ > η . (7f)
Then

n
√
hTn −

1√
h
γn − ∫

x̄

x
∆2
K,h(x)dx

d→ N (0, V ) ,

where

V = 2K(4)(0)∫
x̄

x
[x(1 − x)m′(x)2 − 2σεζ(x)m′(x) + σ2

ε (x)]
2 ⎛
⎝ ∑z∈{0,1}

1

pzfR,z(x)
⎞
⎠

2

dx

and γn is a deterministic sequence such that γn → γ for

γ =K(2)(0)∫
x̄

x
[x(1 − x)m′(x)2 − 2σεζ(x)m′(x) + σ2

ε (x)] ∑
z∈{0,1}

1

pzfR,z(x)
dx.

Here m(x) = E[Y null ∣ rZ(S) = x] and all conditional moments are computed under
Mnull. K(v) denotes the v-fold convolution product of K. For q ≥ 2 the set of admissible
bandwidths is non-empty.

The result implies that the test can detect local alternatives that converge to a model
in the null hypothesis at the rate cn = n−1/2h−

1/4 and that satisfy

lim inf
n
∫

x̄

x
∆2
K,h(x)dx > 0.

Both the first and the second stage estimation contribute to the asymptotic variance.
The term x(1 − x)m′(x)2 − 2σεζ(x)m′(x) in the expression for the asymptotic variance
is due to the first stage estimation. Under our assumptions this term can not be signed,
so that the first stage estimation might increase or decrease the asymptotic variance.
However, while it is possible to construct models under which this term is negative,
these models have some rather unintuitive features and we do not consider them to be
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typical. If the estimated regression function is rather flat, the influence of the first stage
regression on the asymptotic variance is small. To gain an intuition as to why this is so,
note that if m′(x) is small then a large interval of index values around x is informative
about m(x). This helps to reduce the first stage estimation error, because on average
the index is estimated more reliably over large intervals than over smaller intervals.

An essential ingredient in the proof of Proposition 2 is a result from Mammen, Rothe,
and Schienle 2012. They provide a stochastic expansion of a local linear smoother that
regresses on generated regressors around the oracle estimator. The oracle estimator is
the infeasible estimator that regresses on the true instead of the estimated regressors.
This expansion allows us to additively separate the respective contributions of the par-
ticipation and the outcome regression to the overall bias of our estimator of m0 −m1.
Under the null the oracle estimator is free of bias. This is intuitive. Under the null
m =m0 =m1 so that m̂0 and m̂1 estimate the same function in two subpopulations with
non-identical designs. A well-known property of the local linear estimator is that its bias
is design independent (Ruppert and Wand 1994) which makes it attractive for testing
problems that compare nonparametric fits (Gørgens 2002). Hence, only the bias of the
participation regression has to be reduced.

We do not recommend using the distributional result in Proposition 2 to compute
critical values. The exact shape of the distribution is very sensitive to bandwidth choice.
As explained below, one does not know in practice if bandwidths satisfy the conditions
in the theorem. Even if bandwidths are chosen incorrectly, in many cases the statistic
still converges to a normal and most of the lessons we draw from the asymptotic analysis
still hold up. However, the expressions for the asymptotic bias and variance would look
different. Furthermore, to estimate the asymptotic bias and variance we have to estimate
derivatives and conditional variances. These are quantities that are notoriously difficult
to estimate. Instead, our inference is based on the wild bootstrap procedure introduced
in Section 3. We investigate the validity of our bootstrap procedure in simulations in
Section 5 below.

Proposition 2 requires that the bandwidth parameters satisfy a system of inequalities.
The restrictions are satisfied for example if q = 2, η∗ = 1/5 and 1/6 < η < 1/5. The
inequalities (7a)-(7c) ensure that our estimators satisfy the assumptions of Theorem 1
in Mammen, Rothe, and Schienle 2012. Condition (7d) ensures that up to parametric
order the bias of the oracle estimator is design independent. When the inequality (7f) is
satisfied, the error terms from both the participation and outcome regression contribute
to the asymptotic distribution. Finally, inequality (7e) says that the bias from the
participation regression must vanish at a faster than parametric rate. This is precisely
the condition needed to get rid of the troublesome bias terms discussed above. While
the proposition offers conditions on the rates at which the bandwidths should vanish
it offers little guidance on how to choose the bandwidths in finite samples. There are
no bandwidth selection procedures that produce deliberately under- or oversmoothing
bandwidths. This problem is by no means specific to our model but on the contrary
quite ubiquitous in the kernel smoothing literature (cf. Hall and Horowitz 2012). In our
application we circumvent the problem of bandwidth selection by reporting results for a
large range of bandwidth choices.
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In practice, the bounds of integration x and x̄ are additional parameters that have
to be chosen. In most applications this means that they have to be estimated from
the data. The following result states that a rather slow rate of convergence of these
estimated bounds suffices to ensure that bound estimation does not affect the asymptotic
distribution.

Proposition 3: Suppose that the assumptions of Proposition 2 hold. Assume also that
xn and x̄n are sequences of random variables such that

(xn, x̄n) − (x, x̄) = op (h`)

for a constant ` > 1/2. Then

Tn(xn, x̄n) − Tn(x, x̄) = op (
1

n
√
h
) .

Let x̂L and x̂U denote the sample equivalents of the right hand side of the equation (5)
that identifies xL and xU , respectively. Under the bandwidth restrictions of Proposition 2
the assumptions in Proposition 3 are satisfied if we set xn = x̂L + cδ and x̄n = x̂U − cδ.

5. Simulations

We simulate various versions of the random coefficient model from equation (1) and
compute empirical rejection probabilities for our bootstrap test for two sample sizes and
a large number of bandwidth choices. As in the previous section we assume Jmax = 1
and drop the j subscript.

Our basic setup is a model in the null hypothesis. Simulating our test for this model
allows us to compare the nominal and empirical size of our test. We then generate
several models in the alternative by perturbing outcomes in the basic model for the Z = 1
subpopulation. For the basic model we define linear propensity scores r0(s) = 0.1 + 0.5s
and r1(s) = 0.5s. The binary instrument Z is a Bernoulli random variable with P (Z =
0) = P (Z = 1) = 0.5 and the continuous instrument S is distributed uniformly on the
unit interval. The base outcome α follows a mean-zero normal distribution with variance
0.5. The treatment effect is a deterministic function of V , β = −2V . As alternatives we
consider perturbations of the base outcome α as well as perturbations of the treatment
effect β. These perturbations are obtained by adding ∆α to α and ∆β to β in the Z = 1
subpopulation. The specifications for the alternatives are summarized in Table 1. The
first three alternatives consider perturbations of the base outcome, whereas alternatives
4-6 are derived from perturbations of the treatment effect. Alternatives 1 and 4 consider
the case that base outcome and treatment effect, respectively, are shifted independently
of the unobserved heterogeneity V . The perturbations generating alternatives 2 and
5 are linear functions of V . Finally, alternatives 3 and 6 are generated by perturbing
by functions of V that change sign. These alternatives are expected to be particularly
hard to detect because our test is based on the mz function which smoothes over the
unobserved heterogeneity as is apparent in the proof of Proposition 1. As bandwidths
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alternative perturbation

1 ∆α = 0.2

2 ∆α = −1
2V

3 ∆α = 40(V − 0.3) exp (−80(V − 0.3)2)
4 ∆β = 0.2
5 ∆β = −V
6 ∆β = 40(V − 0.3) exp (−80(V − 0.3)2)

Table 1: Specification of simulated alternatives.

we choose g = Cgn−
1
5 and h = Chn−

1
6 . We report results for a number of choices for

the constants Cg and Ch. We set q = 2 and choose an Epanechnikov kernel for both K
and L. The sample size is set to n = 200,400. These should be considered rather small
numbers considering the complexity of the problem. We consider the nominal levels
θ = 0.1,0.05 as these are the most commonly used ones in econometric applications. As
bound estimation has only a higher order effect we take x = 0.15 and x̄ = 0.45 as given.
To simulate the bootstrap distribution we are using B = 999 bootstrap iterations. For
each model we conduct 999 simulations. Empirical rejection probabilities are reported
in Table 2 for n = 400 and in Table 3 in the appendix for n = 200.

We discuss only the results for n = 400 in detail. Under the null hypothesis the
empirical rejection probabilities are very close to the nominal levels. While this is not
conclusive evidence that our bootstrap approach will always work, it is suggestive of the
validity of the procedure.

Alternative 1 and Alternative 2 are detected with high probability. These alternatives
are particularly easy to detect for two reasons. First, the perturbation affects a large
subpopulation so that the alternative is easy to detect due to abundance of relevant
data. Secondly, the smoothing inherent in the quantities that our test considers does
not smear out the perturbations in a way that makes the alternatives hard to detect. To
understand the first effect contrast Alternative 1 and Alternative 2 with Alternative 4 and
Alternative 5. Both pairs of alternatives arise from similar perturbations. However, the
whole subsample with Z = 1 can be used to detect the first pair. In contrast, only treated
individuals in the Z = 1 subsample provide data that helps to detect the second pair. A
back-of-the-envelope calculation reveals that on average only about 400 × 1/2 × 1/4 = 25
observations fall into the subsample with Z = 1 and D = 1. As cell sizes are observed in
applications, a lack of relevant data is a problem that can readily be accounted for when
interpreting test results. To shed light on the second effect recall that mz is derived from
smoothing outcomes over V ≤ x and V > x. Therefore, if a perturbation changes sign,
positive and negative deviations from the null will cancel each other out. This effect
is precisely what makes it so hard to detect perturbations such as those underlying
Alternative 3 and Alternative 6. Luckily, these kinds of alternatives are not what should
be expected in many applications. The problem that applied researchers have in mind
most of the time is that instruments might have a direct effect on outcomes that can
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θ = 0.10 θ = 0.05

Ch 0.50 0.75 1.00 1.25 1.50 1.75 0.50 0.75 1.00 1.25 1.50 1.75

null
Cg = 0.50 9.3 8.9 8.4 7.7 8.6 9.6 4.2 3.4 4.7 4.2 4.1 4.1
Cg = 0.75 10.1 9.9 9.4 8.2 7.7 9.3 4.8 4.5 4.0 3.3 3.6 4.0
Cg = 1.00 8.9 8.7 7.4 9.0 8.9 8.1 4.2 4.1 3.2 4.0 3.6 3.3

alternative 1
Cg = 0.50 94.3 93.8 93.7 93.6 92.8 94.7 88.5 87.1 87.2 86.7 87.7 88.4
Cg = 0.75 94.8 91.9 93.0 92.6 94.0 93.8 88.6 86.9 87.2 85.8 87.3 87.2
Cg = 1.00 94.0 93.4 94.8 93.5 93.8 93.3 86.7 88.4 89.6 87.2 87.2 89.3

alternative 2
Cg = 0.50 96.9 97.5 97.5 98.1 98.6 98.0 93.3 94.4 95.4 96.0 96.4 95.4
Cg = 0.75 96.9 97.9 97.2 97.8 97.1 97.5 93.0 95.6 94.6 94.7 94.3 95.3
Cg = 1.00 97.7 97.2 97.4 97.8 97.4 97.8 94.5 95.3 94.1 94.1 95.3 94.4

alternative 3
Cg = 0.50 8.3 8.7 7.2 9.3 8.7 8.9 3.4 3.6 3.5 4.6 4.0 4.0
Cg = 0.75 6.9 9.1 8.9 8.6 8.9 9.3 3.5 4.4 3.6 3.6 4.0 3.9
Cg = 1.00 8.3 8.2 7.9 8.8 8.9 8.7 4.0 3.7 3.7 3.7 4.6 3.9

alternative 4
Cg = 0.50 25.5 23.8 22.9 24.2 22.6 22.7 15.1 13.9 13.5 13.8 12.3 13.3
Cg = 0.75 25.1 26.3 26.1 22.3 23.3 24.7 15.0 14.6 15.0 13.1 13.3 14.5
Cg = 1.00 25.4 23.5 24.5 23.7 23.7 23.6 15.2 13.0 15.6 13.8 14.1 13.8

alternative 5
Cg = 0.50 24.3 22.5 21.5 22.7 22.8 21.8 14.9 12.9 11.9 13.8 12.0 12.4
Cg = 0.75 21.1 22.0 21.3 20.9 22.7 22.3 10.4 10.8 12.1 11.5 12.7 12.5
Cg = 1.00 21.8 21.5 21.4 23.7 21.9 22.5 13.1 12.0 11.3 12.7 12.6 12.2

alternative 6
Cg = 0.50 45.1 44.3 42.3 45.2 46.6 47.7 30.9 30.7 29.3 31.2 35.0 31.2
Cg = 0.75 45.3 43.5 44.9 44.2 45.8 44.2 32.3 31.4 32.0 30.7 33.0 30.3
Cg = 1.00 44.2 45.5 47.6 44.3 44.6 46.6 32.6 33.7 34.0 30.6 30.9 33.9

Table 2: Empirical rejection probabilities in percentage points under nominal level θ.
Sample size is n = 400.
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readily be signed by considering the economic context. In that respect, Alternative 1
and Alternative 2 are more typical of issues that applied economists worry about than
Alternative 3.

It might seem puzzling that Alternative 6 is detected much more frequently than
Alternative 3. The reason is that in Alternative 3 negative deviations in the V ≤ x
population are offset by positive deviations in the V > x population. This does not
happen in Alternative 6 as only the treated population is affected by the perturbation.

Accounting for the complexity of the problem the sample size n = 200, for which we
report results in the appendix, should be considered very small. Therefore, it is not
surprising that the deviations from the nominal size are slightly more pronounced than
in the larger sample. The deviations err on the conservative side, but that might be a
particularity of our setup. The pattern in the way alternatives are detected is similar to
the n = 400 sample with an overall lower detection rate.

Our simulations show that our approach has good empirical properties in finite sam-
ples. For the simulated model the test holds its size which indicates that the bootstrap
procedure works well. Very particular alternatives that perturb outcomes by a function
of the unobserved types that oscillates around zero are difficult to detect by our proce-
dure. Alternatives that we consider to be rather typical are reliably detected provided
that the subsample affected by the alternative is large enough.

6. Application

To illustrate the applicability of our method we now consider the effect of teenage child-
bearing on the mother’s probability of graduating from high-school. This topic has been
discussed extensively in the literature. An early survey can be found in Hoffman 1998.
To deal with the obvious endogeneity of motherhood, many authors (Ribar 1994; Hotz,
McElroy, and Sanders 2005; Klepinger, Lundberg, and Plotnick 1995) have used instru-
mental variables methods. It has been suggested that treatment effect heterogeneity is
a reason why estimated effects depend strongly on the choice of instrument (Reinhold
2007). In fact, it is very natural to assume that the effect of motherhood on graduation is
heterogeneous. For a simple economic model that generates treatment effect heterogene-
ity suppose that the time cost of child care is the same for students of different abilities
whereas the time cost of studying to improve the odds of graduating is decreasing in
ability. To translate the problem into our heterogeneous treatment model let D denote a
binary indicator of teenage motherhood and let Y denote a binary indicator of whether
the woman has obtained a high school diploma2. We consider two instruments from the
literature. The first one, henceforth labelled S, is age at first menstrual period which
has been used in the studies by Ribar 1994 and Klepinger, Lundberg, and Plotnick 1995.
This instrument acts as a random shifter of female fecundity and is continuous in nature.
Its validity is discussed briefly in Klepinger, Lundberg, and Plotnick 1995 and Levine
and Painter 2003. The second instrument, denoted by Z, is an indicator of whether the

2We do not include equivalency degrees (GED’s). There is a discussion in the literature as to what the
appropriate measure is (cf. Hotz, McElroy, and Sanders 2005).
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individual experienced a miscarriage as a teenager. Miscarriage has been used as an
unexpected fertility shock in the analysis of adult fertility choices (Miller 2011) and also
to study teenage child bearing in Hotz, Mullin, and Sanders 1997; Hotz, McElroy, and
Sanders 2005. The population studied in Hotz, McElroy, and Sanders 2005 consists of
all women who become pregnant in their teens, whereas we focus on the larger group
of all women who are sexually active in their teens. This turns out to be a crucial dif-
ference. It stands to investigate the plausibility of the assumptions I-V, CI-S and CI-Z.
Arguably, age at first menstrual period is drawn independently of V and fulfills the
instrument specific conditional independence assumption CI-S if one controls for race.
Possible threats to a linear version of CI-Z are discussed in Hotz, Mullin, and Sanders
1997. Hotz, McElroy, and Sanders 2005 conclude that the linear version of CI-Z holds in
good approximation in the population that they are considering. The most problematic
assumption to maintain is that Z is orthogonal to V . In a simplified behavioral model
teenagers choose to become pregnant based on their unobserved type and then a ran-
dom draw from nature determines how that pregnancy is resolved. This implies a sort
of maximal dependence between Z and V , i.e., teenagers select into treatment and into
Z = 1 in exactly the same way. Our test substantiates this heuristic argument by reject-
ing the null hypothesis that the assumptions I-V, CI-S and CI-Z hold simultaneously.
Furthermore, it gives instructive insights into the role that heterogeneity plays in the
failure of the assumptions.

We use data from the National Longitudinal Survey of Youth 19973 (henceforth
NLSY97) from round 1 through round 15. We only include respondents who were at
least 21 of age at the last interview they participated in. This is to ensure that we
capture our outcome variable. A miscarriage is defined as a teenage miscarriage if the
woman experiencing the miscarriage was not older than 18 at the time the pregnancy
ended. Similarly, a young woman is defined as a teenage mother if she was not older
than 18 when the child was born. We control for race for two reasons. First, this is
required to make the menarche instrument plausible. Secondly, this takes care of the
oversampling of minorities in the NLSY97 so that we are justified in using unweighed es-
timates. We remove respondents who report “mixed race” as race/ethnicity because the
cell size is too small to conduct inference. Table 4 in the appendix gives some summary
statistics for our sample. An unfortunate side effect of using the low probability event
of a teenage miscarriage as an instrument is that cell sizes can become rather small.
This makes it impossible to control for additional covariates while preserving reasonable
power. In Section 7 we briefly discuss a model that permits a much larger number of
covariates. The estimated propensity scores r̂z,j are plotted in Figure 1. For each j
the functions r̂0,j and r̂1,j are not identical almost everywhere and their ranges exhibit

3Most of the previous studies relied on data from the National Longitudinal Survey of Youth 1979
(NLSY79). In that study the date of the first menstrual period was asked for for the first time in
1984 when the oldest respondents were 27 years old. As is to be expected, a lot of respondents
had trouble recalling the date such a long time after the fact. The NLSY97 contained the relevant
question starting from the very first survey when the oldest respondents were still in their teens.
Since our method relies on a good measurement of the continuous variable the NLSY97 data is a
better choice than the NLSY79 data.

18



8 10 12 14 16 18

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

hispanic

S

p
ro
p
en
si
ty

sc
o
re
s

8 10 12 14 16 18

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

white

S
p
ro
p
en
si
ty

sc
o
re
s

8 10 12 14 16 18

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

black

S

p
ro
p
en
si
ty

sc
o
re
s

Figure 1: Probability of entering treatment conditional on age of first menstrual period
(S) plotted separately for the subpopulations with Z = 0 (no miscarriage as
a teenager, dashed line) and Z = 1 (miscarriage as a teenager, solid line).
Plotted with q = 1 and bandwidth g = 2.00.

considerable overlap. We require the same properties from their population counterparts
to have good power. It should be noted at this point that the shape of the estimated
propensity scores is already indicative of the way that miscarriage fails as an instrument.
In a naive telling of the story, the propensity score for women who had a teenage mis-
carriage is shifted upward, contrary to what we observe in Figure 1. Our test rejects if,
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Figure 2: Difference in expected outcomes conditional on probability of treatment be-
tween the subpopulations with Z = 0 and Z = 1. Plotted with q = 1 and
bandwidths h = 0.25 and g = 2.00.

keeping the probability of treatment fixed, the difference between the outcomes of the
subpopulation with Z = 0 and the subpopulation with Z = 1 is large. Figure 2 plots
m̂0,j(x) − m̂1,j(x) for all values of j. The dashed lines indicate our estimates of xL,j
and xU,j . We observe that the estimated outcome difference is positive and decreasing
in the probability of treatment x. This means that for a low treatment probability x
women who have a miscarriage do much worse in terms of high school graduation than
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do women who do not have a miscarriage. For larger x, however, this difference in
outcomes becomes smaller. This feature is in line with our story-based criticism of the
instrument. Suppose that the underlying heterogeneity selects women into pregnancy
rather than into motherhood. For concreteness think of the heterogeneity as the amount
of unprotected sex that a woman has and suppose that this variable is highly correlated
with outcomes. In a Bayesian sense a woman who has a miscarriage reveals herself to
be of the type that is prone to have unprotected sex. In that sense she is very similar
to women with a high probability of becoming pregnant and carrying the child to term
and very different from women who become pregnant only with small probability. To
turn this eye-balling of the plots in Figure 2 into a rigorous argument we now take into
account sampling error by applying our formal testing procedure. For both the first
and the second stage regression we choose an Epanechnikov kernel. To have good power
against local alternatives we choose q = 2. To keep the problem tractable and to reduce
the number of parameters we have to choose, we set gj = g and hj = h for all j. We then
run the test for a large number of bandwidth choices letting h vary between 0.1 and
0.5 and letting g vary between 1 and 3. To determine the bounds of integration xj and
x̄j we use the naive sample equivalence approach suggested in Section 4 with different
values for cδ. Table 5 in the appendix reports results for cδ = 0.05 and Table 6 reports
results for cδ = 0.075. For these two choices of cδ the test rejects at moderate to high
significance levels for a large range of smoothing parameter choices.

Our approach can also be used to investigate other instruments that have been sug-
gested in the literature on teen pregnancies. For example, Z or S could be based on
local variation in abortion rates or in availability of fertility related health services (cf.
Ribar 1994; Klepinger, Lundberg, and Plotnick 1995).

7. Conclusion

So far, inference about heterogeneous treatment effect models mostly relies on theoretical
considerations about the relationship between instruments and unobserved individual
characteristics that are not investigated empirically. This paper shows that under the
assumption that a binary and a continuous instrument are available, a parameter is
overidentified. This provides a way to test whether the model is correctly specified. The
overidentification result is not merely a theoretical curiosity, it has bite when applied
to real data. We illustrate this by applying our method to a dataset on teenage child
bearing and high school graduation.

Apart from suggesting a new test, we also contribute to the statistical literature by
developing testing theory that with slight modifications can be applied to other settings
where index sufficiency holds under the null hypothesis. We accommodate an index that
is not observed and enters the test statistic as a nonparametrically generated regressor.
This setting is encountered, e.g., when testing the validity of the matching approach
along the lines suggested in Heckman et al. 1996 and Heckman et al. 1998. Heckman
et al. 1998 employ a parametric first-stage estimator. As a result, their second-stage
estimator is, to first order, identical to the oracle estimator. Our analysis suggests that
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replacing the parametric first-stage estimator by a non- or semiparametric estimator is
not innocuous. In particular, it can affect the second-stage bandwidth choice and the
behavior of the test under local alternatives.

A theoretical analysis of our wild bootstrap procedure is beyond the scope of this
paper. Developing resampling methods for models with nonparametrically generated
regressors is an interesting direction for future research. We hope to corroborate the
findings in our exploratory simulations by theoretical results in the future.

To apply our method to a particular data set, additional considerations are necessary.
In many applications the validity of an instrument is only plausible provided that a large
set of observed variables is controlled for. It is hard to accommodate a rich covariate
space in a completely nonparametric model. This is partly due to a curse of dimensional-
ity. Another complicating factor is that our testing approach has good power only if, for
fixed covariate values, the instruments provide considerable variation in participation.
This is what allows us to test the model for a wide range of unobserved types. Typi-
cally, however, instruments become rather weak once the model is endowed with a rich
covariate space. These issues can be dealt with by imposing a semiparametric model.
As an example, consider the following simple variant of a model suggested in Carneiro
and S. Lee 2009. We let X denote a vector of covariates with possibly continuous com-
ponents and assume that the unobserved type V is independent of X. Treatment status
is determined by D = 1{R≥V } with R = r1(X) + r2(S,Z). The unobserved type affects
the treatment effect and not the base outcome. The observed outcome is

Y = µα(X) +D[µβ(X) + λ(V )].

The functions r1, µα and µβ are known up to a finite dimensional parameter. A semi-
parametric version of our test would compare E[Dλ(V ) ∣ R = x,Z] in the Z = 0 and
Z = 1 subpopulations. The fact that X is uninformative about V and the additive struc-
ture allow for an overidentification result that uses variation in X to extend the interval
on which a function is overidentified. This contrasts sharply with Proposition 1 which
relies on variation in S keeping the value of covariates fixed. In terms of asymptotic
rates this semiparametric model with a large covariate space is not harder to estimate
than our fully nonparametric model with a small covariate space and there is no curse
of dimensionality.

Appendix

A. Definition of estimators

Let Lg(⋅) = g−1L(⋅/g) and Kh(⋅) = h−1K(⋅/h). For the first-stage estimator set r̂z,j(s) = a0,
where a0 satisfies

(a0, . . . , aq) ∈ arg min(a0,...,a1)∈Rq+1 ∑
i∶Zi=z,Ji=j

(Yi − a0 − a1(Si − s) −⋯

− aq(Si − s)q)
2
Lg(Si − s).
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For the second stage estimator set m̂z,j = b0, where b0 satisfies

(b0, b1) ∈ arg min(b0,b1)∈R2 ∑
i∶Zi=z,Ji=j

(Yi − b0 − b1(r̂z,j(Si) − x))
2
Kh(r̂z,j(Si) − x).

B. Proofs

Proof of Proposition 2

The proposition follows from a sequence of lemmas. We first prove that the second-
stage regression function and the error terms from the first- and second-stage regressions
behave nicely under our assumptions about the primitives of the model.

Assumption 3: For each z ∈ {0,1}

(i) mz is twice continuously differentiable on (xL, xU).

(ii) there is a positive ρ such that Ez[exp(ρ ∣ζ ∣) ∣ S] and Ez[exp(ρ ∣ε∣) ∣ S] are bounded,

(iii) σ2
ζ,z(x) = Ez[ζ2 ∣ rz(S) = x], σ2

ε,z(x) = Ez[ε2 ∣ rz(S) = x], and σεζ,z(x) = Ez[εζ ∣
rz(S) = x] are continuous on (xL, xU).

Lemma 1
Assumption 1 is sufficient for Assumption 3.

Proof The lemma follows from plugging in the structural treatment model into the
observed quantities and arguing similarly to the proof of Proposition 1. ◻

In the next lemma we give a complete description of the relevant properties of our first-
stage estimator. We provide an explicit expression of a smoothed version of the first-stage
estimator that completely characterizes the impact of estimating the regressors on the
asymptotic behavior of the test statistic.

Lemma 2 (First stage estimator)
The first stage local polynomial estimator can be written as

r̂z(s) = ρn(s) +Rn,

where

sup
s

∣Rn∣ = Op
⎛
⎝
gq+1

√
logn

ng
+ logn

ng

⎞
⎠

and ρn is given explicitly in equation (8). Wpa1 ρn is contained in a function class R that
for some constant K, any ξ > 5

4η
∗− 1

4 and all ε > 0 can be covered by K exp(nξε−1/2) ε-balls
with respect to the sup norm. The true propensity score is contained in R. Furthermore,

−m′(x)∫ Kh(rz(s) − x)(r̂z(s) − rz(s))fS∣Z=z(s)ds =
1

n
∑
i∶Zi=z

ψ
(2)
n,z,i(x) + op(n

−1/2),
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with ψ
(2)
n,z,i as defined in Lemma 3. Moreover,

sup
s

∣r̂z(s) − rz(s)∣ = Op (n−
1
2
(1−η∗)) .

Proof Throughout, condition on the subsample with Z = z. Let e1 = (1,0, . . . ,0)⊺ and
µ(t) = (1, t, . . . , tq)⊺. Furthermore, define

M̄n(s) = Eµ(Si − s
g

)µ⊺ (Si − s
g

)Lg(Si − s).

Since we defined g in terms of the total sample size it behaves like a random variable

when we work conditionally on the subsample Z = z. We have g = ann−η
∗

z +Op (n−
1
2
−η∗)

for a bounded deterministic sequence an. From a straightforward extension of standard
arguments for the case of a deterministic bandwidth (c.f. Masry 1996) it can be shown
that r̂z can be written as

r̂z(s) = ρn(s) +Rn,

where

ρn(s) = rz(s) + gq+1bn(s) + e⊺1M̄−1
n (s) 1

n
∑
i

µ(Si − s
g

)Lg(Si − s)ζi, (8)

bn is a bounded function and Rn has the desired order. To show that the desired entropy
condition holds, note that M̄n is a deterministic sequence that is bounded away from
zero so that it suffices to derive an entropy bound for the functions

1

n
∑
i

µ(Si − s
g

)Lg(Si − s)ζi.

Wpa1 these functions have a second derivative that is bounded by
√
n−1g5 logn. The

desired bound on the covering number then follows from a straightforward corollary to
Theorem 2.7.1 in Van der Vaart and Wellner 1996. To prove the statement about the
smoothed first stage estimator note that under our assumptions we only have to consider
the smoothed error term

1

n
∑
i∶Zi=z

ψ∗n(x,Si)ζi,

where

ψ∗n(x, s) = −m′(x)∫ Kh(rz(u) − x)e′1M̄−1
n (u)µ(s − u

g
)Lg(s − u)fS∣Z=z(u)du

= −m′(x)∫ Kh(rz(s − gu) − x)e′1M̄−1
n (s − gu)µ(u)L(u)fS∣Z=z(s − gu)du.

Since fS∣Z=z is bounded and has a bounded derivative there is a function Dn(s, u)
bounded uniformly in s, u and x satisfying

M̄−1
n (s − ug)f(s − ug) −M−1 = gDn(s, u).
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By standard kernel smoothing arguments

1

nz
∑
i∶Zi=z

{∫ Kh(rz(Si − ug) − x)Dn(Si, u)µ(u)L(u)du} ζi = Op
⎛
⎝

√
logn

nh

⎞
⎠
.

Noting that L∗(u) = e⊺1M−1µ(u)L(u) we have

1

n
∑
i∶Zi=z

ψ∗n(x,Si)ζi =
1

n
∑
i∶Zi=z

ψ
(2)
n,z,i(x) + op(n

−1/2).
◻

Next, we give an asymptotic expansion of the integrand in (4) up to parametric order.
The result states that the integrand can be characterized by a deterministic function that
summarizes the deviation from index sufficiency under the alternative and an asymptotic
influence function calculated under the hypothetical model Mnull.

Lemma 3 (Expansion)
Uniformly in x

m̂0(x) − m̂1(x) = ∆K,h(x) +
1

n
∑
i

ψn,i(x) + op(n−
1/2)

where ψn,i = ψ(1)n,i + ψ
(2)
n,i and ψ

(j)
n,i = ∑z=0,1ψ

(j)
n,z,i, j = 1,2,

ψ
(1)
n,z,i(x) =

1{Zi=z}(−1)z

pzfR,z(x)
Kh(rz(Si) − x)εi,

ψ
(2)
n,z,i(x) = −m

′(x)
1{Zi=z}(−1)z

pzfR,z(x) ∫
Kh(rz(Si − gu) − x)L∗(u)du ζi.

Here εi = Y null − E[Y null ∣ rZ(S)], i.e, εi is the residual under the hypothetical model
Mnull, and L∗ denotes the equivalent kernel of the first step local polynomial regression.

Proof The statement follows from an expansion of m̂z. Work conditionally on the
subsample with Z = z and let nz denote the number of observations in the subsample.
To avoid confusion, we write hn for the second-stage bandwidth, as h will sometimes
denote a generic element of a set of bandwidths. Let hz = n−ηz . Note that for C large
enough hn is contained in the set

Hnz = {h′ ∶ ∣h′ − hz ∣ ≤ Cn−1/2−η
z }

wpa1. Let e1 = (1,0)⊺, µ(t) = (1, t)⊺ and

M r
h(x) =

1

n
∑
i∶Zi=z

µ((r(Si) − x)/h)µ⊺((r(Si) − x)/h)Kh(r(Si) − x).

For arbitrary Rn-valued random variables W define the local linear smoothing operator

Krh,x,zW = e⊺1 (M r
h(x))

−1 1

nz
∑
i∶Zi=z

Wiµ(r(Si) − x
h

)Kh(r(Si) − x).
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Decompose the estimator as

m̂z(x) =Kr̂hn,x,zY
n +Kr̂hn,x,z {(Y

n − Y null) −E[Y n − Y null ∣ S,Z]}
+ Kr̂hn,x,z E[Y n − Y null ∣ S,Z]

=J1 + J2 + J3.

We now proceed to show that

J1 =m(x) + b1,n(x) +
1

n
∑
i

{ψ(1)n,z,i(x) + ψ
(2)
n,z,i(x)} + op(n

−1/2),

J2 = op(n−
1/2),

J3 = b2,n(x) + ∫ E[ϕn(S,Z) ∣ rZ(S) = x + hr,Z = z]K(r)dr + op(n−
1/2),

where bj,n, j = 1,2, are independent of z and all order symbols hold uniformly in x. For
the J1 term we apply the approach from Mammen, Rothe, and Schienle 2012 (MRS)
and expand J1 around the oracle estimator. Write

J1 = Kr̂hn,x,zεi +K
r̂
hn,x,zm(rz(Si)) = J1,a + J1,b.

For the J1,a term note that e⊺1 (M r
h(x))

−1
is stochastically bounded by a uniform over

Hnz version of Lemma 2 in MRS. For ρn as defined in Lemma 2 write

1

nz
∑
i∶Zi=z

Khn(r̂z(Si) − x)εi −
1

nz
∑
i∶Zi=z

Khn(rz(Si) − x)εi

= 1

nz
∑
i∶Zi=z

(Khn(r̂(Si) − x) −Khn(ρn(Si) − x)) εi

+ 1

nz
∑
i∶Zi=z

(Khn(ρn(Si) − x) −Khn(rz(Si) − x)) εi = I1 + I2.

By the mean-value theorem I1 = op(n−1/2). For I2 note that Ez[ε ∣ S] = 0 so that following
the arguments in the proof of Lemma 2 in MRS

sup
x;h∈Hnz

P
⎛
⎝

sup
r1,r2∈R

RRRRRRRRRRR

1

nz
∑
i∶Zi=z

(Kh(r1(Si) − x) −Kh(r2(Si) − x)) εi
RRRRRRRRRRR
> C∗n−κ1

⎞
⎠
≤ exp(−cnc),

where κ1 is defined in MRS and C∗ is a large constant. To check that κ1 > 1/2 note
that Theorem 1 in MRS allows bandwidth exponents in an open set so that it suffices to
check the conditions for hz. It is now straightforward to show that a polynomial number
of points in [x, x̄] ×Hnz provide a good enough approximation to ensure that

sup
x,h∈Hnz ,ρ∈R

RRRRRRRRRRR

1

nz
∑
i∶Zi=z

(Kh(ρ(Si) − x) −Kh(rz(Si) − x)) εi
RRRRRRRRRRR
= Op(n−κ1)
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and hence I2 = op(n−1/2). Similar arguments apply to

1

nz
∑
i∶Zi=z

r̂z(Si) − x
hn

Khn(r̂z(Si) − x)εi.

Therefore, J1,a can be replaced by its oracle counterpart at the expense of a remainder
term that vanishes at the parametric rate:

J1,a =
1

n
∑
i

ψ
(1)
n,z,i(x) + op(n

−1/2).

Note that in the last step we also replaced nz by pzn. Decompose J1,b as in the proof of
Theorem 1 in MRS. It is straightforward to extend their results to hold uniformly over
bandwidths in Hnz . Deduce that

J1,b =m(x) + b1,n(x) −m′(x)∫ Khn(rz(s) − x)(r̂z(s) − rz(s))fS∣Z=z(s)ds + op(n−
1/2).

for a sequence of functions b1,n that does not depend on the design. The previous
results use standard results about the Bahadur representation of the oracle estimator
(cf. Masry 1996; Kong, Linton, and Xia 2010). The desired representation for J1 follows
from Lemma 2. For the J2 term apply Lemma 2 in MRS in a similar way as described
above to argue that

J2 −Krzhn,x,z {(Y
n − Y null) −E[Y n − Y null ∣ S,Z]} = J2 − J∗2 = op(n−

1/2).

By standard kernel smoothing arguments J∗2 = op(n−1/2). For the J3 term let Ai =
E[Y n

i − Y null
i ∣ Si, Zi] and consider the behavior of the terms

1

nz
∑
i∶Zi=z

Ai (
r̂z(Si) − x

hn
)
a

Khn(r̂z(Si) − x), a = 0,1.

We focus on a = 0. The argument for the other case is similar. Let K ′
h(⋅) = h−1K ′(⋅/h).

For any r̃ (pointwise) between r̂z and rz

sup
x

RRRRRRRRRRR

1

nz
∑
i∶Zi=z

K ′
hn(r̃(Si) − x)

RRRRRRRRRRR
≤ C sup

x

1

nzhz
∑
i∶Zi=z

1{∣rz(Si)−x∣≤Chz} = Op(1)

for a positive constant C. Noting that maxi≤n ∣Ai∣ = Op(cn) it is now easy to see that

1

nz
∑
i∶Zi=z

AiKhn(r̂z(Si) − x)

= 1

nz
∑
i∶Zi=z

Ai [Khn(rz(Si) − x) +K ′
hn(r̃(Si) − x)

r̂z(Si) − rz(Si)
hn

]

= 1

nz
∑
i∶Zi=z

AiKhn(rz(Si) − x) + op(n−
1/2)
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uniformly in x. Let M = ∫ µ(t)µ⊺(t)K(t)dt, Mn =M rz
hn

and M̄n = EMn. By Lemma 2
in Mammen, Rothe, and Schienle 2012 and standard arguments we have

M r̂z
hn

(x) − fR∣Z=zM =M r̂z
hn

(x) −Mn(x) +Mn(x) − M̄n(x) + M̄n(x) − fR∣Z=z(x)M

=Op
⎛
⎝
n−

1
2
(1−3η) +

√
logn

nhn
+ hn

⎞
⎠

uniformly in x. Therefore,

J3 − f−1
R∣Z=z(x)

1

nz
∑
i∶Zi=z

AiKhn(rz(Si) − x) = J3 + J∗3 = op(n−
1/2).

It is straightforward to show that under our assumptions J∗3 can be replaced by its
expectation at the expense of an uniform op(n−1/2) term. Since

E[Y n − Y null ∣ S,Z] = E[Y n − Y null ∣ rZ(S)] + ϕn(S,Z),

and since fR∣Z=z has a bounded derivative

Ez J
∗
3 =∫ E[Y n − Y null ∣ rZ(S) = x + hnr]K(r)dr

+∫ E[ϕn(S,Z) ∣ rZ(S) = x + hnr,Z = z]K(r)dr + o(n−1/2).

Here we keep implicit that we are treating hn as a constant in the above expectations,
i.e., we are integrating with respect to the marginal measure of (Z,S). The conclusion
follows by noting that the first term on the right-hand side is independent of z. ◻

Plugging in from Lemma 3 gives an asymptotic expansion of the test statistic.

Lemma 4

Tn =Tn,a + Tn,b + ∫ ∆2
K,h(x)dx + op(n

√
h),

where

Tn,a =
2

n2∑
i<j
∫ ψn,i(x)ψn,j(x)dx and Tn,b =

1

n2 ∫ ∑
i

ψ2
n,i(x)dx.

Proof Plug in from Lemma 3, expand the square and inspect each term separately. ◻

Lemma 5 (Variance)
For Tn,a as defined in Lemma 4

var(Tn,a) = n−2h−1V + o (n−2h−1) and

n
√
hTn,a

d→N(0, V ).
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Proof For the first part of the lemma, note that

∫ Kh(rz(s − gu) − x)L∗(u)du = ∫ {Kh(rz(s) − x) +K ′(χ1/h)∂srz(χ2)u
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≡a(s,u,x)

g

h2
}L∗(u)du,

where χ1 is an intermediate value between rz(s − hu) − x and rz(s) − x, and χ2 is an
intermediate value between s − hu and s. As K and rz have bounded derivatives

ã(r, x) = E [∫ a(S,u, x)L∗(u)du ∣ rz(S) = r]

is a bounded function. By standard U-statistic arguments

var
⎛
⎝

2∑
i<j
∫ ψn,i(x)ψn,j(x)dx

⎞
⎠
= 4∑

i<j
E [∫ ψn,i(x)ψn,j(x)dx]

2

= 4(n
2
)∫ h{E[ψn,1(x)ψn,1(x + hx′)]}

2
dx′ dx.

Note that

E[ψn,1(x)ψn,1(x + hx′)] = ∑
z∈{0,1}

E[ψn,z,1(x)ψn,z,1(x + hx′)].

We consider here only one of the terms composing E[ψn,z,1(x)ψn,z,1(x + hx′)]. For the
other terms similar arguments apply. Let

q(x) = −
m′(x)1{Z=z}
pzfR∣Z=z

∫ Kh(rz(S − gu) − x)L∗(u)du.

Using Ez[ζ2 ∣ rZ(S) = x] = x(1 − x) we have

h[E q(x)q(x + hx′)ζ2
1 ]

=hE [
1{Z=z}m

′
z(x)m′

z(x + hx′)
p2
zfR∣Z=z(x)fR∣Z=z(x + hx′)

(Kh(rz(S) − x) +
g

h2
ã(rz(S), x))⋯

⋯(Kh(rz(S) − x − hx′) +
g

h2
ã(rz(S), x − hx′)ζ2]

=x(1 − x)[m
′
z(x)]2

pzfR∣Z=z(x) ∫ K(y)K(x′ − y)dy + o(1) = x(1 − x)[m
′
z(x)]2

pzfR∣Z=z(x)
K(2)(x′) + o(1).

For the second part of the lemma it suffices to check the two conditions of Theorem 2.1
in de Jong 1987. Let Wij = 2n−1

√
h ∫ ψi(x)ψj(x) and show that

var−1 (∑
i<j
Wij) max

1≤i≤n
∑

1≤j≤n
var(Wij) → 0

var−2 (∑
i<j
Wij)E{∑

i<j
Wij}

4
→ 3.
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The first condition holds trivially. To show that the second condition is satisfied note
that var(∑i<jWij) converges to a constant. It is easy to see that asymptotically only

terms of the form EW 2
ijW

2
kl with {i, j}∩{k, l} = ∅ will contribute to E [∑i<jWij]

4
. There

are

(4

2
)
(n

2
) [(n

2
) − 1]

2!
≈ 3

4
n4

such terms when expanding E [∑i<jWij]
4
. The condition then follows by noting that

var (∑
i<j
Wij) = ∑

i<j
EW 2

ij

and that EW 2
ijW

2
kl factors as EW 2

ij EW 2
kl. ◻

We now apply standard U-statistic theory. As the next two lemmas show, Tn,b con-
tributes to the asymptotic bias and Tn,b contributes to the asymptotic variance.

Lemma 6 (Bias)
For Tn,b as defined in Lemma 4

n
√
hTn,b =

1√
h
γn + op(1),

where γn is a deterministic sequence converging to γ.

Proof Write

n
√
hTn,b =

√
h

n
∑
i
∫ ψ2

n,i(x)dx = E{
√
h

n
∑
i
∫ ψ2

n,i(x)dx} + op(1) ≡ γn + op(1).

Define the function a as in the proof for Lemma 5. To compute γn write

ψ2
n,z,i(x) =

1{Z=z}

p2
zf

2
R,z(x)

{K2
h(rz(S) − x)ε2 + [m′(x)]2K2

h(rz(S) − x)ζ2

− 2m′(x)Kh(rz(S) − x)εζ}

+
1{Z=z}

p2
zf

2
R,z(x)

( g
h2 ∫ g(S,u, x)L∗(u)du)

2

ζ2+

1{Z=z}

p2
zf

2
R,z(x)

g

h2
(∫ g(S,u, x)L∗(u)du)Kh(rz(S) − x)εζ

=Γ1(S,x) + Γ2(S,x) + Γ3(S,x).

Note that
h ∑
z=0,1

E∫ Γ1(S,x)dx→ γ,
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where we kept the dependence of Γ1 on z implicit. Now show that the other terms
entering γn vanish. To show that h∑z=0,1 E ∫ Γ3(S,x)dx→ 0 it suffices to show that

Ez [(∫ g(S,u, x)L∗(u)du) εζ ∣ rz(S)]

is bounded. This follows immediately from the fact that ∫ g(S,u, x)L∗(u)du is bounded
and hence

Ez [∫ g(S,u, x)L∗(u)du εζ ∣ rz(S)] ≾ Ez[∣εζ ∣ ∣ rz(S)] ≤
√
σ2
ε (rz(S)) ≤ C

for some constant C. For h∑z=0,1 E ∫ Γ2(S,x)dx argue similarly. ◻

Proof of Proposition 3

Proof Using the expansion from Lemma 3 and applying standard smoothing arguments
to the stochastic term we get that for a small enough open set Gx ⊃ [x, x̄]

sup
x∈Gx

∣m̂0(x) − m̂1(x)∣2 = O ( 1

n
√
h
+ g2(q+1)) +Op (

logn

nh
) + op (

1

n
) .

Write
Tn(xn, x̄n) − Tn(x, x̄) = Tn(xn, x) − Tn(x̄, x̄n).

We can bound Tn(xn, x) by

∣xn − x∣ sup
x∈Gx

∣m̂0(x) − m̂1(x)∣ = op(n
√
h).

Similarly, we can find a bound for Tn(x̄, x̄n). ◻

C. Tables
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θ = 0.10 θ = 0.05

Ch 0.50 0.75 1.00 1.25 1.50 1.75 0.50 0.75 1.00 1.25 1.50 1.75

null
Cg = 0.50 6.7 5.7 5.8 8.9 7.0 7.9 2.7 2.6 1.9 4.6 3.3 2.8
Cg = 0.75 9.2 6.4 8.2 6.5 6.4 7.0 4.6 2.0 3.2 2.8 3.2 2.8
Cg = 1.00 6.4 6.7 8.1 6.8 8.8 7.1 2.2 2.9 2.9 3.1 3.2 2.8

alternative 1
Cg = 0.50 65.8 65.8 67.7 63.8 65.3 65.7 50.5 49.9 53.2 47.5 50.6 50.8
Cg = 0.75 65.1 65.8 64.8 65.3 65.8 65.9 49.7 47.7 49.9 49.5 50.1 52.3
Cg = 1.00 66.3 65.0 66.4 67.9 64.8 66.5 50.4 51.2 50.3 51.1 50.9 49.2

alternative 2
Cg = 0.50 82.4 79.9 80.2 80.5 81.6 78.0 67.9 66.8 68.4 67.3 68.6 65.5
Cg = 0.75 79.2 81.0 79.9 80.6 80.4 79.8 66.1 68.3 68.0 68.2 66.5 65.8
Cg = 1.00 80.9 81.4 80.1 80.3 80.3 78.2 68.4 67.5 66.1 66.9 64.0 64.7

alternative 3
Cg = 0.50 6.9 8.1 8.8 7.7 5.0 6.7 2.3 3.9 3.3 4.2 1.8 3.2
Cg = 0.75 7.2 8.1 6.8 7.4 6.7 6.9 2.9 2.6 3.7 3.9 2.1 3.0
Cg = 1.00 7.7 8.0 6.2 6.7 7.8 7.1 2.6 3.3 3.1 2.3 3.5 2.6

alternative 4
Cg = 0.50 15.0 10.5 15.1 14.0 13.1 12.2 7.0 4.8 6.5 5.7 7.0 6.6
Cg = 0.75 12.5 13.9 13.8 12.9 13.6 13.3 5.2 6.2 7.0 7.0 6.3 5.9
Cg = 1.00 10.0 15.7 14.1 15.7 11.5 14.2 4.2 6.9 7.4 9.5 4.7 6.7

alternative 5
Cg = 0.50 12.0 12.4 15.5 13.5 14.2 13.2 5.7 4.6 7.4 4.9 5.8 6.0
Cg = 0.75 13.4 14.5 12.5 12.1 12.0 11.1 6.0 6.9 5.7 4.2 5.3 5.7
Cg = 1.00 12.2 14.3 13.1 12.6 12.9 12.2 5.3 5.8 5.7 5.9 6.4 6.2

alternative 6
Cg = 0.50 22.5 23.0 22.9 24.0 21.6 23.1 12.3 12.4 11.2 14.3 10.7 12.8
Cg = 0.75 23.3 20.6 25.3 23.5 23.3 20.0 12.5 11.4 13.2 12.0 13.5 12.1
Cg = 1.00 22.0 22.0 20.9 25.7 24.0 20.8 11.7 11.6 9.9 13.4 12.7 9.9

Table 3: Simulation. Empirical rejection probabilities in percentage points under nomi-
nal level θ. Sample size is n = 200.
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D Y

Race Z n mean sd mean sd

black 0 787 0.19949 0.3999 0.8183 0.3858
1 67 0.26866 0.4466 0.6269 0.4873

hispanic 0 549 0.18033 0.3848 0.7687 0.4221
1 36 0.27778 0.4543 0.5278 0.5063

white 0 1394 0.07389 0.2617 0.8479 0.3592
1 77 0.20779 0.4084 0.6234 0.4877

Table 4: Teenage child bearing (D) and high-school graduation (Y ).
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g h Tn x1 x̄1 x2 x̄2 x3 x̄3 P (> Tn) test result

1 1.00 0.15 0.086 0.03 0.32 0.01 0.21 0.05 0.46 0.225 no rejection
2 1.50 0.15 0.053 0.03 0.27 0.03 0.18 0.05 0.41 0.224 no rejection
3 2.00 0.15 0.084 0.03 0.21 0.02 0.15 0.05 0.36 0.059 *
4 2.50 0.15 0.054 0.04 0.19 0.02 0.13 0.11 0.27 0.012 **
5 3.00 0.15 0.022 0.02 0.18 0.05 0.11 0.13 0.19 0.092 *
6 1.00 0.20 0.064 0.03 0.32 0.01 0.21 0.05 0.46 0.060 *
7 1.50 0.20 0.042 0.03 0.27 0.03 0.18 0.05 0.41 0.084 *
8 2.00 0.20 0.067 0.03 0.21 0.02 0.15 0.05 0.36 0.010 **
9 2.50 0.20 0.043 0.04 0.19 0.02 0.13 0.11 0.27 0.010 **

10 3.00 0.20 0.019 0.02 0.18 0.05 0.11 0.13 0.19 0.083 *
11 1.00 0.25 0.045 0.03 0.32 0.01 0.21 0.05 0.46 0.012 **
12 1.50 0.25 0.037 0.03 0.27 0.03 0.18 0.05 0.41 0.036 **
13 2.00 0.25 0.051 0.03 0.21 0.02 0.15 0.05 0.36 0.008 ***
14 2.50 0.25 0.035 0.04 0.19 0.02 0.13 0.11 0.27 0.025 **
15 3.00 0.25 0.017 0.02 0.18 0.05 0.11 0.13 0.19 0.090 *
16 1.00 0.30 0.040 0.03 0.32 0.01 0.21 0.05 0.46 0.010 **
17 1.50 0.30 0.035 0.03 0.27 0.03 0.18 0.05 0.41 0.036 **
18 2.00 0.30 0.044 0.03 0.21 0.02 0.15 0.05 0.36 0.021 **
19 2.50 0.30 0.030 0.04 0.19 0.02 0.13 0.11 0.27 0.022 **
20 3.00 0.30 0.015 0.02 0.18 0.05 0.11 0.13 0.19 0.080 *
21 1.00 0.35 0.039 0.03 0.32 0.01 0.21 0.05 0.46 0.005 ***
22 1.50 0.35 0.033 0.03 0.27 0.03 0.18 0.05 0.41 0.024 **
23 2.00 0.35 0.041 0.03 0.21 0.02 0.15 0.05 0.36 0.014 **
24 2.50 0.35 0.029 0.04 0.19 0.02 0.13 0.11 0.27 0.018 **
25 3.00 0.35 0.015 0.02 0.18 0.05 0.11 0.13 0.19 0.064 *
26 1.00 0.40 0.038 0.03 0.32 0.01 0.21 0.05 0.46 0.003 ***
27 1.50 0.40 0.033 0.03 0.27 0.03 0.18 0.05 0.41 0.021 **
28 2.00 0.40 0.040 0.03 0.21 0.02 0.15 0.05 0.36 0.007 ***
29 2.50 0.40 0.028 0.04 0.19 0.02 0.13 0.11 0.27 0.011 **
30 3.00 0.40 0.015 0.02 0.18 0.05 0.11 0.13 0.19 0.064 *
31 1.00 0.50 0.038 0.03 0.32 0.01 0.21 0.05 0.46 0.003 ***
32 1.50 0.50 0.033 0.03 0.27 0.03 0.18 0.05 0.41 0.012 **
33 2.00 0.50 0.040 0.03 0.21 0.02 0.15 0.05 0.36 0.012 **
34 2.50 0.50 0.029 0.04 0.19 0.02 0.13 0.11 0.27 0.005 ***
35 3.00 0.50 0.015 0.02 0.18 0.05 0.11 0.13 0.19 0.065 *

Table 5: Test results for varying bandwidths and cδ = 0.050. (*) reject at 0.10 level,
(**) reject at 0.05 level, (***) reject at 0.01 level.
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g h Tn x1 x̄1 x2 x̄2 x3 x̄3 P (> Tn) test result

1 1.00 0.15 0.057 0.06 0.29 0.03 0.18 0.07 0.44 0.170 no rejection
2 1.50 0.15 0.033 0.06 0.24 0.05 0.15 0.08 0.39 0.208 no rejection
3 2.00 0.15 0.066 0.06 0.19 0.04 0.13 0.07 0.33 0.042 **
4 2.50 0.15 0.037 0.06 0.16 0.04 0.10 0.13 0.25 0.011 **
5 3.00 0.15 0.009 0.04 0.16 0.07 0.09 0.16 0.16 0.114 no rejection
6 1.00 0.20 0.041 0.06 0.29 0.03 0.18 0.07 0.44 0.038 **
7 1.50 0.20 0.028 0.06 0.24 0.05 0.15 0.08 0.39 0.108 no rejection
8 2.00 0.20 0.048 0.06 0.19 0.04 0.13 0.07 0.33 0.009 ***
9 2.50 0.20 0.029 0.06 0.16 0.04 0.10 0.13 0.25 0.014 **

10 3.00 0.20 0.009 0.04 0.16 0.07 0.09 0.16 0.16 0.101 no rejection
11 1.00 0.25 0.033 0.06 0.29 0.03 0.18 0.07 0.44 0.011 **
12 1.50 0.25 0.025 0.06 0.24 0.05 0.15 0.08 0.39 0.044 **
13 2.00 0.25 0.034 0.06 0.19 0.04 0.13 0.07 0.33 0.012 **
14 2.50 0.25 0.023 0.06 0.16 0.04 0.10 0.13 0.25 0.020 **
15 3.00 0.25 0.008 0.04 0.16 0.07 0.09 0.16 0.16 0.113 no rejection
16 1.00 0.30 0.031 0.06 0.29 0.03 0.18 0.07 0.44 0.010 **
17 1.50 0.30 0.024 0.06 0.24 0.05 0.15 0.08 0.39 0.036 **
18 2.00 0.30 0.031 0.06 0.19 0.04 0.13 0.07 0.33 0.015 **
19 2.50 0.30 0.020 0.06 0.16 0.04 0.10 0.13 0.25 0.023 **
20 3.00 0.30 0.007 0.04 0.16 0.07 0.09 0.16 0.16 0.138 no rejection
21 1.00 0.35 0.030 0.06 0.29 0.03 0.18 0.07 0.44 0.005 ***
22 1.50 0.35 0.024 0.06 0.24 0.05 0.15 0.08 0.39 0.024 **
23 2.00 0.35 0.029 0.06 0.19 0.04 0.13 0.07 0.33 0.017 **
24 2.50 0.35 0.018 0.06 0.16 0.04 0.10 0.13 0.25 0.013 **
25 3.00 0.35 0.007 0.04 0.16 0.07 0.09 0.16 0.16 0.124 no rejection
26 1.00 0.40 0.030 0.06 0.29 0.03 0.18 0.07 0.44 0.008 ***
27 1.50 0.40 0.033 0.03 0.27 0.03 0.18 0.05 0.41 0.020 **
28 2.00 0.40 0.029 0.06 0.19 0.04 0.13 0.07 0.33 0.016 **
29 2.50 0.40 0.028 0.04 0.19 0.02 0.13 0.11 0.27 0.005 ***
30 3.00 0.40 0.015 0.02 0.18 0.05 0.11 0.13 0.19 0.076 *
31 1.00 0.50 0.038 0.03 0.32 0.01 0.21 0.05 0.46 0.001 ***
32 1.50 0.50 0.033 0.03 0.27 0.03 0.18 0.05 0.41 0.012 **
33 2.00 0.50 0.040 0.03 0.21 0.02 0.15 0.05 0.36 0.012 **
34 2.50 0.50 0.029 0.04 0.19 0.02 0.13 0.11 0.27 0.010 **
35 3.00 0.50 0.015 0.02 0.18 0.05 0.11 0.13 0.19 0.062 *

Table 6: Test results for varying bandwidths and cδ = 0.075. (*) reject at 0.10 level,
(**) reject at 0.05 level, (***) reject at 0.01 level.
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