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Abstract

The interaction between monetary and fiscal policy and the associated uncer-

tainty about this interaction have been put on center stage by the recent financial

crisis and the associated recession. In our model agents learn about both fiscal

and monetary policy rules via the Kalman filter. In particular, we study how

an economy populated with agents acting as econometricians reacts to discrete

changes in the actual policy rules.
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1 Introduction

This paper asks what happens after changes in fiscal and monetary policy when private

agents have to use past data to estimate the nature of the policy changes they face.

We contribute to the vast literature on monetary and fiscal interaction. Pioneered

by Sargent and Wallace (1982), Sims (1994), Leeper (1991) and Leeper and Davig

(2011) under full information rational expectations, there have been some first steps

approaching this topic under learning. One paper in this vein is Eusepi and Preston

(2011). Both our setup of learning and the research question are different as we are

more interested in tracing out the effects that different views about the economy and

the nature of policy changes have on economic outcomes.

We set up a standard, relatively small New-Keynesian model with habits and nominal

frictions. Households face a CES-utility function and optimize with respect to con-

sumption and leisure. Firms are profit maximizing and set prices optimally according

to the Calvo setup (compare Calvo (1983)). The Government sector is comprised of

a monetary and a fiscal branch. The fiscal sector is allowed to run budget deficits

over time and accumulate debt if labor taxes are not sufficient to pay for government

spending and transfers. The monetary authority sets the interest rate according to a

simple monetary rule (Taylor (1993)) with inflation as the only input. With this rela-

tively standard model we simulate our model economy to tackle the research questions

mentioned above.

2 Model

Our model is a typical version of the a medium scale new-keyensian model that incor-

porates nominal frictions, habits and a fiscal sector. The fiscal branch can accumulate

debt if its income from the distortionary labor tax is not matching outlays of govern-

ment spending and transfers. The only real friction are external habits of households.

Capital is not included as an input factor in production. First-order conditions and

the complete log-linearized model may be found in the Appendix. The calibration for

all parameters is standard in the literature and is also delegated in the Appendix.
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2.1 Households

Households maximize their expected utility 1 where the instantaneous utility function

of the representative household i takes the following form:

Ut =
(Ct − hCt−1)1−σ

1− σ
− L1+φ

t

1 + φ
(1)

Consumption of household i is denoted by Ct which should not vary too much from the

external habit of last period’s overall consumption Ct−1 and labor by Lt. Each period

households can choose to either consume or save in the form of government bonds (Bt).

Therefore the maximization runs over the infinite sum of discounted utility under the

budget constraint:

Ct +Bt = WtLt(1− τLt ) +Rt−1Bt−1 + Zt (2)

The household’s income stems from working at the wage Wt and interest payments on

their savings at the rate Rt. Zt represents lump-sum transfers or taxes. τLt denotes the

distortionary labor tax rate that the government levies on labor.

2.2 Firms

The production function of firm j is linear in technology and labor:

Yt(j) = AtLt(j) (3)

where Yt denotes the output produced with a certain level of technology At and labor

Lt(j). Technology follows an AR(1) process. The exogenous process for technology is

an AR(1):

At = ρaAt−1 + εAt (4)

The real marginal costs are in this case simply given by the real wage

MCt(j) =
Wt(j)

AtPt(j)
.

1This statement encompasses the coefficients in the fiscal as well as in the monetary policy rule,
which they treat as fixed when making their decisions. We use an anticipated utility assumption,
which is common in the literature on adaptive learning. A more thorough description follows in the
section where the learning algorithm is described more in detail.
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In terms of price setting we assume that retailers set their prices according to the

Calvo (1983) mechanism, i.e. each period the fraction (1 − θi) of all firms are able

to reset their prices optimally. Furthermore I allow that firms that cannot reoptimize

their prices in period t index their prices to the current inflation rate. Profits of firm j

(in nominal terms) are then equal to

Πt(j) = (Pt(j)−MCt(j))

(
Pt(j)

Pt

)−εj
Yt(j) (5)

2.3 Government

The government budget constraint is given by:

Bt =
Bt−1Rt−1

1 + πt
−WtLtτ

L
t +Gt + Zt (6)

One of the fiscal policy instruments has to incorporate a response to the past value

of debt. Otherwise fiscal policy would follow an active behavior, i.e. debt would not

be stabilized and follow an explosive path. In other words the coefficient of any fiscal

rule on lagged debt must be bigger then 1
β
− 1 so that debt is stationary. We choose

the labor tax rule to behave accordingly. All other fiscal rules follow normal AR(1)

processes with their respective white noise component. Government spending is given

by:

log(Gt) = Gc + ρg log(Gt−1) + εGt (7)

Zt denotes transfers which behave as follows:

log(Zt) = Zc + ρz log(Zt−1) + εZt , (8)

As mentioned above, the labor tax rate is modelled as a rule with the feedback coeffi-

cient ρL,b which the agents do not know for sure and have to infer:

log(τLt ) = τ lc + ρL,b log(Bt−1) + εLt (9)

The monetary policy is given by simple Taylor type rule, which is only reacting to

inflation and not to production. A major difference is that the timing is different from

usual models with the interest reaction to lagged inflation instead of contemporaneous
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or even lead inflation. This is an assumption which is crucial for the learning algorithm

but not entirely consistent with real world monetary policy implementation.

log(Rt) = Rc + ρR,π log(πt−1) + εRt (10)

The firms and households in our model know the form of the labor tax rule and the

monetary policy rule as described above, but they do not know the coefficients, which

they have to estimate. They also know that the government budget constraint has to

hold in every period.

2.4 Market Clearing

Demand on the part of the government and households must fully absorb the output

of the firm:

Yt = Ct +Gt

The bond market in our model is simple and market clearing in this market implies

that all bonds issued by the government are bought by the households in the economy.

3 Learning Mechanism

Our approach to modelling learning is borrowed from our earlier work Hollmayr and

Matthes (2013), which in turn builds on Cogley et al. (2011).

The agents in our model observe all relevant economic outcomes and use those ob-

servations to estimate the coefficients of the policy rules. They know all other aspects

of the model. All private agents share the same beliefs and carry out inference by using

the Kalman filter. If we denote by Ωt the vector of coefficients of all policy rules and

by ξt the vector of the interest rate and the tax rate at time t then the observation

equation for the state space system used by the Kalman filter is given by: We denote

by Ωt the vector of policy rule coefficients that agents want to estimate. In order for

agents to be able to use the Kalman Filter for inference, we need to build a state space

system than encompasses our assumptions on the learning behavior of agents. The

observation equation represents the policy rules, whereas the state equation represents

the perceived dynamics in policy rule coefficients.
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The vector of observations is given by 2

ξt =

[
log(Rt)−Rc

log(τLt )− τLc

]
(11)

ξt = Xt−1Ωt + ηt (12)

where ηt collects the iid disturbances in the policy rules. Xt−1 collects the right-hand

side variables in the policy rules. What is left to specify then is the perceived law

of motion for Ωt - how do firms and households in the economy think policy rule

coefficients change over time? We study two assumptions: agents either know when

the policy rule changes and take into account that policy rule coefficients before and

after the break date or they suspect that policy changes every period. The following

law of motion for the coefficients encodes these assumptions, inspired by the literature

on time-varying coefficient models in empirical macroeconomics (such as Cogley and

Sargent (2005) or Primiceri (2005)) 3:

Ωt = Ωt−1 + 1tνt (13)

If we set the variance of νt to a conformable matrix of zeroes, then the private agents

in our model believe that policy rule coefficients do not change and they estimate un-

known constant coefficients. The indicator function 1t selects in what periods agents

perceive there to be a change in policy. We will entertain two assumptions on this

indicator function: one in which it is always 1, so agents always assume there is a

change in parameters and one in which this indicator function is 0 unless the policy

rule actually changes 4. Given beliefs for Ωt, agents in our model will adhere to the

anticipated utility theory of decision-making: they will act as if Ωt is going to be fixed

at the currently estimated level forever onwards 5. This is a common assumption in

2For simplicity, we assume that the intercepts in the policy rules remain unchanged and are known
to the private agents (Cogley et al. (2011) highlight that the differences between dynamics under
learning and the full information case emerge mainly from different views held by agents on policy
rule response coefficients, not intercepts).

3This assumption has been applied in the learning literature by Sargent et al. (2006), for example.
4If agents always perceive policy rule coefficients to change even though there is no policy change,

their estimators will fluctuate around the true values. The magnitude of those fluctuations is de-
termined by the signal to noise ratio inherent in the state space systems that we will endow agents
with.

5We use the posterior mean coming out of the Kalman Filter as a point estimate which the agents
in the model condition on when forming expectations. We follow most of the learning literature in
imposing a projection facility that makes agents reject an estimate if that estimate implies that no
stable PLM exists. In our benchmark case we also impose a projection facility by which agents reject
an estimate if it implies that the perceived steady state changes by more than 50 percent from one
period to the next. In contrast to Cogley et al. (2011) in our application the mapping from estimates
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the literature on learning, see for example Milani (2007).

A change in beliefs about policy will also induce a change in the beliefs about the

steady state of the economy. The beliefs (i.e. parameter estimates) and expectations

that influence time t equations are dated t−1 because of our timing assumption: agents

enter the current period (and make decisions in that period) with beliefs updated at

the end of the previous period. This makes the solution method recursive, otherwise

we would have to jointly solve for outcomes and beliefs every period. We could have

alternatively let beliefs depend on time t−1 information, but let time t information be

in the information set used to compute expectations as we did in our previous work.

Both assumptions are commonly used in the learning literature (Evans and Honkapo-

hja (2001)).

If we denote the vector of all variables (plus a constant intercept) in the model econ-

omy by Yt, then we can stack the log-linearized equilibrium conditions (approximated

around the perceived steady state) and the estimated policy rules to get the log-

linearized perceived law of motion in the economy:

A(Ωt−1)Yt = B(Ωt−1)E∗t−1Yt+1 + C(Ωt−1)Yt−1 + Dε∗t (14)

ε∗tcontains the actual shocks the innovations that agents observe as well as the perceived

policy shocks (the residuals in the estimated policy rules). This system can be solved

using a number of algorithms such as gensys (Sims (1994)). The resulting reduced form

perceived law of motion is given by:

Yt = S(Ωt−1)Yt−1 + G(Ωt−1)ε∗t (15)

S(Ωt−1) solves the following matrix quadratic equation6:

S(Ωt−1) = (A(Ωt−1)−B(Ωt−1)S(Ωt−1))−1C(Ωt−1) (16)

and G(Ωt−1) is given by

G(Ωt−1) = (A(Ωt−1))−1D (17)

It is convenient at this point to re-express the system using one-step ahead expec-

tations (in order to use gensys, for example, we would have to do this anyway). An

example on how do this by extending the number of variables is given in Sims (1994).

to perceived steady states can be highly non-linear depending on parameter values.
6The perceived law of motion can be derived by assuming a VAR perceived law of motion of order

1 and then using the method of undetermined coefficients.
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We call this extended vector of variables Yt. The reduced form PLM is derived using

steps similar to those outlined above, adjusting only the derivation of the response to

the shocks.

A(Ωt−1)Yt = B(Ωt−1)E∗tYt+1 + C(Ωt−1)Yt−1 + Dε∗t (18)

To derive the ALM, we replace the perceived policy rule coefficients in C(Ωt−1) with

the actual policy rule coefficients and use the actual innovation vector εt:

A(Ωt−1)Yt = B(Ωt−1)E∗tYt+1 + C
actual

(Ωt−1)Yt−1 + Dεt (19)

To solve the model, we can plug the PLM into the ALM twice to get

A(Ωt−1)Yt = B(Ωt−1)(S(Ωt−1)2Yt−1 + S(Ωt−1)G(Ωt−1)ε∗t) + C
actual

(Ωt−1)Yt−1 + Dεt

(20)

Note that there are two types of shocks appearing in the last equation: the true and

the perceived shocks. We can solve for the dynamics of Yt by only inverting A(Ωt−1)

as long as we can derive an expression for the perceived shocks that only depends on

pre-determined and exogenous variables. Fortunately enough, this is true in our case.

Dε∗t = Dεt + (C
actual

(Ωt−1)−C(Ωt−1))Yt−1

Multiplying both sides of this equation by A(Ωt−1)−1, we get

G(Ωt−1)ε∗t = A(Ωt−1)−1(Dεt + (C
actual

(Ωt−1)−C(Ωt−1))Yt−1)

This derivation departs from the derivation used in Cogley et al. (2011) because we

found our approach of solving for the equilibrium dynamics to be more numerically

stable (once we have solved for the ALM, our approach only requires invertibility of

A(Ωt−1)).

4 Simulation Setup

As a first pass to analyze how agents in our economy react to changes in fiscal and

monetary policy, we consider the A scenario in which monetary policy becomes passive

and distortionary taxes react less to the level of debt. In particular, we consider a one

time switch in the policy rule coefficients απ and ρb from 1.5 and .2 to .8 and .03. The
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calibration for all other parameters is given in the appendix. The calibration borrows

parameter values from Hollmayr and Matthes (2013) and Leeper et al. (2010). Other

parameter values used are standard in the literature.

We run 100 simulations of 200 periods with the policy switch happening in period 50.
7 We analyze different assumptions about the perceived amount of time variation in

policy rule coefficients that private agents hold. We assume agents use a covariance

matrix of the innovations in the perceived policy rule coefficients of the following form8:

E(νtν
′
t) =

[
(scale ∗ (1.5− 0.8))2 0

0 (scale ∗ (0.2− 0.03))2

]
(21)

For the case in which 1t = 1 ∀t we consider the following values for scale: .01, .05

and .1, while for the case in which the indicator matrix is only non-zero during the

actual policy change, we use the values 1/3, 1/2 and 1. We use smaller values for the

first case to avoid large swings in beliefs during times when there is no policy change.

5 Results

The following plots give the results for our benchmark cases. We plot beliefs, standard

deviations, average outcomes and average perceived steady states. We see that the

estimates in all our cases converge quite quickly. This seems re-assuring, but looking at

average outcomes and perceived steady states, we see that the outcomes under learning

are very different from those under full information rational expectations9. This holds

true for all our specifications. A natural first prospective culprit for these outcomes

would be the projection facility on changes in perceived steady states of debt that we

impose. The change in steady states under FI is quite large after all. Thus we re-do the

analysis dropping this projection facility. This leads to substantially increased volatility

while at the same time not leading to convergence of perceived steady states to their

7We choose to not put the policy switch at the beginning of the simulations to minimize the effect
of the choice of the initial covariance matrix for the Kalman Filter.

8We have used covariance matrices of this form in our previous work and found them handy to
interpret the perceived amount of time variation.

9Agents could not figure out that their beliefs ahve not converged to the FI solution by trying to
estimate the steady state of the variables in the model. The economy fluctuates around the perceived
steady state.
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Figure 1: Beliefs, covariance of perceived innovations to parameters is always non-zero

FI counterparts10. To further analyze the source of this lack of convergence we analyze

a scenario in which the monetary policy rule does not change and the agents know the

monetary policy rule coefficients. This scenario confirms that it is indeed uncertainty

about ρb that drives our results. In fact what drives our results is that the mapping

from ρb to the steady state of debt is highly non-linear and differences in ρb that seem

insignificant can lead to substantial differences in steady states across economies. Our

results can be interpreted as a cautionary tale: when setting up a learning model,

one should be careful of possible non-linearities in the mapping from estimates to the

ALM and ultimately to the PLM. Only if we really believe that those non-linearities

(in our case coming through steady state calculations) are indeed reasonable should

we believe those results. Otherwise researchers might want to consider other learning

mechanisms that do not feature these strong non-linearities. If we instead think those

non-linearities are a feature that we want in our models then small differences estimates

can lead to large differences in outcomes.

10To economize on space, we only carry out the simulation in that case for one value of the scale
parameter.
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Figure 2: covariance of perceived innovations to parameters is always non-zero
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Figure 4: covariance of perceived innovations to parameters is always non-zero
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Figure 5: covariance of perceived innovations to parameters is always non-zero
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Figure 6: Perceived steady states, no projection facility on perceived steady states,
covariance of perceived innovations to parameters is always non-zero
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Figure 8: Beliefs, covariance of perceived innovations to parameters is zero except when
policy changes
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Figure 9: covariance of perceived innovations to parameters is zero except when policy
changes
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Figure 10: covariance of perceived innovations to parameters is zero except when policy
changes
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Figure 11: covariance of perceived innovations to parameters is zero except when policy
changes
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6 Conclusion

to be written
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Appendix

Model Description, FOCs and Log-linearized Equa-

tion

A First-Order Conditions

Households:

(Ct − hCt−1)−σ = βRtEt−1
(Ct+1 − hCt)−σ

1 + πt+1

L1+φ
t = (Ct − hCt−1)−σ(1− τLt )Wt

Firms:

Wt =
YtMCt
Lt

P̃t =
ψ

ψ − 1

[
λtMCtYt + βθEt−1λt+lMCt+1Yt+l

(
π

πt+1

)−ψ]
[
λtYt + βθEt−1λt+lMCt+1Yt+l

(
π

πt+1

)1−ψ]
P 1−ψ
t = θ(πPt−1)

1−ψ + (1− θ)P̃ 1−ψ
t

B Log-Linearized Model

Households:

(1 + φ)log(Lt) = ConstL + log(Yt) + log(MCt)−
(

τLss
1− τLss

)
log(τLt )− σ

1− h
log(Ct) +

σh

1− h
log(Ct−1)

−σ(1 + h)

1− h
log(Ct) +

σh

1− h
log(Ct−1) = ConstC −

σ

1− h
Et−1log(Ct+1) + log(Rt)− logEt−1(log(πt+1))



19

Firms:

log(Yt) = ConstAgg +
Css
Yss

log(Ct) +
Gss
Yss

log(Gt)

log(Yt) = ConstY + log(At) + log(Lt)

log(πt) = Constπ + βEt−1log(πt+1) +
(1− θβ)(1− θ)

θ
log(MCt)

Policy Rules and Shocks:

log(Bt) + τLss
YssMCss
Bss

(
log(τKt ) + log(Yt) + log(MCt)

)
= ConstB +

1

β
log(Rt−1) +

1

β
log(Bt−1)−

1

β
log(πt) +

Gss
Bss

log(Gt) +
Zss
Bss

log(Zt)

log(Gt) = ConstG + ρGlog(Gt−1) + εGt

log(Zt) = ConstZ + ρZ log(Zt−1) + εZt

log(τLt ) = Constτ l + ζlog(Bt−1) + εLt

log(Rt) = ConstR + απt−1 + εRt

log(At) = ConstA + ρAlog(At−1 + εAt

with the constants given by:

Constant Expression

ConstG log(Gss)(1− ρG)

ConstZ log(Zss)(1− ρZ)

Constτ l log(τLss)− ζlog(Bss)

ConstR log(Rss)− αlog(πss)

ConstB log(Bss)(1− 1
β ) + τLss

YssMCss
Bss

(log(τLss) + log(Yss) + log(MCss))− 1
β log(Rss) + 1

β log(πss)−
−Gss
Bss

log(Gss)− Zss
Bss

log(Zss)

ConstL (1 + φ)log(Lss)− log(Yss) +−log(MCss) + τLss
1+τLss

log(τLss)

ConstC −log(Rss) + log(πss) +
(
σh
1−h −

σ(1−h)
1−h + σ

1−h

)
log(Css)

ConstY log(Yss)− log(Ass)− log(Lss)

ConstA log(Ass)(1− ρA)

ConstAgg log(Yss)− Css
Yss
log(Css)− Gss

Yss
log(Gss)

Constπ (1− β)log(πss)− (1−θβ)(1−θ)
θ log(MCss)
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C Parameters

Calibrated Parameters of simple model

Description Parameter Value

impatience β 0.99
CES utility Consumption σ 2
CES utility labor φ 2
habits h 0.5
Calvo Parameter θ 0.75
Market Power elasticity ψ 6
AR parameter Transfer rule ρZ 0.9
AR parameter gov. Spending ρG 0.9
AR parameter technology ρa 0.9
Std.deviation technology σa 0.0062
Std.deviation gov. spending σg 0
Std.deviation transfers σz 0
Std.deviation labor tax σl 0.03
Std.deviation interest rate σr .0016

Table 1: Calibrated Parameters of the model
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