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University of Luxembourg

Abstract: The determinants of the direction of technical change and the implications for
economic growth are studied in the one-sector neoclassical growth model of Ramsey
(1928), Cass (1965), and Koopmans (1965) extended to allow for endogenous capital-
and labor-augmenting technical change. For this purpose, we develop a novel micro-
foundation for the competitive production sector. It rests upon the idea that the fab-
rication of the final good requires tasks to be performed by capital and labor. Firms
may engage in innovation investments that increase the productivity of capital and la-
bor in the performance of their respective tasks. These investments are associated with
new technological knowledge that accumulates over time. We analyze a version of the
model with only labor-augmenting and one with capital- and labor-augmenting techni-
cal change. When only labor-augmenting technical change is allowed for we find that
steady-state growth depends on the efficient capital intensity and, thus, on household
preferences. When it is included, capital-augmenting technical change must vanish in
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1 Introduction

This paper studies the determinants of the direction of technical change and highlights
their implications for economic growth. To accomplish this, we integrate endogenous
capital- and labor-augmenting technical change into the one-sector neoclassical growth
model of Ramsey (1928), Cass (1965), and Koopmans (1965) and develop a novel micro-
foundation for the competitive production sector. It rests upon the idea that the fabri-
cation of the final good requires tasks to be performed. Some tasks will be carried out
by capital, others by labor. Firms may engage in innovation investments that increase
the productivity of capital and labor in the performance of their respective tasks. These
investments are associated with new technological knowledge that accumulates over
time.

Our main findings may be summarized as follows. First, a key determinant of the
direction of technical change is the relative scarcity of capital with respect to labor.
This ratio turns out to affect the relative profitability of innovation investments. More
precisely, if a factor of production becomes scarcer, then it also becomes more expensive.
Accordingly, an investment enhancing the productivity of this factor becomes more
advantageous and the direction of technical change shifts towards this factor.

Second, along the transition towards the steady state, the growth rate of the economy
reflects both capital- and labor-augmenting technical progress. However, in steady state
capital-augmenting technical progress vanishes. Hence, in the long run, the growth rate
of per-capita variables is fully determined by labor-augmenting technical change.1 The
reason for this finding is closely related to the generalization of Uzawa’s steady-state
growth theorem established in (Irmen (2013a)): under full employment of both factors
of production the net output function of the economy under scrutiny here is shown to
exhibit constant returns to scale in capital and labor. Therefore, there cannot be capital-
augmenting technical progress in steady state.

The third set of results relates to the comparative-static properties of the steady state.
The steady-state growth rate is predicted to increase in a parameter reflecting the posi-
tive effect of institutions, technical infrastructure, or geography on the efficiency of the
production process. However, other parameters that often bring about growth effects
such as the discount factor of the representative household or the population growth
rate have no impact on the steady-state growth rate. The mere feasibility of capital-
augmenting technical change is shown to be the reason for this. Due to its presence, the
steady-state growth rates of capital- and labor-augmenting technical change are deter-
mined by the properties of the production sector alone.

Fourth, we show that the model with endogenous capital- and labor-augmenting techni-
cal change nests several important variants of the one-sector neoclassical growth model.

1See, e. g., Klump, McAdam, and Willman (2007) for an empirical study of the US economy that confirms
this pattern of technical change for the period 1953 to 1998.
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For instance, the economy can readily be simplified to one that allows only for endoge-
nous labor-augmenting technical change. We emphasize this framework in our analysis
since it helps to elicit the role of capital-augmenting technical change. We establish that
absent of the latter, the population growth rate has a negative effect on the steady-state
growth rate of the economy. Finally, we observe that the model variant with endogenous
labor-augmenting technical change can be turned into the standard neoclassical growth
model with or without exogenous technical change.

Fifth, we study the local stability properties of the steady state and establish saddle-path
stability.

Finally, we link our analysis to the so-called “induced innovations” literature of the
1960s.2 This literature stipulates a somewhat arbitrary innovation possibility frontier
and firms choose their technology to maximize the current rate of cost reduction.3 We
show that our framework give rise to an innovation possibility frontier that emerges en-
dogenously. This frontier is time-invariant and states a functional relationship between
the equilibrium growth rates of capital- and labor-augmenting technical progress.

This paper is organized as follows. Section 2 relates the paper to the existing literature.
Section 3 presents the details of the model and establishes the existence of an endoge-
nous innovation possibility frontier. Section 4 defines the general equilibrium in the
economy under scrutiny. In section 5 we set up the dynamical system of the economy.
The main results are contained in Sections 5.1 and 5.2. Section 6 concludes. All proofs
are contained in Section 7, the Appendix.

2 Related Literature

The present paper builds on and contributes to several strands of the literature. First,
it is a natural extension of the standard neoclassical growth framework. We show that
the dynamical system of the economy under scrutiny with endogenous capital- and
labor-augmenting technical change nests the previously known specifications with and
without exogenous technical change and several, thus far, unknown specifications. They
include the economy with endogenous labor-augmenting technical change and the econ-
omy with capital- as well as labor-augmenting technical change.

Moreover, the paper relates to the theory of directed technical change. Interest in
explaining the direction of technical change rests upon the observation that technical
progress requires resource expenditure and is subject to economic market incentives, or,
in other words, that technical progress is endogenous. If labor and capital are indepen-
dent production factors, there might be times when it is reasonable to invest resources

2See, ?, Kennedy (1964), Samuelson (1965), or Drandakis and Phelps (1966).

3This approach has been criticized by, e. g., Nordhaus (1973), Funk (2002), or Acemoglu (2003a).
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in increasing the efficiency of one factor rather than the other. It is then natural to
ask when it is relatively more profitable to invest resources in increasing the efficiency
of labor rather than capital and vice versa. In other words, what determines whether
technical change is labor-augmenting or capital-augmenting.4

In this respect, our paper contributes to both the modern theory of directed techni-
cal change as well as to the ‘old’ induced innovations literature. It complements the
modern theory developed by Acemoglu (2003b), Acemoglu (2009), and Irmen (2013a).
Acemoglu’s model of directed technical change is an extended version of the expand-
ing varieties model of endogenous growth in which the final good is produced using
two types of intermediate goods. One type is produced with labor, while the other is
produced using only capital. Each of the two types of intermediate goods is produced
and supplied by monopolists. An increase in the number of the two types of intermedi-
ate goods represents, respectively, capital- or labor-augmenting technical change. Irmen
introduces capital- and labor-augmenting technical change in an overlapping genera-
tions economy and studies the effects of population aging on the direction of technical
change.

With regard to the induced innovations literature of the 1960s, our paper overcomes
the lack of microfoundations in the latter. The idea of an IPF was introduced by von
Weizsäcker (2010) and Kennedy (1964) who argue that the objective of technical im-
provements is a reduction in unit costs of production: any technical improvement re-
duces the amount of labor and the amount of capital required to produce a unit of
product in a certain proportion. They formalize this idea suggesting an IPF which is
assumed to be a strictly concave, downward sloping locus describing all technical im-
provements available to the firm at any time. Samuelson (1965), Drandakis and Phelps
(1966), and Nordhaus (1967) embed this idea into a neoclassical growth framework. In
their models technical change is factor-augmenting and the IPF depicts the fixed menu
from which a firm can choose the desired labor and capital augmentation. One of the
main concerns with the induced innovation literature was the exogenous nature of the
IPF. It was independent of the state of the economy and simply “falls from the sky ev-
ery period”5. The firm is assumed to choose an innovation along the IPF but it remains
unexplained how the firm finds the IPF. Moreover, it can choose from a fixed menu of al-
ternative technologies with varying degrees of labor- and capital-augmentation without
any expenses for R&D or innovation adoption.6

4The first answer to this question was suggested by Hicks (1932) who argued that technical change is
directed toward saving the factor that becomes relatively more expensive, or, in other words, that technical
change is induced by changes in relative factor prices. See also Fellner (1961) for this line of thought.

5Nordhaus (1967), p. 65.

6See also Elster (1983).
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3 The Model

We consider a competitive closed economy in discrete time, i. e., t = 0, 1, . . ., with a
household sector and a production sector. In each period there is a single final good that
can be consumed or invested. If invested, it is either accumulated as capital or it serves
as innovation investments that raise the productivity of capital, labor, or both. Firms are
owned by the households. In each period produced output serves as numeraire.

3.1 Household Sector

The economy is populated by a continuum of identical, infinitely-lived households of
measure one. Under this assumption and those that follow it is admissible to study the
household sector through the lens of a single representative household. It cares about
the utility its members derive from consumption. More precisely, denote

u(ĉt) = ln ĉt (3.1)

the utility a household member derives if it consumes ĉt units of the final good at t.
At time t the representatvie household has Lt = (1 + λ)t members, where λ > −1 is
the population growth rate and the population size at t = 0 is normalized to unity.
At all t, household members are endowed with one unit of labor which is inelastically
supplied. Hence, Lt is also equal to the aggregate labor supply at t. Let β ∈ (0, 1)
denote the discount factor. Then, the representative household evaluates sequences of
consumption {ct}∞

t=0 according to

U0 =
∞

∑
t=0

[β(1 + λ)]t ln ĉt, (3.2)

where β(1 + λ) < 1.

The representative household owns all firms and the capital stock. Since profits, i.e.,
dividends, vanish in equilibrium, we shall not explicitly account for the profit distribu-
tion. Capital is the only asset in the economy. Capital at t is installed at t− 1 and firms
pay a real rental rate, Rt, per unit of capital they use. For simplicity, and without loss of
generality, we assume that the capital stock fully depreciates after one period. Then the
household’s flow budget constraint at time t in per capita terms may be written as

(1 + λ)k̂t+1 = Rt k̂t + wt − ĉt, (3.3)

where k̂t ≡ Kt/Lt denotes capital holdings per capita and wt is the real wage.

Given k̂t > 0, the representative household maximizes utility U0 of equation (3.2) subject
to (3.3), ĉt ≥ 0, k̂t+1 ≥ 0 for all t, and an appropriate No-Ponzi Game condition by
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choosing a sequence {ĉt}∞
t=0 . The solution to this problem satisfies the flow budget

constraint (3.3), the Euler condition,

ĉt+1

ĉt
= βRt+1, (3.4)

and the transversality condition

lim
t→∞

[β(1 + λ)]t k̂t+1 = 0. (3.5)

3.2 The Production Sector

3.2.1 Technology

The production sector of the economy is represented by a continuum of identical, com-
petitive firms of measure one. Without loss of generality, the analysis proceeds through
the lens of a competitive representative firm. To produce output two types of tasks need
to be performed. Denote by m ∈ R+ a task performed by capital, and let n ∈ R+ be a
task performed by labor. Further, denote by mt and nt the measure of all tasks of the
respective type performed at time t such that m ∈ [0, mt] and n ∈ [0, nt]. Tasks of the
respective type are identical. Therefore, total output hinges only on mt and nt. More
precisely, the representative firm has access to the production function F : R2

+ → R+

which assigns the maximum output, Yt, to each pair (mt, nt) ∈ R2
+, i. e.

Yt = F(mt, nt), (3.6)

where F has constant returns to scale in its arguments and is C2 with F1 > 0 > F11 and
F2 > 0 > F22. Let κt denote the period-t task intensity,

κt =
mt

nt
. (3.7)

Then, output in intensive form is F(κt, 1) ≡ f (κt), where f : R+ → R+, with f ′(κt) >

0 > f ′′(κt) for all κt > 0.

At t a task m requires kt(m) = 1/bt(m) units of capital whereas a task n needs lt(n) =
1/at(n) units of labor. Hence, bt(m) and at(n) denote the productivity of capital and
labor in the respective task. These productivities are given by

bt(m) = Bt−1(1− δ)(1 + qB
t (m)) and at(n) = At−1(1− δ)(1 + qA

t (n)), (3.8)

where δ ∈ (0, 1) represents the rate of depreciation of technological knowledge. Think
of Bt−1(1− δ) and At−1(1− δ) as the level of technological knowledge inherited from
the past. Then, (qB

t (m), qA
t (n)) ∈ R2

+ are indicators of productivity growth associated
with task m and n, respectively.
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To achieve positive productivity growth, i. e., qj > 0, j = A, B, the firm must engage in
an innovation investment. More precisely, at t it must invest i(qB

t (m)) > 0 units of the
final good to achieve qB

t (m) > 0 and, similarly, i(qA
t (n)) > 0 units of the final good to

obtain qA
t (n) > 0.

The function i : R+ → R+ is the same for all tasks, time invariant, C2 on R++, strictly
increasing and strictly convex in q. Moreover, denoting i′(qj) = di(qj)/dqj for j = A, B,
it satisfies the following regularity conditions:

i(0) = 0, lim
qj→0

i′(qj
t) = 0, lim

q→∞
i′(qj

t) = lim
qj→∞

i(qj
t) = ∞. (3.9)

Notice that (3.9) implies that satisfies an Inada-type condition since the first marginal
unit of qj is costless.

Any new peace of technological knowledge is proprietory knowledge of a particular
firm only in the period when it occurs. Subsequently, it becomes public and embodied in
aggregate economy-wide productivity indicators (At, Bt), (At+1, Bt+1), ... (to be specified
below). If at t the firm makes no investment in a productivity enhancing technology, it
has access to the economy-wide technology given by At−1(1− δ) and Bt−1(1− δ) such
that its task-specific productivity of labor and capital is given by at(n) = At−1(1− δ)

and bt(m) = Bt−1(1− δ).

3.2.2 Firm’s Optimization

The representative firm takes the sequence {Rt, wt, At−1, Bt−1}∞
t=0 of real wages, real

rental rates of capital, and aggregate productivity indicators as given. Its choice involves
a production plan comprising a sequence{

mt, nt, kt(m), lt(n), qB
t (m), qA

t (n)
}∞

t=0

for m ∈ [0, mt] and n ∈ [0, nt], respectively. Because an innovation investment generates
private knowledge only in the period when it is made, the intertemporal profit maxi-
mization problem of the firm boils down to the maximization of per-period profits given
by

F(mt, nt)− Ct, (3.10)

where Ct is the firm’s total cost, comprising factor cost and investment outlays for all
performed tasks. In other words,

Ct =
∫ mt

0

[
Rtkt(m) + i(qB

t (m))
]

dm +
∫ nt

0

[
wtlt(n) + i(qA

t (n))
]

dn,

where,

kt(m) =
1

Bt−1(1− δ)(1 + qB
t (m))

and lt(n) =
1

At−1(1− δ)(1 + qA
t (n))

.
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The maximization of (3.10) can be split up into two parts. First, for each m ∈ [0, mt] and
n ∈ [0, nt] a choice of qB

t (m) and qA
t (n) must minimize Ct. This leads to the first-order

sufficient conditions

qB
t (m) :

−Rt

Bt−1(1− δ)(1 + qB
t (m))2

+ i′(qB
t (m)) = 0, ∀m ∈ [0, mt], (3.11)

qA
t (n) :

−wt

At−1(1− δ)(1 + qA
t (n))2

+ i′(qA
t (n)) = 0, ∀n ∈ [0, nt], (3.12)

In light of (3.9), and assuming wt > 0 and Rt > 0, the conditions (3.11) and (3.12)
determine a unique qA

t (n) = qA
t > 0 and qB

t (m) = qB
t > 0. Accordingly, at(n) = at and

bt(m) = bt.

In a second step the firm decides how many tasks of either type to perform. From the
cost minimum we know that the cost of all tasks of each type will be the same. Hence,
the respective first-order sufficient conditions are given by

f ′(κt)−
(

Rt

Bt−1(1− δ)(1 + qB
t )

+ i(qB
t )

)
= 0, (3.13)

f (κt)− κt f ′(κt)−
(

wt

At−1(1− δ)(1 + qA
t )

+ i(qA
t )

)
= 0. (3.14)

In economic terms, the firm produces tasks up to the point at which the marginal value
product of the last produced task of the respective type is equal to its (marginal) cost.

With qB(m) = qB > 0 and qA(n) = qA > 0, equations (3.13) and (3.14) guarantee that
the number of tasks will be chosen optimally. Notice that Πt has CRS in (mt, nt) at
qB(m) = qB and qA(n) = qA. Therefore, equations (3.13) and (3.14) will only pin down
the task intensity κt = mt/nt. The number of tasks performed in equilibrium will be
determined by market clearing conditions. We summarize the main result arising from
the firm’s optimality conditions in the following proposition.

Proposition 1 Suppose (3.11)-(3.14) are satisfied. Then, the following holds:

1. There are maps gA : R2
++ → R++ and gB : R2

++ → R++ such that for all κt > 0 :

qB
t = gB(κt), with gB

κ < 0, (3.15)

qA
t = gA(κt), with gA

κ > 0. (3.16)

2. There are maps w : R2
++ → R++ and R : R2

++ → R++ such that the real wage and the
real rental rate of capital satisfy

Rt = R(κt, Bt−1) with Rκ < 0, RB > 0. (3.17)

wt = w(κt, At−1) with wκ > 0, wA > 0, (3.18)
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Claim 1 highlights the role of the task intensity for productivity growth rates of capital
and labor in their respective tasks. While capital-augmenting technical change decreases
in the task intensity, labor-augmenting technical change increases in it. Claim 2 reveals
that the task intensity has a similar effect on factor prices as well. The real rental rate of
capital decreases in the task intensity and the real wage increases. In addition, the real
rental rate of capital and the real wage depend positively on previous period’s aggregate
level of technology.

To gain intuition for these findings consider two things: the role the task intensity plays
for the equilibrium incentives to engage in innovation investments and its effect on
equilibrium factor prices. In equilibrium, the first-order conditions (3.11) and (3.13)
require the marginal product of the last task performed by capital to be equal to the
minimum cost of performing that task. Now, suppose the task intensity, κt, increases.
Then, because of diminishing returns, the marginal value product of tasks performed
by capital decreases and requires a lower rental rate of capital, Rt. However, a decrease
in Rt implies a smaller marginal benefit of investing in productivity growth of capital
and therefore leads to a lower level of qB

t .

The following corollary shows that Claim 1 of Proposition 1 implies a time-invariant
innovation possibility frontier, whereas Claim 2 implies a time-varying factor price fron-
tier.

Corollary 1 (Innovation Possibility Frontier and Factor Price Frontier)

Suppose (3.11)-(3.14) are satisfied. Then, the following holds:

1. There is a time-invariant innovation possibility frontier, i. e., there is a function g : R++ →
R++ such that

qB = g(qA), with g′(qA) < 0. (3.19)

2. There is a time-varying factor price frontier, i. e., there is a function h : R2
++ → R++ such

that

Rt = h(wt, At−1, Bt−1) with hw(wt, At−1, Bt−1) < 0. (3.20)

Statement 1 of the corollary establishes the existence of an innovation possibility frontier
(IPF). It describes the relationship between productivity growth rates of capital and
labor in performing their respective tasks. More precisely, the IPF relates a unique
productivity growth rate of capital to any attainable productivity growth rate of labor.

Statement 2 of the corollary establishes the existence of a factor price frontier. The factor
price frontier describes the relationship between the marginal products - and under
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perfect competition, prices - of the factors of production. More precisely, it depicts the
price of one of the factors for any given level of the other. The position of the factor
price frontier at t depends on inherited aggregate technological knowledge, At−1 and
Bt−1. Hence, unlike the standard neoclassical model, here the factor price frontier moves
over time.

3.3 The Evolution of Technological Knowledge

Let At and Bt be the highest level of labor productivity and capital productivity attained
across all tasks of the respective type at t, i. e.,

At = max
{

at(n) = At−1(1− δ)(1 + qA
t (n)) | n ∈ [0, nt]

}
,

Bt = max
{

bt(m) = Bt−1(1− δ)(1 + qB
t (m)) | m ∈ [0, mt]

}
.

Firm’s optimization implies qB
t (m) = qB

t and qA
t (n) = qA

t , as well as at(n) = at and
bt(m) = bt so that

At = at = At−1(1− δ)(1 + qA
t ),

(3.21)

Bt = bt = Bt−1(1− δ)(1 + qB
t ),

for all t = 0, 1, 2, · · · with A−1 > 0 and B−1 > 0 given.

4 Dynamic Competitive Equilibrium

Definition 1 Given Lt = (1 + λ)t, initial values of the physical capital stock, K0 > 0, and
of technological knowledge, A−1 > 0 and B−1 > 0, a dynamic competitive equilibrium is a
sequence {

mt, nt, qA
t (n), qB

t (m), at(n), bt(n), lt(n), kt(m), wt, Rt, ĉt, k̂t, Yt

}∞

t=0
,

for all m ∈ [0, mt] and n ∈ [0, nt], such that

(E1) the behavior of the representative household is described by (3.3), (3.4), (3.5), and k̂0 > 0.

(E2) the production sector satisfies Proposition 1,

(E3) for all t both factors are fully employed, i. e.,∫ mt

0
kt(m)dm = Kt and

∫ nt

0
lt(n)dn = Lt,

9



(E4) the productivity indicators evolve according to equation (3.21).

Condition (E1) ensures household optimization while (E2) requires optimal behavior
of firms and zero profits. Full employment of the factors of production, (E3), implies,
for any symmetric configuration, that the total number of each task type is given by the
amount of the respective production factor in efficiency units, i. e.,

mt = btKt and nt = atLt. (4.1)

Moreover, observe that (E2) together with the evolution of technological knowledge,
(E4), imply that in equilibrium the task intensity, as given by eq. (3.7), may be rewritten
as

κt =
btKt

atLt
=

Bt−1(1 + gB(κt))Kt

At−1(1 + gA(κt))Lt
. (4.2)

Thus, in equilibrium the task intensity corresponds to efficient capital per unit of effi-
cient labor, or, ’efficient capital intensity’. The following proposition establishes a unique
value κt > 0 that satisfies (4.2).

Proposition 2 There is a unique equilibrium task intensity κt > 0, i. e.,

κt = κ

(
Bt−1Kt

At−1Lt

)
,

that satisfies eq. (4.2).

5 The Dynamical System

The evolution of the economy is fully captured by three variables: efficient capital inten-
sity, κt, consumption per efficient unit of labor, ct ≡ ĉt

At
, and the economy-wide stock of

capital-augmenting knowledge, Bt. As we show in the following proposition, this leads
to a system of three non-linear difference equations, in which κt and Bt are the two
state variables, and ct is the control variable. Before we state the dynamical system we
introduce the notion of net output.

We define net output as the difference between final good production and total innova-
tion investment. Consider a symmetric technology choice in the sense that the firm in-
vests the same amount into all tasks of the same type, i. e., qB

t (m) = qB
t , and qA

t (n) = qA
t .

Hence, net output is given by

V(mt, nt) ≡ F(mt, nt)− nti(qA
t )−mti(qB

t ). (5.1)
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Evaluating the latter at firms’ optimum and at full employment of factors of production, i. e.,
using (E2) and (E3), respectively, delivers net equilibrium output:

V(BtKt, AtLt, κt) ≡ F(BtKt, AtLt)− BtKti(gB
t (κt))− AtLti(gA

t (κt)). (5.2)

Notice that V(BtKt, AtLt, κt) has constant returns to scale in (BtKt, AtLt), a consequence
of F(mt, nt) having constant returns to scale in mt, nt. Thus, dividing both sides of (5.2)
by AtLt we may express net equilibrium output per unit of efficient labor as

v(κt) = f (κt)− κti(gB
t )(κt)− i(gA

t (κt)). (5.3)

The dynamical system may now be stated as follows.

Proposition 3 Given initial conditions
(

A−1, B−1, K0, L0

)
> 0 there is a unique equilibrium

sequence {κt, ct, Bt}∞
t=0 determined by

(1 + λ)
(1 + gA(κt+1))

(1 + gB(κt+1))
κt+1 = Bt

(
v(κt)− ct

)
, (5.4)

(1 + gA(κt+1))

(1 + gB(κt+1))
ct+1 = βBt[ f ′(κt+1)− i(gB(κt+1))]ct, (5.5)

Bt = Bt−1(1− δ)(1 + gB(κt)), (5.6)

the transversality condition
[β(1 + λ)] < 1,

and for t = 0, κ0 satisfies

κ0 =
B−1(1 + gB(κ0))K0

A−1(1 + gA(κ0))L0
. (5.7)

Equation (5.4) corresponds to the economy’s resource constraint and describes the evo-
lution of efficient capital per unit of efficient labor. To obtain it substitute (3.13) and
(3.14), using Claim 1 of Proposition 1, into the representative houshold’s budget con-
straint, (3.3). The Euler equation, (5.5), results from (3.4) after Claim 1 of Proposition 1

and (3.13) have been used. Together with the transversality condition the resource con-
straint (5.4), the Euler equation (5.5), and the evolution of technological knowledge 5.6
form a three-dimensional system of first-order, non-linear difference equations. Starting
from an initial value κ0 they characterize a unique sequence for (κt, ct, Bt).

Given the initial conditions, κ0 is determined by equation (5.7). Using this in (5.6)
gives a unique Bt > 0. The resource constraint describes a relation between ct and
κt+1 for a given pair (κt, Bt). Then, for any given pair (κt, Bt) ∈ R2

++ the transversality
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condition pins down the initial choice of consumption ct and equation (5.4) gives a
unique κt+1 > 0. The Euler equation then determines a unique ct+1.

Observe that the dynamical system of Proposition 3 is a natural extension of the stan-
dard neoclassical growth model (the Ramsey-Cass-Koopmans model). It is easily re-
ducible, e. g., to the neoclassical growth model with exogenous technical change. In
the latter, there is no capital-augmenting technical change nor is the labor-augmenting
technical change endogenous. Hence, first of all this requires us to fix qB

t (m) = 0,
and Bt = B = 1. Moreover, assuming that the growth rate of labor productivity is ex-
ogenously given at some rate qA

t (n) > −1 and costless, i. e., i(qA) = 0, reduces the
dynamical system to the one of the standard neoclassical growth model:

(1 + λ)kt+1 = f (kt)− ct,

ct+1 = β f ′(kt+1)(1 + qA)ct,

where kt denotes capital per unit of efficient labor and k0 = K0/A−1(1− δ)(1 + qA)L0.
The above two first-order difference equations, together with the initial conditions and
the tranversality condition, govern the path of ct and kt. There is a unique steady-state
equilibrium in this model in which per-capita variables grow at the exogenous rate of
labor-augmenting technological knowledge. Indeed, households’ preferences may affect
the effective capital-labor ratio κ∗, and, thus, the growth rate of the economy along the
transition to steady state, but in steady state the growth rate is exogenous. In fact, if
qA = δ

1−δ , then At = At−1 for all t and we are in the Ramsey-Cass-Koopmans economy
without technical change and without per capita growth.

We now turn to the effects of introducing endogenous technical change into the standard
neoclassical growth model. To illuminate the role of endogenous technical change for
the steady-state growth rate and, consequently, for the predictions of the (extended) neo-
classical model, we introduce, in turn, endogenous labor-augmenting technical change
and capital-augmenting technical change.

5.1 Neoclassical Growth Model with Endogenous Labor-Augmenting Tech-
nical Change

Consider first an economy in which technical change is labor-augmenting and endoge-
nous. There is no capital-augmenting technical change. The productivity growth rate of
labor in performing tasks, qA

t , at time t is the result of firms’ optimization. Moreover, it
is costly and requires innovation investments per task of i(qA

t ) > 0. For clarity, in this
version of the model we define κt ≡ Kt

At Lt
to denote the capital-labor ratio in efficiency

units. The evolution of the key variables in this economy may then be described as
follows:

12



Proposition 4 Given initial conditions
(

A−1, K0, L0

)
> 0, there is a unique equilibrium se-

quence {κt, ct}∞
t=0 . determined by

(1 + λ)(1− δ)(1 + gA(κt+1))κt+1 = v(κt)− ct, (5.8)

(1− δ)(1 + gA(κt+1))ct+1 = β f ′(κt+1)ct, (5.9)

the transversality condition
[β(1 + λ)] < 1,

and for t = 0, κ0 is determined by

κ0 =
K0

A−1(1− δ)(1 + gA(κ0))L0
. (5.10)

Equation (5.8) represents the economy’s resource constraint and obtains from the repre-
sentative household’s budget constraint using equilibrium factor prices (3.13) and (3.14)
resulting from firm optimization. The Euler equation, (5.9), is obtained upon substitu-
tion of the firm’s first-order condition (3.13) into (3.4).7

Given intitial conditions, κ0 is determined by equation (5.10). For a given κt, the re-
source constraint describes the relationship between κt+1 and ct. Then, for any starting
value κ > 0 the transversality condition picks the optimal choice of consumption. Equa-
tion (5.8) then delivers next period’s capital-labor ratio in efficiency units. With next
period’s capital at hand, the Euler equation determines the optimal consumption in
next period.

We now focus on the implications of endogenous labor-augmenting technical change for
the rate of economic growth in steady state. A steady state is defined as the stationary
solution to a dynamical system. For the dynamical system of Proposition 4 this implies
a stationary solution to the two difference equations (5.8) and (5.9). In other words, we
require, simultaneously, κt = κt+1 = κ∗, and ct = ct+1 = c∗.

Thus, a steady state is a solution to

(1 + λ)
(

1 + gA(κ∗)
)

κ∗ = v(κ∗)− c∗, (5.11)

(
1 + gA(κ∗)

)
c∗ = β f ′(κ∗)c∗. (5.12)

The stationary solution of the system gives rise to a balanced growth path, i. e., a path{
k̂t, ĉt, Kt, Ct, Vt

}∞

t=0
along which per capita and aggregate variables are positive and

grow at constant, possibly different and not necessarily positive, rates.

7Notice that in the model without capital-augmenting technical change the marginal product of tasks
performed by capital is given by Rt = f ′(κt).
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Proposition 5 (Steady State when Labor-Augmenting Technical Change is Endogenous)

1. There is a unique κ∗ ∈ (0, ∞), if and only if

lim
κ→0

f ′(κ) >
i′(δ/(1− δ))

1− δ
+ i(δ/(1− δ)) > lim

κ→∞
f ′(κ). (5.13)

If, in addition, the transversality condition

[β(1 + λ)] < 1

holds, there is a unique steady state satisfying κ∗ ∈ (0, ∞), c∗ ∈ (0, ∞) .

2. In steady state, per capita variables grow at rate

g∗ ≡ At+1

At
= (1− δ)(1 + gA(k∗))− 1.

Aggregate variables grow at approximately g∗ + λ.

3. Moreover, the steady-state growth rate may be written as g∗(β, δ), where β, δ are the
underlying parameters. Then

∂g∗(β, δ)

∂β
> 0, and

∂g∗(β, δ)

∂δ
> 0.

4. The steady-state equilibrium is locally saddle-path stable.

Statement 1 of Proposition 5 states that there is a finite profit-maximizing choice of κ

if and only if, at the equilibrium allocation, a small (large) stock of efficient capital per
unit of efficient labor has a sufficiently high (low) marginal value product. If, moreover,
the transversality condition is satisfied, there is a unique steady state.

Statement 2 establishes that the steady-state growth rate of all per capita variables, g∗,
is equal to the growth rate of the stock of labor-augmenting technological knowledge.

Statement 3 contains the main result of Proposition 5. The steady-state growth rate of
the economy, g∗, is endogenous and depends on household preferences, as well as on
the depreciation rate of labor-augmenting technological knowledge. The reason for this
is that the productivity growth rate of labor, qA

t , depends on the efficient capital-labor
ratio in the steady state, which, in turn, depends on β and δ (and the functional form of
the production function).8

According to Statement 4 of Proposition 5, the steady state is asymptotically locally
saddle-path stable.

8Notice that with a CES utility function the growth rate would also depend on the intertemporal elas-
ticity of substitution.
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5.2 Neoclassical Growth Model with Capital- and Labor-Augmenting Tech-
nical Change

We now focus on the effects of adding endogenous capital-augmenting technical change
to the model of the previous section. Allowing for endogenous captal-augmenting tech-
nical change in addition to endogenous labor-augmenting technical change significantly
alters the structure of the model and consequently the steady state and its comparative
static properties. As stated in Section 5 the model with both capital- and labor- aug-
menting technical change is fully described by the dynamical system of Proposition 3.

A steady state in this system implies a stationary solution to the three difference equa-
tions of which it consists. In other words, we require, simultaneously, κt = κt+1 = κ∗,
ct = ct+1 = c∗, and Bt = Bt+1 = B∗. Thus, a steady state is a solution to

(1 + λ)(1− δ)(1 + gA(κ∗))κ∗ = B∗
(

v(κ∗)− c∗
)

, (5.14)

(1− δ)(1 + gA(κ∗)) = βB∗[ f ′(κ∗)− i(gB(κ∗))], (5.15)

gB(κ∗) =
δ

1− δ
. (5.16)

The stationary solution of the system gives rise to a trajectory
{

k̂t, ĉt, Kt, Ct, Vt

}∞

t=0
along

which per capita and aggregate variables are positive and grow at constant, possibly
different, rates.

To study the local stability properties of the steady state we denote the elasticity of the
respective productivity growth factor with respect to the efficient capital intensity by

εB
κ (κt) ≡

−gB
κ (κt)κt

1 + gB(κt)
> 0, εA

κ (κt) ≡
gA

κ (κt)κt

1 + gA(κt)
> 0.

Proposition 6 (Steady State)

1. There is a κ∗ ∈ (0, ∞) if and only if

lim
κ→0

f ′(κ) >
i′(δ/(1− δ))

1− δ
+ i(δ/(1− δ)) > lim

κ→∞
f ′(κ). (5.17)

Moreover, there is a unique steady state satisfying κ∗ ∈ (0, ∞), c∗ ∈ (0, ∞) and B∗ ∈
(0, ∞) if, in addition,

β(1 + λ) < 1. (5.18)

15



2. The steady-state growth rate of the economy is

g∗ = (1− δ)(1 + gA(κ∗))− 1.

More precisely, in steady state, we have

a) ĉt+1
ĉt

= k̂t+1

k̂t
= wt+1

wt
= 1 + g∗

b) Vt+1
Vt

= Kt+1
Kt

= Ct+1
Ct

= (1 + g∗)(1 + λ)

c) B∗ = (1+λ)(1+g∗)
β[ f ′(κ∗)−i(gB(κ∗))]

, R∗ = (1+λ)(1+g∗)
β , gB(κ∗) = δ

1−δ

3. The steady-state equilibrium is asymptotically locally stable in the state space if

v′(κ∗)
[ f ′(κ∗)− i(gB(κ∗))]

< β(εA
κ + εB

κ + 1) (5.19)

Statement 1 of Proposition 6 states that there is a finite profit-maximizing choice of κ

if and only if, at the equilibrium allocation, a small (large) stock of efficient capital per
unit of efficient labor has a sufficiently high (low) marginal value product. If, moreover,
the transversality condition is satisfied, there is a unique steady state.

Statement 2 contains the main result of Proposition 6. It establishes that the steady-state
growth rate of all per capita variables, g∗, is equal to the growth rate of the stock of
labor-augmenting technological knowledge. Aggregate variables grow approximately
at the rate g∗ + λ. The rental rate of capital is constant.

The most important conclusion is that g∗ is solely determined by the production side of
the economy and is not anymore dependent on parameters of the houshold sector. The
growth rate of the economy is determined by the fact that the level of capital-augmenting
technological knowledge must remain constant in the steady state. Equation (5.6) then
pins down the level of the efficient capital intensity in steady state, κ∗. This result is
driven by the neoclassical structure of the model and the specific conditions it imposes
for the existence of a balanced growth path. The intuition for this finding stems from the
Generalized Growth Theorem of Irmen (2013b). This states that only labor-augmenting
technical change can occur in the steady state of a neoclassical economy that uses some
of its current output to generate technical progress. Asymptotically, capital-augmenting
technical change cannot take place. In the current model this requires that the stock of
capital-augmenting technical change remains constant over time. Thus, in the steady
state there must be just enough capital-augmenting technical change to offset the depre-
ciation of this stock. Having established κ∗ it is the task of the Euler equation (5.5) to pin
down the stock of capital-augmenting technological knowledge which will make sure
that the household embarks on a consumption path with a constant growth rate equal
to g∗. The resource constraint, (5.4), determines the steady-state level of consumption in
efficiency units, c∗.
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Under the condition in Assertion 3 the steady state is locally asymptotically stable in
the state space.

6 Conclusion

TO BE WRITTEN

17



7 Appendix: Proofs

7.1 Proof of Proposition 1

Proof 1 Claim 1.) Combine the first-order conditions (3.11) and (3.13), and (3.12) and (3.14),
to obtain, respectively,

fκ(κ) =i(qB) + (1 + qB)i′(qB),

f (κ)− κ fκ(κ) =i(qA) + (1 + qA)i′(qA).

The properties of f (κ) and i(qj) ensure the existence of some function gj : R++ → R++,
j = A, B such that (3.15) and (3.16) hold.

Claim 2.) Solving (3.11) and (3.12) for Rt and wt, respectively, and using (3.15) and (3.16)
delivers for all κt > 0:

Rt = Bt−1(1− δ)(1 + gB(κt))i′(qB(κt)) ≡ R(κt, Bt−1) >,

wt = At−1(1− δ)(1 + gA(κt))i′(qA(κt)) ≡ w(κt, At−1) > 0,

where w : R2
++ → R++ and R : R2

++ → R++. The derivatives indicated in (3.18) and (3.17)
follow immediately from the properties of i(·) and Claim 1. �

7.2 Proof of Corollary 1

Proof 2 Claim 1: The claim follows from equations (3.15) and (3.16). Without loss of generality,
we suppress the time argument. Since gA is increasing on its domain it is invertible. Let
GA : R++ → R++ denote the inverse of the function gA. Then, from (3.16), κ = GA(qA).
Hence, with (3.15), we may write

qB = gB(GA(qA)) ≡ g(qA).

The slope of the function g(qA) is given by

g′(qA) ≡ dqB

dqA =
dgB(κ)

dκ

dGA(qA)

dqA =
gB

κ (κ)

gA
κ (κ)

< 0. (7.1)

Claim 2: The claim follows from equations (3.17) and (3.18). In equation (3.18), the function w
is strictly increasing in κt on its domain. Holding technology At−1 constant and viewing w only
as a function of κt, it is invertible. Let W : R2

++ → R++ denote the inverse of the function w
with respect to κt. Then, κt = W(wt : At−1). Hence, with (3.17), we may write

Rt = R(W(wt : At−1), Bt−1) ≡ h(wt, At−1, Bt−1).

The partial derivative of h(wt, At−1, Bt−1) with respect to w is given by

hw(wt, At−1, Bt−1) ≡
dRt

dwt
=

dR(κt, Bt−1)

dκt

dW(wt : At−1)

dwt
=

Rκ(κt, Bt−1)

wκ(κt, At−1)
< 0. (7.2)

�
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7.3 Proof of Proposition 2

Proof 3 The proof follows from the properties of gA(κt), gB(κt) which we established in Propo-
sition 1. �

7.4 Proof of Proposition 3

Proof 4 To show uniqueness of the equilibrium sequence {κt, Bt, ct, At}∞
t=0 we first need to

derive equations (5.4) and (5.5).

One may derive (5.4) using Claim 1 of Proposition (1) in (3.13) and (3.14) to substitute for Rt

and wt in the household’s budget constraint. Upon this substitution we may write the latter as

(1 + λ)k̂t+1 = Bt

(
f ′(κt)− i(gB(κt))

)
k̂t + At

(
f (κt)− κt f ′(κt)− i(gA(κt))

)
− ĉt.

By definition, we have k̂t = (Atκt)/Bt and ĉt = Atct, so that above equation may be written in
terms of efficiency units as

(1 + λ)
At+1

Bt+1
κt+1 = Bt

(
f ′(κt)− i(gB(κt))

)At

Bt
κt + At

(
f (κt)− κt f ′(κt)− i(gA(κt))

)
− Atct,

(1 + λ)
At+1

Bt+1
κt+1 = At

(
f ′(κt)− i(gB(κt))

)
κt + At

(
f (κt)− κt f ′(κt)− i(gA(κt))

)
− Atct,

(1 + λ)
At+1

AtBt+1
κt+1 = v(κt)− ct,

where the last line uses equation (5.3).

It is straightforward to see that employing equations (3.15) and (3.13) in equation (3.4) delivers
the Euler equation, (5.5).

Now, we may write the system describing the evolution of the economy as

(1 + λ)
At+1

AtBt+1
κt+1 = v(κt)− ct, (7.3)

At+1

At
ct+1 = βBt+1[ f ′(κt+1)− i(gB(κt+1))ct, (7.4)

At = At−1(1− δ)(1 + gA(κt)), (7.5)

Bt = Bt−1(1− δ)(1 + gB(κt)). (7.6)

Observe that this system of four first-order, non-linear difference equations may be reduced to a
system of three equations. Forwarding equations (7.5) and (7.6) and substituting in (7.3) and
(7.4) we obtain the three-dimensional system of Proposition 3.
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To prove the uniqueness of the sequence {κt, Bt, ct, At}∞
t=0 , notice first that for given κt equations

(5.6) and (Systemeq3) determine a unique Bt and At. Next, consider equation (5.4) and define

Ωκ(κt+1) ≡ (1 + λ)

(
1 + gA(κt+1)

)
(

1 + gB(κt+1)
) κt+1. (7.7)

Then (5.4) may be rewritten as

Ωκ(κt+1) = Bt

(
v(κt)− ct

)
. (7.8)

The transversality condition ensures that ct is chosen optimally and the agent never consumes
all available resources. Hence, the right-hand side of (7.8) is strictly positive for all κt > 0, Bt >

0, ct > 0. Therefore, there will be a unique value of κt+1 > 0 satisfying eq. (7.8) if Ωκ(κt+1) is
strictly positive, continuous and monotone in κt+1 > 0 and may take any value in R++.

To see that Ωκ(κt+1) > 0 for all κt+1 > 0 recall the properties of functions gA and gB, as
established in Proposition 1, which guarantee that Ωκ

κ(κt+1) > 0 for all κ > 0.

It remains to be shown that limκ→0 Ωκ(κt+1) = 0 and limκ→∞ Ωκ(κt+1) = ∞. To show
this, consider the right-hand side of (7.7). Recall from Proposition 1 that gB(κ) is decreasing
on R++ and bounded below by zero. Hence, limκ→∞ gB(κ) is finite, while limκ→0 gB(κ) is
either finite or infinite. Moreover, Proposition (1) implies that limκ→0 gA(κ) is finite while
limκ→∞ gA(κ) is finite or infinite, since gA is increasing on R++ and bounded below by zero.
Consequently, as κ tends to zero we have limκ→0 Ωκ(κt+1) = 0 and as κ tends to infinity we
have limκ→∞ Ωκ(κt+1) = ∞.

It follows that the right-hand side of (7.7) is increasing in κt+1 > 0, approaches zero as κ → 0
and approaches infinity as κ → ∞. Therefore, there is a unique κt+1 > 0 that satisfies eq. (5.4)
for given (κt, Bt, ct) ∈ R++ and v(κt)− ct > 0.

Given a unique κt+1 > 0 equation (5.5) delivers a unique ct+1 > 0. �

7.5 Proof of Proposition 4

Proof 5 Given
(

A−1, K0, L0

)
> 0, eq. (5.10) admits a unique solution κ0 > 0. To show

uniqueness of the equilibrium sequence {ct, κt}∞
t=0 consider first equation (5.8) and define

Ψκ(κt+1) ≡ (1 + λ)(1− δ)
(

1 + gA(κt+1)
)

κt+1 (7.9)

The transversality condition ensures that ct is chosen optimally and the agent never consumes
all available resources. Hence, the right-hand side of (5.8) is strictly positive for all κt > 0 and
an appropriate initial choice ct > 0. Therefore, there will be a unique value κt+1 > 0 satisfying
eq. (5.8) if Ψκ(κt+1) is strictly positive, continuous and monotone in κt+1 > 0 and may take
any value in R++.
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To see that Ψ(κt+1) > 0 for all κt+1 > 0 recall the properties of the function gA, as established
in Proposition 1, which guarantee that Ψκ

κ(κt+1) > 0 for all κ > 0.

It remains to be shown that limκ→0 Ψκ(κt+1) = 0 and limκ→∞ Ψκ(κt+1) = ∞. The only point
of concern is the function gA since the other factor in Ψκ(κt+1) is κt+1 itself. Then, since gA is
bounded below by zero and may be finite or infinite for κ → ∞ we have that limκ→0 Ψκ(κt+1) =

0 and limκ→∞ Ψκ(κt+1) = ∞.

It follows that the left hand side of (5.8) is increasing in κt+1 > 0, approaches zero as κ → 0 and
approaches infinity as κ → ∞. Therefore, there is a unique κt+1 > 0 that satisfies eq. (5.8) for
given κt ∈ R++ and appropriate initial choice ct > 0 under the assumption that v(κt)− ct > 0.

Given a unique κt+1 > 0 and ct > 0, (5.9) delivers a unique ct+1 > 0. �

7.6 Proof of Proposition 5

Proof 6 1. The question here is whether at the steady-state rate of productivity growth gA =

δ/(1− δ) it makes economic sense for the representative firm to produce, i.e., to accumulate a
finite κ or whether it becomes optimal not to produce at all, κ = 0, or to accumulate an infinite
amount of κ.

If (5.13) holds, then equations (3.14) and (3.12) imply a κss ∈ (0, ∞) since f ′′(κ) < 0. It
is then straightforward to see that the steady state value of c may be obtained from (5.8) and
satisfies c∗ ∈ (0, ∞).

Now, suppose k∗ ∈ (0, ∞) but

lim
κ→0

f ′(κ) <
i′(δ/(1− δ))

1− δ
+ i(δ/(1− δ)) < lim

κ→∞
f ′(κ).

First, consider limκ→0 f ′(κ) < i′(δ/(1−δ))
1−δ + i(δ/(1 − δ)). This inequality means that at an

infinite number of tasks performed by labor the marginal product of tasks mt is smaller than
marginal cost incurred to produce those tasks. It follows that the optimal choice for the firm is to
produce only with tasks performed by labor, hence κ∗ = 0. Equation (5.8) reveals that κ∗ = 0
implies c∗ = 0.

Second, consider limκ→∞ f ′(κ) > i′(δ/(1−δ))
1−δ + i(δ/(1− δ)). Since this inequality means that

the marginal product of tasks mt is greater than the associated cost incurred to produce that task,
it would be profit maximizing for the firm to extend the number of tasks mt ad infinitum. Hence,
this implies κ∗ = ∞. With κ∗ = ∞ (??) implies c∗ = ∞.

3. Consider the system given by equations (5.8) and (5.9). Given (κt, ct), eq. (5.8) determines
κt+1. Having κt+1 then allows to determine ct+1 from eq. (5.9).
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Notice that eqs. (5.8) and (5.9) each define a continuously differentiable function Φκ : R2
++ →

R++ and Φc : R2
++ → R++ such that the above system may be written as

κt+1 = Φκ(κt, ct), (7.10)

ct+1 = Φc(κt, ct). (7.11)

Approximate this non-linear system locally around a steady-state equilibrium using first order
Taylor expansion to obtain[

κt+1

ct+1

]
=

[
Φκ

κ(κ
ss, css) Φκ

c (κ
ss, css)

Φc
κ(κ

ss, css) Φc
c(κ

ss, css)

] [
κt

ct

]

+

[
Φκ(κss, css)−Φκ

κ(κ
ss, css)−Φκ

c (κ
ss, css)

Φc(κss, css)−Φc
κ(κ

ss, css)−Φc
c(κ

ss, css)

]
.

The eigenvalues of the Jacobian

J =

[
Φκ

κ(κ
ss, css) Φκ

c (κ
ss, css)

Φc
κ(κ

ss, css) Φc
c(κ

ss, css)

]
(7.12)

determine the local behavior of the non-linear system in the neighborhood of the steady-state
equilibrium. The eigenvalues of the Jacobian are obtained as a solution to

| J − λI |,

where | J − λI | is the determinant of the matrix [J − λI] and I is the identity matrix.

In order to say something about the stability properties, we first need to determine Φκ
κ, Φκ

c , Φc
κ, Φc

κ.
To do so, obtain

(1 + λ)(1− δ)
(

1 + gA(Φκ(κt, ct))
)

Φκ(κt, ct) = v(κt)− ct (7.13)

(1− δ)
(

1 + gA(Φκ(κt, ct))
)

Φc(κt, ct) = β
(

f ′(Φκ(κt, ct)
)

ct (7.14)

by substituting (7.10), (7.11) in (5.8) and (5.9). Implicit differentiation of (7.13) and (7.14)
and evaluation at steady-state yields:
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Φc
c(κ

ss, css) =1 +
(css/θ) f ′′(κss)

v′(κss)
Φκ

c (κ
ss, css)− cssgA

κ (κ
ss)

1 + gA(κss)
Φκ

c (κ
ss, css) (7.15)

Φc
κ(κ

ss, css) =
(css/θ) f ′′(κss)

v′(κss)
Φκ

κ(κ
ss, css)− cssgA

κ (κ
ss)

1 + gA(κss)
Φκ

κ(κ
ss, css) (7.16)

Φκ
κ(κ

ss, css) =
v′(κss)

(1 + λ)(1− δ)(1 + κssgA
κ (κ

ss) + gA(κss))
(7.17)

Φκ
c (κ

ss, css) =− 1
(1 + λ)(1− δ)(1 + κssgA

κ (κ
ss) + gA(κss))

(7.18)

The implied characteristic equation is

c(λ) ≡ λ2 − trJλ + detJ = 0, (7.19)

where
trJ = Φκ

κ + Φc
c

and detJ reduces to
detJ = Φκ

κ.

We now show that if both eigenvalues of the system are real and distinct, i.e., if

(trJ)2 > 4detJ,

the steady-state equilibrium is a saddle. This follows since

c(1) < 0 and c(−1) > 0.

To see that c(1) < 0 observe that

c(1) = 1− (Φκ
κ + Φc

c) + Φκ
κ

= 1−Φc
c

= 1− 1− (css/θ) f ′′(κss)

v′(κss)
Φκ

c (κ
ss, css) +

cssgA
κ (κ

ss)

1 + gA(κss)
Φκ

c (κ
ss, css)

= − (css/θ) f ′′(κss)

v′(κss)
Φκ

c (κ
ss, css) +

cssgA
κ (κ

ss)

1 + gA(κss)
Φκ

c (κ
ss, css) < 0,

where the inequality follows from the fact that f (κ) has diminishing returns and Φκ
c < 0.
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To see that c(−1) > 0 observe that

c(−1) = 1 + (Φκ
κ + Φc

c) + Φκ
κ

= 1 + Φκ
κ + 1 +

(css/θ) f ′′(κss)

v′(κss)
Φκ

c (κ
ss, css)− cssgA

κ (κ
ss)

1 + gA(κss)
Φκ

c (κ
ss, css) + Φκ

κ

= 2(1 + Φκ
κ) +

(css/θ) f ′′(κss)

v′(κss)
Φκ

c (κ
ss, css)− cssgA

κ (κ
ss)

1 + gA(κss)
Φκ

c (κ
ss, css) > 0,

where the inequality follows from the fact that Φκ
κ > 0, Φκ

c < 0 and f ′′(κ) < 0.

Hence, the steady-state equilibrium is a saddle, with one eigenvalue being explosive, (λ1 > 1),
and the other one being stable, |λ2| < 1. �

7.7 Proof of Proposition 6

Proof 7 1. If (5.17) holds, then equations (3.13) and (3.11) imply a κ∗ ∈ (0, ∞) since f ′(κ) >
0. It is then straightforward to see that the steady state value of B may be obtained from eq.
(5.15) and satisfies B∗ ∈ (0, ∞). Having κ∗ and B∗ equation (5.14) pins down the steady state
value of consumption in efficiency units.

Now, suppose B∗ ∈ (0, ∞) and c∗ ∈ (0, ∞) but limκ→0 f ′(κ) < i′(δ/(1−δ))
1−δ + i(δ/(1− δ)) <

limκ→∞ f ′(κ). If limκ→0 f ′(κ) < i′(δ/(1−δ))
1−δ + i(δ/(1− δ)), then the optimal choice is κ∗ = 0.

However, with κ∗ = 0 equation (5.14) implies c∗ = 0 which is a contradiction. Similarly, if
i′(δ/(1−δ))

1−δ + i(δ/(1− δ)) < limκ→∞ f ′(κ), the optimal task intensity would be κ = ∞. In this
case, equation (5.14) would imply c∗ = ∞ which is a contradiction.

Moreover, notice that equation (5.16) implicitly determines the steady-state value of capital in
efficiency units. It is then the Euler equation (5.15) which yields the steady-state value of B∗ as

B∗ =
1

β[ f ′(κ∗)− i(gB(κ∗))]

(1 + gA(κ∗))

(1 + gB(κ∗))
. (7.20)

Finally, substituting out B∗ from equation 5.14 gives the steady-state value of consumption in
efficiency units as

c∗ = v(κ∗)− (1 + λ)β[ f ′(κ∗)− i(gB(κ∗))]κ∗ > 0. (7.21)

2. Notice that equations (5.4) and (5.5) each define a continuously differentiable function, Φi :
R3

++ → R++, where i = κ, c, such that κt+1 = Φκ(κt, ct, Bt), and ct+1 = Φc(κt, ct, Bt).
Consider (5.6) in t + 1 and substitute κt+1 = Φκ(κt, ct, Bt) to obtain

Bt+1 = Bt(1− δ)(1 + gB(Φκ(κt, ct, Bt))) ≡ ΦB(κt, ct, Bt),

where ΦB is also a continuously differentiable function
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Thus, the dynamic system may be written as

(1 + λ)
(1 + gA(Φκ(κt, ct, Bt)))

(1 + gB(Φκ(κt, ct, Bt)))
κt+1 = Bt

(
v(κt)− ct

)
, (7.22)

(1 + gA(Φκ(κt, ct, Bt)))

(1 + gB(Φκ(κt, ct, Bt)))

Φc(κt, ct, Bt)

ct
= β[ f ′(Φκ(κt, ct, Bt))− i(gB(Φκ(κt, ct, Bt)))], (7.23)

ΦB(κt, ct, Bt) = Bt(1− δ)(1 + gB(Φκ(κt, ct, Bt))). (7.24)

Perform a first order Taylor expansion to approximate this non-linear system locally around the
steady-state equilibrium to obtainκt+1

ct+1

Bt+1

 =

Φκ
κ(κ
∗, c∗, B∗) Φκ

c (κ
∗, c∗, B∗) Φκ

B(κ
∗, c∗, B∗)

Φc
κ(κ
∗, c∗, B∗) Φc

c(κ
∗, c∗, B∗) Φc

B(κ
∗, c∗, B∗)

ΦB
κ (κ
∗, c∗, B∗) ΦB

c (κ
∗, c∗, B∗) ΦB

B(κ
∗, c∗, B∗)


κt

ct

Bt


+

Φκ(κ∗, c∗, B∗)−Φκ
κ(κ
∗, c∗, B∗)−Φκ

c (κ
∗, c∗, B∗)−Φκ

B(κ
∗, c∗, B∗)

Φc(κ∗, c∗, B∗)−Φc
κ(κ
∗, c∗, B∗)−Φc

c(κ
∗, c∗, B∗)−Φc

B(κ
∗, c∗, B∗)

ΦB(κ∗, c∗, B∗)−ΦB
κ (κ
∗, c∗, B∗)−ΦB

c (κ
∗, c∗, B∗)−ΦB

B(κ
∗, c∗, B∗)

 .

The eigenvalues of the Jacobian

J =

Φκ
κ(κ
∗, c∗, B∗) Φκ

c (κ
∗, c∗, B∗) Φκ

B(κ
∗, c∗, B∗)

Φc
κ(κ
∗, c∗, B∗) Φc

c(κ
∗, c∗, B∗) Φc

B(κ
∗, c∗, B∗)

ΦB
κ (κ
∗, c∗, B∗) ΦB

c (κ
∗, c∗, B∗) ΦB

B(κ
∗, c∗, B∗)

 (7.25)

determine the local behavior of the non-linear system in the neighborhood of the steady-state
equilibrium. To find the eigenvalues obtain the solution to

det(J − λI) = 0,

which gives rise to the following characteristic polynomial:

c(λ) ≡ λ3 − tr(J)λ2 + ∑ M2(J)λ− det(J), (7.26)

where tr(J) denotes the trace, ∑ M2(J) denotes the sum of principal minors of order two and
det(J) the determinant of the Jacobian. One can show that

tr(J) =Φκ
κ + Φc

c + ΦB
B

∑ M2(J) =2Φκ
κ + Φc

cΦB
B −Φc

BΦB
c

det(J) =Φκ
κ

By Descartes’ rule of signs we know that if the terms of a polynomial with real coefficients are
ordered by descending variable exponent, then the number of positive roots of the polynomial is
either equal to the number of sign differences between consecutive nonzero coefficients, or is less
than it by an even number. Moreover, the number of negative roots is at most equal to the number
of continuations in the signs of the coefficients. Inspection of equation (7.26) reveals that it has
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(α) either three positive roots,

(β) or one positive root and one pair of complex conjugate roots.

The stability properties of the three-dimensional system are fully determined by the magnitudes
of the eigenvalues λ1, λ2 and λ3. Given that the dynamic system contains two predetermined
variables (the two state variables κt and Bt), for a unique saddle path to exist there must be two
stable eigenvalues: either two real eigenvalues with absolute value smaller than 1 or a pair of
complex conjugate eigenvalues λ1, λ2 with | λ1λ2 |< 1.

Next, we turn to the study of the determinant of the Jacobian, det(J). We are interested in the
absolute value of the determinant as it might help establish the stability properties of the system.
Differentiation of equation (7.22) with respect to κ yields

Φκ
κ =

B∗v′(κ∗)

(1 + λ)
[
Γκ∗ + 1+gA(κ∗)

1+gB(κ∗)

]
[ f ′(κ∗)− i(gB(κ∗))]

,

where

Γ =
gA

κ (1 + gB(κ∗))− (1 + gA(κ∗))gB
κ∗

(1 + gB(κ∗))2 .

Thus, using equation 7.20 we may write

det(J) = Φκ
κ

=
B∗v′(κ∗)

(1 + λ)
[
Γκ∗ + 1+gA(κ∗)

1+gB(κ∗)

]
=

(1+gA(κ∗))
(1+gB(κ∗))

v′(κ∗)

β
[
Γκ∗ + 1+gA(κ∗)

1+gB(κ∗)

]
[ f ′(κ∗)− i(gB(κ∗))]

.

Observe that det(J) < 1 iff

(1 + gA(κ∗))

(1 + gB(κ∗))
v′(κ∗) <β

[
Γκ∗ +

1 + gA(κ∗)

1 + gB(κ∗)

]
[ f ′(κ∗)− i(gB(κ∗))]

v′(κ∗)
[ f ′(κ∗)− i(gB(κ∗))]

<β

[
Γκ∗

(1 + gB(κ∗))

(1 + gA(κ∗))
+ 1
]

v′(κ∗)
[ f ′(κ∗)− i(gB(κ∗))]

<β
( gA

κ (κ
∗)κ∗

1 + gA(κ∗)
+
−gB

κ (κ
∗)κ∗

1 + gB(κ∗)
+ 1
)

v′(κ∗)
[ f ′(κ∗)− i(gB(κ∗))]

<β(εA
κ + εB

κ + 1), (7.27)

where εi
κ denotes the elasticity of the respective productivity growth factor with respect to the

efficient capital intensity.

Since det(J) is the product of the eigenvalues of the system, we have that if (7.27) holds,

det(J) = λ1λ2λ3 ∈ (0, 1),

implying the following:
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(α) If all eigenvalues are real, this implies that at least one of them is smaller than one. Without
loss of generality, let λ1 ∈ (0, 1). We can determine the magnitude of the remaining
eigenvalues by checking whether or not they fall on the same side of a given constant along
the real line. This can be done by evaluating

c(a) = (a− λ1)(a− λ2)(a− λ3).

Now let a = 1 in order to check whether λi, i = 2, 3, lie inside or outside the unit circle.
Some agebra shows that c(1) = (1− λ1)(1− λ2)(1− λ3) = −ΦB

c
c∗
B∗ < 0. But since

λ1 ∈ (0, 1) the only way for c(1) to be negative is by having one of the remaining eigen-
value inside the unit circle and the other outside. Therefore, we may conclude that if all
eigenvalues are real and positive, then the system is asymptotically locally stable in the
state space. (to be completed)
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