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Abstract

Several methods have been introduced into the literature on identification in DSGE models,

however, a comparative study is missing. The contribution of this paper is threefold: First,

all methods are derived analytically in the same notation and framework. Second, it is shown

how to extend the methods to linear approximations to the second order. It is argued that

this can improve overall identification of a DSGE model via imposing additional restrictions

on the mean. Third, all methods are applied on DSGE models that are known to have lack

of identification. Do the methods come to the same conclusion? Also practical difficulties as

well as the difference between using analytical and numerical derivatives are discussed.
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Westfälische Wilhelms-Universität Münster, Am Stadtgraben 9, 48143 Münster, Tel.: +49-251-83-22914, Fax:
+49-251-83-22012, Email: willi.mutschler@uni-muenster.de. The most recent version as well as the Matlab code
can be found on www.mutschler.eu/identification.html.



1 INTRODUCTION 1

1 Introduction

Many different methods for solving and estimating DSGE models have been developed and used

in order to get a detailed description and thorough estimation of dynamic macroeconomic rela-

tionships. Recently, the question of identification of DSGE models has proven to be of major

importance, especially since identification of a model precedes estimation and inference. Identifi-

cation problems arise if distinct parameter values do not lead to distinct probability distributions

of the data. Even with an infinite sample it is not possible to pin down some parameters, no

matter what estimation procedure one uses.1 In a full-information setting this often evokes a

badly shaped likelihood function, which modern Bayesian estimation can conveniently circum-

vent by using tight priors. However, the comparison of prior and posterior can be misleading,

since data need not be informative about parameters (Canova and Sala 2009; Koop, Pesaran, and

Smith 2012). Lack of identification leads thus to wrong conclusions from estimation and inference,

whereas the source of identification can hugely influence empirical findings (Ŕıos-Rull et al. 2012).

Identification criteria in the classical literature are stated in terms of rank and order conditions

based upon implications of a unique solution to a system of equations.2 Identification criteria in

the DSGE literature, however, are mainly concerned with two mappings: one from the deep

parameters to the reduced-form parameters, i.e. the uniqueness of the solution; and one from

the solution to observable data, i.e. the uniqueness of the probability distribution. An adaption

of classical concepts is not as straightforward, since the reduced-form parameters are non-linear

functions of the deep parameters and there might be complicated cross-equation restrictions,

which can often only be evaluated numerically (Komunjer and Ng 2011). Moreover, priors tend to

mask the problem (Guerron-Quintana, Inoue, and Kilian 2012), whereas calibrating unidentified

parameters can lead to wrong conclusions, since other parameters might depend on the calibrated

ones (Canova and Sala 2009).

Nevertheless several formal methods have been proposed to check identification in DSGE

models via (i) the autocovariogram (Iskrev 2010), (ii) the spectral density (Komunjer and Ng

2011; Qu and Tkachenko 2012), or (iii) Bayesian indicators (Koop, Pesaran, and Smith 2012).

Even though all methods seem similar, there has been – to our knowledge – no study of the

advantages and drawbacks of implementing the different methods. A comparative approach is

worthwhile, so that a researcher gets robust indication before the model is actually taken to data.

Methodically, we will derive all criteria in the same framework and model representation

following Schmitt-Grohé and Uribe (2004). It will be shown that the methods heavily depend on

the accuracy of computing derivatives and ranks. For a rigorous comparison we will thus derive

analytical derivatives of all solution matrices up to second order, moments and spectral density

with respect to the deep parameters. While Iskrev (2010) already uses analytical derivatives,

Komunjer and Ng (2011) and Tkachenko and Qu (2012) rely on numerical methods. We show

how to implement analytical derivatives into the latter criteria such that we are able to discuss the

effect of using analytical compared to numerical derivatives for each method and across criteria.

For computing the ranks (and null spaces) we use the singular value decomposition across different

tolerance levels.

1Mutschler (2012) estimates the An and Schorfheide (2007) model on simulated data via GMM, Impulse-
Response-Matching, Maximum-Likelihood and Bayesian methods and finds that no estimation method is able to
pin down the parameters in the Taylor-rule. Beltran and Draper (2012) have similar findings using different sample
sizes.

2For a good textbook overview of the early contributions see Fisher (1966) and Hsiao (1983) and the references
therein.
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Moreover, all methods focus on the linear solution of the DSGE model to the first order.

We will relax this assumption and show how to extend the identification criteria given a linear

approximation of the policy functions to the second order using the Magnus-Neudecker definition

of the Hessian (Gomme and Klein 2011). The representation of the solution yields additional

restrictions on the mean that can be used to identify previously unidentified parameters. However,

this comes with a computational burden, since the matrices become larger and the quadratic

approximation requires appropriate filter techniques.

To make our comparison and exposition illustrative, all methods are applied on three simple

models: (i) the neoclassical growth model, (ii) the Kim (2003) model as a well-known non-

identified model, and (iii) the An and Schorfheide (2007) as a prototypical DSGE model. We will

show that the methods yield similar results and discuss the reasons the criteria differ. Also it will

be shown that an approximation to the second order identifies the Kim (2003) model, whereas

overall identification of the An and Schorfheide (2007) model increases slightly, and under some

mild restrictions, we are able to identify all parameters of the Taylor-rule.

The paper is accompanied by MATLAB code, in which a researcher can choose in a user-

friendly interface between the illustrative models, which parameters to identify at which local

point, the identification test as well as the specific options, analytical or numerical derivatives,

and the order of approximation. Since all procedures are model independent, other models can

be easily included and tested as long as they can be represented in the same framework.3

2 DSGE framework

2.1 The model

A DSGE model consists of equilibrium conditions and transition equations for state (xt) and

control (yt) variables, structural shocks and innovations (ut), which can be cast into a nonlinear

first-order system of expectational difference equations f . We will follow the framework of Schmitt-

Grohé and Uribe (2004) and introduce a perturbation parameter σ that scales the standard

deviation of the exogenous innovations and captures the stochastic nature of the model. If it is

set to 0 the model becomes a deterministic one, for σ > 0 the model is stochastic. The solution

of such rational expectation models is characterized by so-called policy-functions, g and h, that

solve (at least approximately) the system of equations f . The model is further augmented by an

observer or measurement equation with D being a known matrix, which selects a subset (dt) of

the control variables (or a linear combination thereof) that are observable. The observer equation

can also capture measurement and specification errors vt. Thus, DSGE models can be interpreted

as state-space models.

Let Et be the expectation operator conditional on information available at time t, then

0 = Etf (xt+1, yt+1, xt, yt|θ) , (1)

xt+1 = h(xt, σ|θ) + σηx(θ)εt+1, (2)

yt = g(xt, σ|θ), (3)

dt = Dyt + ηd(θ)εt (4)

is called the general DSGE model with deep parameters θ. The non-stochastic steady-state is

3The code is available on http://www.mutschler.eu/identification.html.
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given by z := (x̄′, ȳ′)′

f(x̄, ȳ, x̄, ȳ|θ) := f(z̄|θ) = 0, x̄ = h(x̄, 0|θ), ȳ = g(x̄, 0|θ), d̄ = Dȳ.

The goal of the model is to describe fluctuations around the steady-state as well as the response

of the model due to stochastic innovations. Hence, the driving force of the model is the vector of

exogenous shocks and innovations. In the proposed setup the stochastic variables ut and vt are iid

with E(ut) = E(vt) = 0, E(utu
′
t) = Inu and E(vtv

′
t) = Inv . The variances and cross-correlations

are captured by premultiplying matrices ηu and ηv respectively, denoting Σu := σ2ηuη
′
u and

Σv := ηvη
′
v. For convenience, stochastic innovations and measurement errors are stacked into a

common vector εt = (u′t, v
′
t)
′. ηx and ηd then choose and scale the standard deviation of the shocks

and measurement errors accordingly. σ is set to be dependent on the standard deviation of one

of the shocks, while scaling all other variances and cross-correlations accordingly. The state and

control vectors can be handled very flexible depending on the model. In particular, the state vector

can be partitioned into nx1
endogenous predetermined states and nx2

exogenous predetermined

states. In the MATLAB code we also append auxiliary equations (et+1 = Et(εt+1) = 0) to

the model and consider the state vector xt = (x′1,t, x
′
2,t, e

′
t+1)′, so that the policy functions also

include reactions to current innovations and measurement errors.4 Also, in the code we add the

measurement equations to the model equations such that the control vector becomes (y′t, d
′
t)
′ and

D simply picks the last nd entries. See appendix E on how to squeeze the example models into

this framework.

The important property for identification is that dt is weakly stationary and its time series

properties are completely characterized by its time invariant unconditional mean and autoco-

variances. The same result can be motivated by assuming ut and vt are i.i.d. Gaussian. Table

1 summarizes the notation and dimensions of the coefficients, variables and mappings. In the

following the dependence on the deep parameters θ will be dropped for notational convenience.

2.2 Local approximation

We will follow Gomme and Klein (2011)’s approach to approximate the policy functions using the

Magnus and Neudecker (1999) definition of the Hessian. Define the steady state as z := (x′, y′)′,

then the Jacobian Df(z) and Hessian Hf(z) of f evaluated at the steady-state are defined as:

Df(z̄) :=
(
∂f(z)
∂x′t+1

∂f(z)
∂y′t+1

∂f(z)
∂x′t

∂f(z)
∂y′t

)
:=
(
f1 f2 f3 f4

)
,

Hf(z̄) := Dvec((Df(z̄))′).

This definition simplifies the analytical derivatives, since no tensor notation is needed and basic

matrix algebra can be used, see appendix A for further reference.5 The second-order Taylor

4This is insofar practical as the equivalence to other solution algorithms becomes obvious. For instance Sims
(2001) linear solution is of the form zt+1 = Azt + Bεt+1 with zt = (y′t, x

′
t)
′. The entries of the matrix B can be

extracted from the last columns of gx and hx respectively, see also appendix D.
5For recent literature in favor of this definition see also Magnus (2010) and Pollock (2013).
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Variable Dimension Interpretation
θ Θ ⊆ Rnθ0 Vector of deep parameters

σ R+
0 Perturbation parameter that scales the variance of εt

D nd × ny Selection matrix
ηu(θ) nx × nu Correlation matrix between shocks, depending on θ
ηv(θ) nd × nv Correlation matrix between measurement errors, depending on θ
ηx(θ) nx × (nu + nv) Correlation matrix between shocks and measurement errors,

depending on θ
ηd(θ) nd × (nu + nv) Correlation matrix between shocks and measurement errors,

depending on θ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xt nx × 1 Vector of state variables at time t
yt ny × 1 Vector of control variables at time t
dt nd × 1 Vector of observable variables

z = (x′, y′)′ (nx + ny)× 1 Vector of steady-state variables
ut nu × 1 Vector of stochastic innovations at time t, E(ut) = 0, E(utut′) = Inu
vt nv × 1 Vector of measurement errors at time t, E(vt) = 0, E(vtvt′) = Inv

εt = (ut′, vt′)′ (nu + nv)× 1 Vector of shocks and measurement errors at time t
E(εt) = 0, E(εtεt′) = Inε

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
µx(θ) nx × 1 Unconditional expectation of state variables, depending on θ
µy(θ) ny × 1 Unconditional expectation of control variables, depending on θ
µd(θ) nd × 1 Unconditional expectation of observable variables, depending on θ
Σx(θ) nx × nx Unconditional covariance matrix of states, depending on θ
Σy(θ) ny × ny Unconditional covariance matrix of controls, depending on θ
Σd(θ) nd × nd Unconditional covariance matrix of observables, depending on θ

Σx(t|θ) nx × nx Unconditional autocovariogram of states with lag t, depending on θ
Σy(t|θ) ny × ny Unconditional autocovariogram of controls with lag t, depending on θ
Σd(t|θ) nd × nd Unconditional autocovariogram of observables with lag t, depending on θ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
f(xt+1, yt+1, xt, yt|θ) R2nx+2ny → Rnx+ny Mapping of structural equations, depending on θ

g(xt, σ|θ)
(
Rnx × R+

)
→ Rny Policy function for control variables, depending on θ

h(xt, σ|θ)
(
Rnx × R+

)
→ Rnx Policy function for state variables, depending on θ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
f1(z|θ) n× nx Derivative of f w.r.t xt+1 evaluated at z, depending on θ
f2(z|θ) n× ny Derivative of f w.r.t yt+1 evaluated at z, depending on θ
f3(z|θ) n× nx Derivative of f w.r.t xt evaluated at z, depending on θ
f4(z|θ) n× ny Derivative of f w.r.t yt evaluated at z, depending on θ
H(z|θ) n(2nx + 2ny)× (2nx + 2ny) Magnus-Neudecker Hessian of f evaluated at z, depending on θ
gx(θ) ny × nx First order solution matrix, depending on θ
hx(θ) nx × nx First order solution matrix, depending on θ
gxx(θ) nynx × nx Second order solution matrix, depending on θ
hxx(θ) n2

x × nx Second order solution matrix, depending on θ
gσσ(θ) ny × 1 Second order solution matrix, depending on θ
hσσ(θ) nx × 1 Second order solution matrix, depending on θ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M(q) nd +
nd(nd+1)

2
+ (q − 1)n2

d × nθ Jacobian w.r.t. θ of first and second moments up to lag q

J nd +
nd(nd+1)

2
+ (q − 1)n2

d × nθ Jacobian w.r.t. θ of first moments and solution matrices
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dX =
∂vec(X)
∂θ

(n1 + n2)× nθ If X is n1 × n2 then dX is the derivative of vec(X) w.r.t θ

Table 1: Notation and dimensions
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approximation at the non-stochastic steady-state is then given by

xt+1 = x̄+ hx(x̄, 0) · (xt − x̄) + σηxεt+1

+
1

2
[Inx ⊗ (xt − x̄)′ ⊗ (xt − x̄)′] vec(hxx(x̄, 0)′) +

1

2
σ2hσσ(x̄, 0), (5)

yt = ȳ + gx(x̄, 0) · (xt − x̄)

+
1

2

[
Iny ⊗ (xt − x̄)′ ⊗ (xt − x̄)′

]
vec(gxx(x̄, 0)′) +

1

2
σ2gσσ(x̄, 0). (6)

gx and gσ are the gradients of g with respect to xt and σ respectively, gxx and gσσ the correspond-

ing Magnus-Neudecker-Hessians, all evaluated at (x̄, 0). The same notation applies to hx, hσ, hxx

and hσσ. Schmitt-Grohé and Uribe (2004) show that all linear terms as well as cross terms in σ,

i.e. gσ, gxσ, gσx, hσ, hxσ, hσx, are equal to zero, since the approximation is around σ = 0. Notice

also, that in a linearization of the first order (or log-linearization) the terms with the 1/2 drop

out.

There are several methods and algorithms to calculate the matrices hx(x̄, 0) and gx(x̄, 0), since

these are the coefficients of a first order linearization or log-linearization of the model. We follow

Klein (2000) to obtain hx(x̄, 0) and gx(x̄, 0) using the generalized Schur decomposition.6 The

other matrices can be calculated by inserting (3) and (2) into (1):

Etf (h(xt, σ) + σηxεt+1, g(h(xt, σ) + σηxεt+1, σ), xt, g(xt, σ)) = 0.

This expression is known at the non-stochastic steady-state, thus, all derivatives of f must be 0

when evaluated at the steady state. Differentiating f twice using the chain-rule of Magnus and

Neudecker (1999, p. 110), evaluating the Jacobian Df = (f1 f2 f3 f4) and Hessian H of f at the

non-stochastic steady-state, and setting it to 0 yields (after some algebra):[
vec(gxx)

vec(hxx)

]
= −Q−1vec(A), (7)[

hss

gss

]
= −B−1C, (8)

with

Q =
[
h′x ⊗ f2 ⊗ h′x + Inx ⊗ f4 ⊗ Inx Inx ⊗ (f1 ⊗ Inx + f2gx ⊗ Inx)

]
,

A = (Inx+ny ⊗M ′)HM,

B =
[
f1 + f2gx f2 + f4

]
,

C = f2trm[(Iny ⊗ (ηxη
′
x))gxx] + trm[(Inx+ny ⊗N ′)HN(ηxη

′
x)],

M =


hx

gxhx

Inx

gx

 , N =

 Inx

gx

0(nx+ny)×nx

 ,

and trm defines the matrix trace of an nm × n matrix [Y ′1 Y ′2 . . . Y ′m]′ as the m × 1 vector

6See Anderson (2008) for a comparison of algorithms, which are basically all equivalent and differ only (slightly)
in computational burden. Further, all provide and check the Blanchard and Kahn (1980) conditions that are
necessary in order to have a stable saddle-path solution, i.e. a unique mapping between state and control variables.
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[tr(Y1) tr(Y2) . . . tr(Ym)]′. See Gomme and Klein (2011) for the derivation. For our purpose it

is sufficient to note that there exist analytical closed-form solutions that we will differentiate with

respect to the deep parameters in section 2.4.

2.3 Unconditional Moments

The important assumption for identification is (weak) stationarity of model variables and data.

Given the approximated solution (5) and (6) of the DSGE model we can calculate the uncondi-

tional moments. Note that we will follow the literature and focus on the concept of second order

accurate moments, that is to keep only first and second order terms in the formula to compute

moments. Indeed, when computing the variance, the only possible second order term is the prod-

uct of two first order approximations. But this is the same as when computing the variance from

the first order approximation alone, since all other cross-product terms would result in something

of order higher than two.

Denoting Σx, Σy and Σd for the variances of xt, yt and dt respectively, we get

Σx := E(xt − x̄)(xt − x̄)′ = hxE(xt−1 − x̄)(xt−1 − x̄)′h′x + σ2ηxE(εtε
′
t)η
′
x︸ ︷︷ ︸

=:Σεx

⇔ Σx = hxΣxh
′
x + Σεx , (9)

Σy := E(yt − ȳ)(yt − ȳ)′ = gxE(xt − x̄)(xt − x̄)′g′x

⇔ Σy = gxΣxg
′
x,

Σd := E(dt − d̄)(dt − d̄)′ = E(D(yt − ȳ) + ηdεt)(D(yt − ȳ) + ηdεt)
′

⇔ Σd = DΣyD
′ + ηdE(εtε

′
t)η
′
d︸ ︷︷ ︸

=:Σεd

= DgxΣxg
′
xD
′ + Σεd . (10)

Using vectorization (or an algorithm for Lyapunov equations) we can solve (9)

vec(Σx) = (In2
x
− hx ⊗ hx)−1vec(Σεx)

and are hence able to calculate the autocovariances for t ∈ N \ {0}:

Σx(t) := E[(xt − x̄)(x0 − x̄)′] = (hx)tΣx,

Σy(t) := E[(yt − ȳ)(y0 − ȳ)′] = gx(hx)tΣxg
′
x,

Σd(t) := E[(dt − d̄)(d0 − d̄)′] = Dgx(hx)tΣxg
′
xD
′. (11)

Regarding the mean, notice that E [(xt − x̄)′ ⊗ (xt − x̄)′] = vec(Σx)′. Thus, taking expecta-

tions of (5), (6) and (4) yields

µx := E(xt) = x̄+ (Inx − hx)
−1 Λx

2
, (12)

µy := E(yt) = ȳ + gx(µx − x̄) +
Λy
2
, (13)

µd := E(dt) = Dµy. (14)
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with

Λx = [Inx ⊗ vec(Σx)′] vec(h′xx) + σ2hσσ, Λy =
[
Iny ⊗ vec(Σx)′

]
vec(g′xx) + σ2gσσ.

In a linear approximation to the first order Λx = Λy = 0 and we have the expectation being

equal to the steady-state of the model, µx = x̄, µy = ȳ and µd = Dȳ, which is known as the

certainty-equivalence-property. Going to a higher order approximation we are able to break with

this principle.

2.4 Analytical derivatives of solution matrices and moments

We will derive the analytical derivatives of all solution matrices (gx, gxx, gσσ, hx, hxx, hσσ) as well

as the moments (µx, µy, µd,Σx) with respect to the deep parameters θ. Following ideas from

Iskrev (2008) and Schmitt-Grohé and Uribe (2012, Supplemental Material, Sec. A.3) we view f as

well as the Jacobian of f as a function of θ and of the steady-state vector z(θ) := (x(θ)′, y(θ)′)′,

which is also a function of θ. Thus, implicitly we have f(z(θ), θ) = 0. Differentiating yields

df :=
∂f(z(θ), θ)

∂θ′
=
∂f

∂z′
∂z

∂θ′
+
∂f

∂θ′
= 0 ⇔ ∂z

∂θ′
= −

[
∂f

∂z′

]−1
∂f

∂θ′
.

This expression can easily be obtained analytically using MATLAB’s symbolic toolbox. The

derivative of the Jacobian Df(z(θ), θ) with respect to θ is then given by

dDf :=
∂vec(Df(z(θ), θ))

∂θ′
=
∂vec(Df)

∂z′
∂z

∂θ′
+
∂vec(Df)

∂θ′
.

Note that dDf can be partitioned into

dDf =


∂vec(∂f(z)/∂x′t+1)

∂θ′

∂vec(∂f(z)/∂y′t+1)

∂θ′

∂vec(∂f(z)/∂x′t)
∂θ′

∂vec(∂f(z)/∂y′t)
∂θ′

 =:


df1

df2

df3

df4

 .

This approach can be extended to calculate the analytical derivative of the Magnus-Neudecker-

Hessian with respect to θ, since H := Hf(z(θ), θ):

dH :=
∂vec(Hf(z(θ), θ))

∂θ′
=
∂vec(Hf)

∂z′
∂z

∂θ′
+
∂vec(Hf)

∂θ′
.

Our MATLAB code writes all analytical derivatives using symbolic expressions into script files

for further evaluation.

Derivatives of first-order solution matrices

Let Kn,q be the commutation7 matrix of order (n, q) and

F = −(h′xg
′
x ⊗ Inx+ny )df2 − (h′x ⊗ Inx+ny )df1 − (g′x ⊗ Inx+ny )df4 − df3,

7See Magnus and Neudecker (1999, p. 46) for the definition and Magnus and Neudecker (1999, p. 182) for an
application regarding derivatives.
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then the derivatives of the first-order solution matrices are given by:[
dgx

dhx

]
=
[
(h′x ⊗ f2) + (Inx ⊗ f4) (Inx ⊗ f2gx) + (Inx ⊗ f1)

]−1

· F,

dg′x = Kny,nxdgx,

dh′x = Knx,nxdhx,

dhtx = (Inx ⊗ (hx)t−1)dhx + (h′x ⊗ Inx)dht−1
x , t ≥ 2.

See Schmitt-Grohé and Uribe (2012, Supplemental Material, Sec. A.3) for the derivation of these

results. Note that dX := ∂vec(X)
∂θ′ .

Derivatives of second-order solution matrices

Differentiating (7) with respect to θ requires the analytical derivatives of A and Q−1, whereas

differentiating (8) with respect to θ requires the analytical derivatives of B−1 and C. See appendix

B for the derivation of these objects. Then the analytical derivatives of the second-order solution

matrices with respect to θ can be summarized as

d

[
vec(gxx)

vec(hxx)

]
= −Q−1dA− (vec(A)′ ⊗ In2

x(nx+ny))dQ
−1

d

[
hss

gss

]
= −(C ′ ⊗ In)dB−1 −B−1dC

Note that dX := ∂vec(X)
∂θ′ .

Derivatives of moments

Differentiating (12), (13) and (14) with respect to θ requires the analytical derivatives of Λx and

Λy, whereas differentiating (9) and (11) is straightforward using the vec-operator. See appendix

B for the derivation of these objects. The analytical derivatives of the matrices determining the

moments are then given by

dµx = dx+

(
Λ′x
2
⊗ Inx

)(
[(Inx − hx)′]−1 ⊗ (Inx − hx)−1

)
dhx + (Inx − hx)−1 dΛx

2
,

dµy = dy +
[
(µx − x)′ ⊗ Iny

]
dgx + (Inx ⊗ gx)(dµx − dx) +

dΛy
2
,

dµd = Ddµy,

dΣx =
[
In2

x
− (hx ⊗ hx)

]−1
[(hxΣx ⊗ Inx)dhx + (Inx ⊗ hxΣx)dh′x + dΣεx ] ,

d(Σd(t)) = (D ⊗D)
[
(Iy ⊗ gx(hx)tΣx)dg′x + (gx ⊗ gx(hx)t)dΣx + (gxΣx ⊗ gx)d(htx) + (gxΣx(h′x)t ⊗ Iy)dgx

]
.

where we used d(X−1) = (−(X ′)−1 ⊗X−1)dX, see Magnus and Neudecker (1999, p. 184).

Once again in a linear approximation to the first order this simplifies to certainty-equivalence,

i.e. dµx = dx, dµy = dy and dµd = Ddy. Thus, only changes of the steady-state affect the mean

up to first order. However, we will see that an approximation to the second order yields additional

restrictions on the mean, which can tighten identification. In the next section it will be shown

how to incorporate these additional restrictions into formal identifiability criteria and tests.
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3 Identification criteria based on rank conditions

Suppose that data dt is generated by the model with parameter vector θ0. The criteria we

will derive stem basically all from Theorem 4 in Rothenberg (1971), which essentially states

identifiability conditions based on injectivity of functions. Formally, given an objective function

f(θ) a sufficient condition for θ0 being globally identified is given by

f(θ1) = f(θ0)⇒ θ1 = θ0

for any θ1 ∈ Θ. If this is only true for values θ in an open neighborhood of θ0, the identification

of θ0 is local. Since most estimation methods in the econometric DSGE literature – e.g. full-

information likelihood methods or limited-information methods like impulse-response matching

or GMM – exploit information from the first two moments of data, we will focus on the mean,

autocovariances and spectrum of the process. Since population moments are functions of data, the

fundamental idea is to check, whether the mapping from θ to the population moments is unique.

Then basic mathematical results for systems of equations can be applied. This set of criteria is

the most basic and the closest to the ideas of the early work on identification in systems of linear

equations, since it is based upon the uniqueness of a solution. Consequently, rank and order

conditions are going to be derived, and it is also possible to pinpoint the parameters responsible

of potential identification problems.

3.1 Iskrev (2010)’s approach

Suppose the DSGE-model is the data-generating process, then the vector of theoretical first and

second moments of data dt is accordingly given by equations (10), (11) and (14). Collect for

t = 0, 1, . . . , T − 1 all elements in vectors

m(θ, T ) :=
(
vech(Σd)

′ vec(Σd(1))′ . . . vec(Σd(T − 1))′
)′
,

m(θ, T ) :=
(
µ′d m(θ, T )′

)′
.

m(θ, T ) is a function of θ that determines the second moments of the data, whereas m(θ, T )

determines the first two moments of data. m(θ, T ) is of dimension nd + nd(nd+1)
2 + (T − 1)n2

d.

If either εt is Gaussian or there are no distributional assumptions about the structural shocks,

then the model-implied restrictions on m(θ, T ) contain all information that can be used for the

estimation of θ. Iskrev (2010)’s test checks whether the derivatives of (the mean and) the predicted

autocovariogram of the observables with respect to the vector of identifiable parameters has rank

equal to the number of identifiable parameters. Formally, if m(θ, q) and m(θ, q) are continuously

differentiable functions of θ, then θ0 is locally identifiable if the Jacobians

M(q) :=
∂m(θ0, q)

∂θ′
and M(q) :=

∂m(θ0, q)

∂θ′

have full column rank at θ0 for q ≤ T , i.e. equal to nθ.This gives immediate rise to a necessary

condition: the number of identifiable parameters does not exceed the dimension of m(θ, T ) or

m(θ, T ). In fact, Iskrev (2010) establishes another order condition. For this, stack all elements of
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the mean and the solution matrices that depend on θ into a vector τ :

τ(θ) = τ1(θ) :=
(
µ′d vec(hx)′ vec(gx)′ vech(Σεx)′ vech(Σεd)′

)′
and consider the factorization

M(q) =
∂m(θ, q)

∂τ(θ)′
∂τ(θ)

∂θ′
.

An immediate corollary implies that a point θ0 is locally identifiable only if the rank of

J :=
∂τ(θ0)

∂θ′

at θ0 is equal to nθ. This condition is, however, only necessary, because τ may be unidentifiable.

Incorporating an approximation to the second order Implementing an approximation to

the second order is straightforward, since in mT only the expression for the mean µd changes.

However, for the order condition we have to add the second order solution matrices to τ(θ), thus

we consider instead the vector

τ(θ) = τ2(θ) :=
(
τ1(θ)′ vec(hxx)′ vec(gxx)′ h′σσ g′σσ

)′
.

Analytical and numerical derivatives For calculating the Jacobians analytically we need

the derivatives of all solution matrices and moments, which we already derived in section 2.4. For

calculating the Jacobians numerically we use the two-sided finite difference method described in

appendix C.

Implementation and interpretation Check if J has full column rank for either τ1 or τ2

depending on the order of approximation. If the rank of J is equal to nθ, then check the ranks

of M(q) and M(q). Start with the smallest q for which the order condition is satisfied, and then

increase the number of moments if the rank condition fails. The reason is that if θ is identifiable,

M(q) and M(q) are likely to have full rank for q much smaller than T . If J is rank deficient at

θ0, then this point is not identifiable in the model. If M(q) is rank deficient this means that θ0

cannot be identified from the second moments only given the set of observed variables and the

number of observations, whereas a rank deficient M(q) indicates nonidentification from the first

two moments.

Pinpointing the source of identification is also possible, one has just to evaluate the rows of a

rank deficient J , M(q) or M(q). This will be a vector of zeros for any q ≤ T , if θj does not affect

the first and second moments. Further the columns that are linearly dependent indicate that these

parameters are indistinguishable. We calculate the rank and analyze the null space of J,M(q) as

well as of M(q) using the singular value decomposition to pinpoint problematic parameters.

3.2 Komunjer and Ng (2011)’s approach

Komunjer and Ng (2011) derive two conditions for identification via equivalent spectral densities

depending on the relation between the number of shocks and observables. We will focus on
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singular and squared systems (nε ≤ nd) and assume fundamental innovations. Moreover, in the

commonly used squared case (nε = nd) both conditions coincide.8

Consider the linear solution of the minimal DSGE model, i.e. the model whose dynamics

are entirely driven by the exogenous states x2,t and the structural innovations and measurement

errors et =

(
σηuut

ηvvt

)
with E(et) = 0, E(ete

′
t) =

(
Σu 0

0 Σv

)
=: Σe:

x2,t = x2 + hx2︸︷︷︸
Ã

(x2,t−1 − x2) + he2︸︷︷︸
B̃

et,

dt = d+ gd2︸︷︷︸
C̃

(x2,t−1 − x2) + gde︸︷︷︸
D̃

et.

This minimal system has the smallest possible dimension nx2
of the state vector that is able to

capture all dynamics and has the familiar state-space solution. As DSGE models are based upon

microfoundations nx2
is for small and medium-sized DSGE models not hard to determine.9

Formal conditions for minimality require that for every θ ∈ Θ:

(i) Controllability: For any initial state, it is always possible to design an input sequence that

puts the system in the desired final state, i.e. the matrix
[
B̃ ÃB̃ . . . Ãnx2−1B̃

]
has full

row rank,

(ii) Observability: Given the evolution of the input it is always possible to reconstruct the initial

state by observing the evolution of the output, i.e. the matrix
[
C̃′ Ã′C̃′ . . . Ãnx2

−1′C′
]′

has full column rank.

Since dt is weakly stationary and et is either white noise or iid, the time-series properties of dt

are completely characterized by the time-invariant unconditional mean and autocovariances or,

equivalently, there exist a MA(∞) representation

dt = d̄+ D̃et +

∞∑
j=1

C̃Ãj−1B̃et−j = d̄+ H̃e(L
−1; θ)et,

where L is the lag-operator. For z ∈ C the transfer function (z-transform) is

H̃e(z; θ) := D̃ +

∞∑
j=1

C̃Ãj−1B̃z−j = D̃ + C̃
[
Inx2

− Ãz
]−1

B̃.

Assuming left-invertibility of the matrix H̃e, dt has the familiar Wold representation with et being

fundamental. For square models nε = nd, left-invertibility holds if det(H̃e(z; θ)) 6= 0 in |z| > 1.

When nε 6= nd left-invertibility requires that H̃e(z; θ) has full column rank in |z| > 1.10

Similar to Iskrev’s approach we collect all hyperparameters of the state space solution into a

vector Λ(θ) :=
(
vec(Ã)′, vec(B̃)′, vec(C̃)′, vec(D̃)′, vech(Σe)

′
)′

with dimension nΛ = n2
x2

+nx2
nε+

8For instance, in a model with anticipated shocks one has to use the innovation representation of the model
and derive a slightly different rank condition.

9For the derivation of this model representation and some practical issues regarding the minimal state vector
see Appendix D.

10This can be checked by computing the Rosenbrock system matrix P(z; θ) =

(
Inx2

− Ãz B̃
−C̃ D̃

)
. Then

rank(P(z; θ)) = nx2 + rank(H̃e(z, θ)) for every complex z without the set of eigenvalues of Ã.
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ndnx2
+ ndnε + nε(nε + 1)/2. Further assume that Λ : θ 7→ Λ(θ) is continuously differentiable on

Θ. For all z ∈ C the spectral density matrix of dt is defined as

Ωd(z; θ) := Σd +

∞∑
j=1

Σd(j)z
−j +

∞∑
j=1

Σd(−j)z−j = H̃e(z; θ)Σe(θ)H̃e(z
−1; θ)′.

Observational equivalence of θ0 and θ1 from the spectral density is hence defined as

∀z ∈ C : H̃e(z; Λ(θ1)) · Σe(θ1) · H̃e(z
−1; Λ(θ1))′ = H̃e(z; Λ(θ0)) · Σe(θ0) · H̃e(z

−1; Λ(θ0))′

implies θ0 = θ1. Equivalent spectral densities arise if

(i) for given Σe(θ), each transfer function H̃e(z; Λ(θ)) is potentially obtained from a multitude

of quadruples (Ã, B̃, C̃, D̃),

(ii) there are many pairs H̃e(z; Λ(θ)) and Σe(θ) that jointly generate the same spectral density.

Using results from control theory it can be shown that this is equivalent to the existence of

a nx2 × nx2 similarity transformation matrix T and a nε × nε full column rank matrix U =

Lε(θ0)V Lε(θ1)−1 such that

Ã(θ1) = T Ã(θ0)T−1, B̃(θ1) = T B̃(θ0)U, C̃(θ1) = C̃(θ0)T−1

D̃(θ1) = D̃(θ0)U, Σe(θ1) = U−1Σe(θ0)U−1′ ,

with Le being the Cholesky decomposition of Σe(θ) = LeL
′
e and V a constant matrix such that

V V ′ = I.11 Now define a continuously differentiable mapping δ : Θ× Rn
2
x2 × Rn2

ε → RnΛ as

δ(θ, T, U) :=


vec(T Ã(θ)T−1)

vec(T B̃(θ)U)

vec(C̃(θ)T−1)

vec(D̃(θ0)U)

vech(U−1Σe(θ0)U−1′)

 .

θ is now locally identifiable from the spectral density of dt at a point θ0 if and only if δ(θ, T, U)

is locally injective at (θ0, Inx2
, Inε). A sufficient condition is thus, that the matrix of partial

derivatives of δ(θ, T, U) has full column rank at (θ0, Inx2
, Inε). Denote this matrix by

∆(θ0) :=
(
∂δ(θ0,Inx2

,Inε )

∂θ′
∂δ(θ0,Inx2

,Inε )

∂vec(T )′
∂δ(θ0,Inx2

,Inε )

∂vec(U)′

)

=



∂vec(Ã)
∂θ′ Ã′ ⊗ Inx2

− Inx2
⊗ Ã 0n2

x2
×n2

ε

∂vec(B̃)
∂θ′ B̃′ ⊗ Inx2

Inε ⊗ B̃
∂vec(C̃)
∂θ′ −Inx2

⊗ C̃ 0ndnx2
×n2

ε

∂vec(D̃)
∂θ′ 0ndnε×n2

x2
Inε ⊗ D̃

∂vech(Σe)
∂θ′ 0(nε(nε+1)/2)×n2

x2
−2Ξnε [Σe ⊗ Inε ]


=:
(

∆Λ(θ0) ∆T (θ0) ∆U (θ0)
)

11The key insight behind this result is that the spectral density can be factorized and due to left invertibility
the matrix V is not a polynomial matrix of unknown degree, but a constant matrix.
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with Ξnε being the left-inverse of the n2
ε + nε(nε + 1)/2 duplication matrix Gnε for vech(Σe).

12

There are 3 blocks to consider:

1. The (n∆×nθ) block defined by ∆Λ(θ0): The rank of ∆Λ(θ0) must equal nθ for the mapping

Λ(θ) being locally invertible at θ.

2. The (n∆ × n2
x2

) block defined by ∆T (θ0): The rank of ∆T (θ0) must equal n2
x2

so that the

identity matrix is the only local similarity transformation.

3. The (n∆ × n2
ε) block defined by ∆U (θ0): The rank of ∆U (θ0) must equal n2

ε so that the

spectral factorization is locally uniquely determined.

with n∆ := (nx2 +nd)(nx2 +nε)+nε(nε+1)/2. This yields the following order and rank condition:

• Order condition (necessary): nθ + n2
x2

+ n2
ε ≤ n∆

• Rank condition (necessary and sufficient): rank(∆(θ0)) = nθ + n2
x2

+ n2
ε

Incorporating an approximation to the second order Within this framework it is straight-

forward to check identification via mean restrictions either from the first or second order approx-

imation. The restrictions in equation (14) simply augment the rows of the objective function δ,

that is

δ(θ, T, U) :=

(
µd(θ)

δ(θ, T, U)

)
, ∆(θ0) :=

(
∂µd(θ0)
∂θ′ 0nd×nx2

2

0nd×n2
ε

∆Λ(θ0) ∆T (θ0) ∆U (θ0)

)
.

Notice that the rank condition doesn’t change, since the restrictions are incorporated as additional

equations for solving the same number of unknowns. The order condition, however, requires

nθ + n2
x2

+ n2
ε ≤ nd + n∆.

Analytical and numerical derivatives In section 2.4 we already derived the derivatives of hx

and gx. The derivatives of Ã, B̃, C̃ and D̃ are easily obtained by choosing the rows of dhx and dgx

corresponding to the minimal state vector and the auxiliary shock variables. dΣe consists of dΣu

and dΣv, for which we have closed-form expressions. For calculating the Jacobians numerically

we use the two-sided finite difference method described in appendix C to obtain the Jacobians of

all minimal solution matrices, the covariance matrix and the mean vector.

Implementation and interpretation Having the derivatives dÃ, dB̃, dC̃, dD̃, dΣe and dµd, we

are able to set up ∆ as well as ∆ and check the order and rank condition. The order condition

(dimension of ∆(θ0)) is a simple function of the number of variables that appear in the DSGE

model. The rank, however, is a function of the parameters in the linearized solution to the

DSGE model. A rank-deficient ∆ means that some parameters are observational equivalent from

the spectral density and mean restrictions (depending on the order of approximation), whereas

a rank-deficient ∆ indicates nonidentification from the spectral density alone. There are three

necessary conditions for observational equivalent spectral densities: (1) Similar to Iskrev’s J, if

the solution matrices are sensitive to changes in parameters, we get a full rank ∆Λ, (2) full rank

of ∆T means there exist only one quadruple generating the z-Transform for the spectral density,

while (3) full rank of ∆U indicates that there exist a unique pair of z-Transform and dynamic

12See Magnus and Neudecker (1999, p. 49) for the definition of the duplication matrix.
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structure of the stochastic innovations that generate the spectral density. However, note that

individual full column ranks in all three cases are necessary, but not sufficient for identification.

Thus we have to check the ranks of ∆ and ∆ as well.

We calculate the rank and analyze the null space of ∆(θ0),∆(θ0),∆Λ(θ0),∆T (θ0),∆U (θ0)

using the singular value decomposition for different tolerance levels. Thus we are able to find

parameter dependencies and interactions, that are responsible for nonidentification.

3.3 Tkachenko and Qu (2012)’s approach

Assume that dt is covariance-stationary, thus it has a vector-moving-average representation

dt = d̄+

∞∑
j=0

Dgxh
j
xσηxεt−j + ηdεt = d̄+Hε(L; θ)εt

with Hε(L; θ) = Dgx (Inx − hxL)
−1
σηx + ηd. Using the Fourier transformation for the lag-

operator the spectral density matrix Ωd is given by

Ωd(ω, θ) =
1

2π
Hε(e

−iω; θ) · E(εtε
′
t)︸ ︷︷ ︸

=Inε

·Hε(e
−iω; θ)∗, ω ∈ [−π;π],

with ∗ denoting the conjugate transpose of a complex valued matrix. The spectral density matrix

has n2
d entries and each one is a map from Θ to complex valued functions defined over [−π;π]

in a Banach space.13 Similar to Rothenberg (1971), who looks at the Hessian of the parametric

density function in the Gaussian case, the authors focus on

G(θ0) =

∫ π

−π

(
∂vec(Ωd(ω; θ0)′)

∂θ′

)′(
∂vec(Ωd(ω; θ0))

∂θ′

)
dω

and assume that the spectral density ist continuous in ω and continuous and differentiable in θ.

The dimension of G(θ0) is always nθ×nθ. Let θ0 ∈ Θ be a regular point, then it can be shown that

θ is locally identifiable at a point θ0 from the spectrum of dt if and only if G(θ0) is nonsingular,

i.e. its rank is equal to nθ.

Incorporating an approximation to the second order This framework is very flexible

and allows for incorporating conditions for identification from a subset of frequencies, partial and

conditional identification as well as general constraints: The procedure is to simply add additional

restrictions to the G matrix. We include the mean restriction (14) conditional on the order of

approximation and consider

Ḡ(θ0) = G(θ0) +
∂µd(θ0)′

∂θ

∂µd(θ0)

∂θ′
.

θ is locally identifiable at a point θ0 from the mean and the spectrum of dt if and only if the rank

of G(θ0) is equal to nθ.

Analytical and numerical derivatives We will now show how to obtain the derivative of

Ωd(ω; θ0) w.r.t. θ analytically:

13If the spectral density matrix is continuous there is a one-to-one relationship to the autocovariogram Σd(j) =∫ π
−π e

ikωΩd(ω, θ)dω, j = 0,±1, . . . .
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1. Divide the interval [−π;π] into N subintervals to obtain N+1 frequency indices, ωs denotes

the s−th frequency in the partition.

2. Solve the DSGE model using θ = θ0.

3. For s = 1, . . . N + 1:

(i) Derive the derivative of Hε(e
−iωs ; θ0) and its conjugate transpose using the expression

in appendix B for each ωs.

(ii) Calculate for each ωs

dΩd(ωs, θ0) =
1

2π

[
(H∗

′

ε ⊗ Ind)dHε + (Inε ⊗Hε)dH
∗
ε

]
.

4. Approximate G(θ0) using

G(θ0) ≈ 2π

N + 1

N+1∑
s=1

dΩd(ωs, θ0)′dΩd(ωs, θ0).

Regarding numerical derivatives we use the two-sided central difference method described in

appendix C to compute for each ωs the non-vectorized derivative ∂Ωd(ωs;θ0)
∂θj

and stack these into

a big matrix. The typical element of G is then given by

Gjk(θ) =

∫ π

−π
tr

{
∂Ωd(ω; θ)

∂θj

∂Ωd(ω; θ)

∂θk

}
dω

which can be approximated by

Gjk(θ0) ≈ 2π

N + 1

N+1∑
s=1

tr

{
∂Ωd(ωs; θ0)

∂θj

∂Ωd(ωs; θ0)

∂θk

}
, j, k = 1, . . . , nθ

Note, that even in the analytical case we still have to divide the interval [−π;π] into sufficient

subintervals N to numerically approximate the integral.

Implementation and interpretation Since G as well as G are real, symmetric and positive

semidefinite, the rank can be easily computed using the singular value decomposition and counting

non-zero singular values. A full rank G indicates identification via the spectrum, whereas a full

rank G also adds the mean restrictions to the spectrum. If either is rank deficient, we check

identification for all possible subsets of the parameter vector separately. That is, we start with one-

element subsets, i.e. we check identification for each parameter separately. Then we continue with

all possible two-element subsets and check the rank for each subset individually. We do this for all

j-subsets, j = 1, . . . , nθ−1. This procedure is computationally very easy, since for the one-element

subsets we only have to check whether the diagonal elements of G and G are nonzero, whereas

for the higher subsets we can pick the relevant elements of the G and G matrix respectively, and

calculate its rank using the singular value decomposition. If for any j-subset the rank is deficient,

we conclude that the parameters in the subset are not identifiable and exclude them from the

higher ordered subsets. Thus, we are able to pinpoint the source of nonidentification. A further

benefit of considering the frequency domain is the possibility of constructing nonidentification

curves that can show how large the neighborhood of the nonidentified parameter values is. This

can be insightful for finding regions of nonidentification.
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3.4 Discussion of methods based on rank conditions

All presented methods exploit the dynamic structure of the solution of a DSGE model to define

mappings and establish conditions for local injectivity of the mappings. For all procedures we

are able to derive necessary as well as sufficient conditions for identification, and to pinpoint the

source of nonidentification, i.e. problematic parameters. Including the mean restrictions from a

second order approximation is also straightforward.

The point of departure, however, is different: Iskrev’s approach is based in the time domain,

whereas Qu and Tkachenko derive conditions in the frequency domain. It is known that given

some regularity conditions there is a one-to-one mapping between the time and frequency domain,

thus the criteria should yield the same results. Komunjer and Ng’s approach can be considered

to be in between both approaches, since they establish conditions without actually computing

autocovariances or the spectral density. However, their assumptions are the strictest as they rely

on minimality and left-invertibility. Deriving and checking the minimality of the model can be

tedious in practice.14 Iskrev’s and Qu and Tkachenko’s method is very general as we only assume

the existence of the VARMA representation of the DSGE model. However, we have to actually

compute the derivative of the autocorrelogram and of the spectrum, which may leave scope for

numerical errors and imprecision. In particular choosing the lag order T as well as number of

subintervals N for the frequencies may change results, since strictly speaking the criteria are only

valid for T,N → ∞. In practice, however, this is not a question of heavily sensitive results15,

but rather one of speed: the higher T or N , the more time the calculations need. Komunjer and

Ng’s approach is hence the fastest, since we only have to evaluate the solution matrices and their

derivatives (which we also have to do for the other criteria). In this line of thought note that all

methods depend heavily on the solution matrices and suffer from possible numerical instability

of the solution algorithm. However, since we used the same framework and algorithm across

methods, we are able to neglect this effect in the comparative approach in section 5.

The different interpretations of Iskrev’s and Komunjer and Ng’s criteria can also be used as

diagnostics for model building. For instance J as well as ∆Λ check the mapping from the structural

parameters to the solution parameters. The evaluation yields parameters that do not influence

the reduced-form solution and may be thus obsolete. A researcher is hence able to reparameterize

the model prior to estimation. Moreover, given a known shock a rank deficient ∆ΛT indicates that

two structures (e.g. two different policies) might cause the same impulse response of the model,

so we have to be careful interpreting the importance of shocks. In contrast given a rank deficient

∆ΛU we cannot be sure, whether it is the size of the shock or similar propagating mechanisms,

that yield the same dynamic structure of the model. Qu and Tkachenko’s test does not give such

diagnostics, however, their approach can be used for a quasi maximum likelihood estimation in the

frequency domain. Moreover, it is possible to get insight into the size of the local neighborhood

of the unidentified parameters.

Lastly, all procedures check only local identification.16 Thus, one has to make sure that this

procedure is valid for a sufficient range of parameters. However, given prior beliefs and upper and

14In a model with non-fundamental innovations (nd < nε) we also have to work with the innovation representation
of the model.

15In most practical cases T in between 10 and 100 will be sufficient, since the higher the lag the less informative
the identification restrictions. Further we experienced with different values for N and find that the results hardly
change. Thus an N in the order of 10000 is sufficient as well.

16See Komunjer (2012) for issues regarding global identification. She uses results from unconditional moment
restriction models (properness and homeomorphism) to establish identification conditions in the fashion of GMM
identification conditions.
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lower values this can be granted. A possible identification analysis would be to generate many

random draws θi from Θ that are theoretically plausible (lower or upper bounds, prior distribu-

tions, conditions for existence and uniqueness should be satisfied) and check the aforementioned

criteria.

4 Identification criteria based on Bayesian methods (NOT

YET IN THE CODE, discussion incomplete)

4.1 Bayesian comparison indicator

It is well known that informative marginal priors are sufficient to get well-defined posteriors even

for non-identifiable parameters. The usual approach in the DSGE literature is to compare the

prior and posterior distribution of a parameter. If they differ, there is “learning”, i.e. data seems

to be informative about a parameter. However, from an identification point of view, this can be

misleading as was shown by Kadane (1974) and Poirier (1998).

Suppose the deep parameters can be divided into two subsets θ = (θ′1, θ
′
2)′ with θ1 ∈ Θ1 being

non-identifiable and θ2 ∈ Θ2 identifiable. The permissible values for the parameters are each

possibly conditionally dependent: Θ1(θ2) := {θ1|(θ′1, θ′2)′ ∈ Θ} and Θ2(θ1) := {θ2|(θ′1, θ′2)′ ∈ Θ}.
Given Bayes’ rule the marginal posterior density for the unidentified θ1 ∈ Θ1 is given by

p(θ1|d) =
p(θ1)f(d|θ1)

p(d)

If data d = d0, . . . , dT is marginally uninformative for θ1, this implies that p(θ1|d) = p(θ1) or

equivalently f(d|θ1) = p(d). Since the likelihood f(d|θ1, θ2) = f(d|θ2) does not depend on θ1 we

have

f(d|θ1) =

∫
Θ2(θ1)

f(d|θ1, θ2)p(θ2|θ1)dθ2 =

∫
Θ2(θ1)

f(d|θ2)p(θ2|θ1)dθ2

p(d) =

∫
Θ2(θ1)

f(d|θ2)p(θ2)dθ2 =

∫
Θ1

∫
Θ2(θ1)

f(d|θ2)p(θ2, θ1)dθ1dθ2.

For this to be equal, two conditions have to be met: First, the priors have to be independent,

i.e. p(θ2, θ1) = p(θ2)p(θ1) and secondly, the parameter space has to be a product space, i.e.

Θ = Θ1 × Θ2.17 Otherwise there is dependence of p(θ1|d) on θ1 through either the conditional

density p(θ2|θ1) or the support Θ1(θ2). In other words, if these conditions are not satisfied, then

“data based learning about θ2 can ‘spill over’ onto the unidentified θ1” (Koop, Pesaran, and Smith

2012, p. 14). Thus, one has to be careful judging identification from “apparent learning”, i.e. the

posterior p(θ1|d) being different than the prior p(θ1).

17Poirier (1998) defines this as θ1 and θ2 being variation free.
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However, if data d is conditionally uninformative for θ1, i.e. p(θ1|θ2, d) = p(θ1|θ2) we get

p(θ1|θ2, d) =
p(θ1, θ2|d)

p(θ2|d)
=
p(θ1|θ2, d)p(θ2|d)

p(θ2|d)
=

p(θ1|θ2, d) (p(θ2)f(d|θ2)) /p(d)( ∫
Θ1(θ2)

p(θ2)f(d|θ2, θ1)p(θ1|θ2)dθ1

)
/p(d)

=
p(θ2)p(θ1|θ2)f(d|θ2)

p(θ2)f(d|θ2)
= p(θ1|θ2)

for some θ2 ∈ Θ2 and θ1 ∈ Θ1(θ2). Now, when looking at conditional informativeness, the

aforementioned dependencies do not occur, since neither the density nor the support are required

to be independent. This is the idea of proposition 2 in Poirier (1998) which states, that data

is always conditionally uninformative for a subset of nonidentified parameters given a subset of

identified parameters. Thus the posterior for θ1 ∈ Θ1 should be rewritten with respect to the

conditional prior beliefs given the identified θ2 ∈ Θ2(θ1):

p(θ1|d) =

∫
Θ2(θ1)

p(θ1, θ2|d)dθ2 =

∫
Θ2(θ1)

p(θ1|θ2, d)p(θ2|d)dθ2

=

∫
Θ2(θ1)

p(θ1|θ2)p(θ2|d)dθ2

= Eθ2|y [p(θ1|θ2)] .

Following Koop, Pesaran, and Smith (2012) we apply this idea to DSGE models and compare the

properties of p(θ1|d) and Eθ2|y [p(θ1|θ2)] in addition to p(θ1|d) and p(θ1).

4.2 Bayesian learning rate indicator

Naturally identification should become better as more data becomes available. With an infinite

sample the role of the prior vanishes and Bayesian asymptotics are identical to the asymptotic

distribution theory for maximum likelihood. However, this requires θ to be identified. Thus, if the

convergence does not occur, θ is not or only weakly identified. Koop, Pesaran, and Smith (2012)

use this idea to derive an indicator, that is focused on the rate at which learning, interpreted as

increasing posterior precision, occurs.

Again, stack all non-constant elements of the solution matrices that depend on θ into a k × 1

vector-valued function τ(θ) and denote the Jacobian with J(θ) = ∂τ(θ)/∂θ′.18 The log-likelihood

function lT (τ) := l(τ, d) is only dependent on the solution parameters and data of size T . Further

assume that the average Hessian of the log-likelihood

QT (τ) =
−1

T

∂2lT (τ)

∂τ∂τ ′

is a positive definite matrix for all admissible values of τ . Standard results from maximum

likelihood asymptotics yield that the maximum likelihood estimator τ̂T converges to the true

value τ0 = τ(θ0) such that

√
T (τ̂T − τ0)

d→ N(0, Q−1)

18In a linear approximation to the first order τ = τ1 and to the second order τ = τ2, see section 3.1.
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with Q = plim
T→∞

QT (τ0). Given a multivariate normal density with mean vector θpr and precision

Hpr as the prior distribution

p(θ) = (2π)−nθ/2|Hpr|1/2exp{−1

2
(θ − θpr)′Hpr(θ − θpr)},

it can be shown that the posterior distribution of θ is approximately normal with mean θpoT and

precision matrix Hpo
T such that

θpoT = (TST +Hpr)−1(TST θ̂T +Hprθpr)

Hpo
T =

(
Hpo

11,T Hpo
12,T

Hpo
21,T Hpo

22,T

)
= T

(
S11,T S12,T

S21,T S22,T

)
+

(
Hpr

11 Hpr
12

Hpr
21 Hpr

22

)
= TST +Hpr

ST =

(
S11,T S12,T

S21,T S22,T

)
= J(θ)′QT (τ)J(θ),

assuming for simplicity k = nθ and partitioning θ into a non-identified part θ1 and an identified

part θ2. Using the fact that the marginal distributions of the multivariate normal distribution are

also normal it can be shown, that the posterior precision for the unidentified θ1 is given by

Hpo
11,T = (TS11,T +Hpr

11 )− (TS12,T +Hpr
12 )(TS22,T +Hpr

22 )−1(TS21,T +Hpr
21 )

Now two cases can be analyzed: the identified and unidentified case.

Identified case In the identified case J has full rank and thus ST is bounded in T and a full

rank matrix for all T . It can be shown that apart from terms of order T−2 this implies

T−1Hpo
11,T = (S11,T − S12,TS

−1
22,TS21,T )

+ T−1(Hpr
11 −H

pr
12S
−1
22,TS21,T − S12,TS

−1
22,TH

pr
21 + S12,TS

−1
22,TH

pr
22S
−1
22,TS21,T )

+O(T−2)

As can be seen, the dependence of the average posterior precision on the priors diminishes at rate

T−1. Taking the limit yields

lim
T→∞

(T−1Hpo
11,T ) = lim

T→∞
(S11,T − S12,TS

−1
22,TS21,T ) > 0,

since ST is bounded in T and of full rank. Thus, if Hpo
11,T improves at rate T, T−1Hpo

11,T converges

to a constant number in the identified case.

Unidentified or weakly identified case Weak identification is defined as in Stock, Wright,

and Yogo (2002), as the derivatives of the solution parameters with respect to the weak identified

parameters can for finite T be different than zero, but asymptotically not: J11,T = T−1/2∆11,T

and J12,T = T−1/2∆12,T . These matrices are bound in T and the unidentified case is simply given

by ∆11,T = ∆12,T = 0. Further since θ2 is identified, J22,T has full rank for all T :

JT =

(
J11,T J12,T

J21,T J22,T

)
=

(
T−1/2∆11,T T−1/2∆12,T

J21,T J22,T

)
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Looking at the Cholesky decomposition of QT = U ′TUT , with UT being lower triangular, the

following auxiliary matrix is used:

PT =

(
P11,T P12,T

P21,T P22, T

)
=

(
U11,T 0

U21,T U22, T

)(
J11,T J22,T

J21,T J22, T

)

=

(
U11,TJ11,T U11,TJ12,T

U21,TJ11,T + U22,TJ21,T U21,TJ12,T + U22,TJ22,T

)
= UTJT

Under weak identification, this yields

P11,T = T−1/2U11,T∆11,T

P12,T = T−1/2U11,T∆12,T

P21,T = T−1/2U21,T∆11,T + U22,TJ21,T

P22,T = T−1/2U21,T∆12,T + U22,TJ22,T .

Now it can be shown that the posterior precision of the unidentified parameters is apart from

terms of order T−1 given by

H11,Tpo = (U11,T∆11,T − U12,T∆12,TP
−1
22,TP21,T )′(U11,T∆11,T − U12,T∆12,TP

−1
22,TP21,T )

+Hpr
11 − P

′
21,TP

′−1
22,T −H

pr
12P

−1
22,TP21,T + P ′21,TP

′−1
22,TH

pr
22P

−1
22,TP21,T +O(T−1)

In contrast to the identified case the posterior precision does not rise with T and is bounded by

the priors and data given the P,U and ∆ matrices. Consequently, the average precision T−1Hpo
11,T

tends to zero in the limit.

Bayesian learning rate indicator Given these two results one can use the average precision

as an indicator for weak identification given a subset of identified parameters:19

lim
T→∞

T−1H11,T

0 (Hpo
11,T improves at rate slower than T) if θ1 unidentified

a number (Hpo
11,T improves at rate T) if θ1 identified

Discussion of Bayesian methods (incomplete)

Both indicators are very easy to implement, since it requires only a few additional steps during

an ordinary Bayesian estimation, i.e. the ability to calculate the posterior expectation of the

conditional prior and to simulate data of increasing sizes. The second indicator is also useful

for detecting weak identification. Caglar, Chadha, and Shibayama (2012) already show how

to use the Bayesian learning rate indicator for the workhorse medium-sized DSGE model of

Smets and Wouters (2007). However, these procedures require a subset of parameters that are

definitely identifiable. In practice this means first finding this subset by using one or several of

the aforementioned criteria.

A minor drawback regarding the Bayesian learning rate indicator is also noteworthy: assuming

a Gaussian prior is chosen for analytical simplicity and in order to get a closed-form solution.

19See Caglar, Chadha, and Shibayama (2012, p. 6).
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However, this assumption can be relaxed with the cost of not getting an analytical expression for

the posterior precision. Since the focus lies on the rate at which the precision gets updated with

the sample size, this is only a minor shortcoming.20

Whereas, incorporating an approximation to the second order is very straightforward, as

the procedure relies only on the ability to simulate the posterior and data. For higher order

approximations there are several things to be careful about. First computing the posterior requires

the particle filter or efficient importance sampling. Second, when simulating data one has to use

pruning in the higher order approximation.21 These approaches thus rely heavily on the numerical

techniques, algorithms and MCMC methods. Different approaches may lead to different results.

5 Application (Bayesian indicators not yet)

We will now compare the different methods on three illustrative models: (i) the neoclassical

growth model, (ii) the Kim (2003) model and (iii) the An and Schorfheide (2007) model. The

first is a well-identified model, whereas the other two models are known to have identification

failures. Please refer to appendix E for the details about each model and how to represent them

in the proposed framework of chapter 2. We welcome the interested reader to use our user-

friendly Matlab code to try different subsets of parameters, local points, analytical or numerical

derivatives, order of approximations and other options to confirm results of this section. In the

code we also implemented the models of Christiano, Eichenbaum, and Evans (2005), Garcia-Cicco,

Pancrazi, and Uribe (2010) and Smets and Wouters (2007).

5.1 The neoclassical growth model

The neoclassical growth model is a simple and well identified model, which we will only use as

a benchmark case. Table 2 summarizes the results of the tests for different tolerance levels. As

expected, all tests yield that the full parameter vector is identifiable at the given local point and

given the observables across tolerance levels.22 The second order approximation as well as using

analytical or numerical derivatives does not change the ranks of all tests.

However, when we change the size of the standard deviation of the shock on technology from

σa = 1 to σa = 0.01 we get a different picture, see table 3 for the corresponding ranks and

results. The problematic parameter for Iskrev’s J at the largest tolerance level is σa, whereas for

the second moments the parameters (α, ρ, β, δ, γ, σa) are together not distinguishable (for 1e− 5).

Tkachenko and Qu’s test results in nonidentifiable parameters for tolerance levels down to 1e−09.

However, the source of nonidentification is not as straightforward as in the other tests. Pinpointing

the problematic parameters for each tolerance level yields several combinations of unidentifiable

subsets. For instance at tolerance level 1e − 6 we have three subsets that yield observational

equivalent spectral densities: γ, (α, ρ, β, δ) and (α, β, δ, σa). Komunjer & Ng’s ∆Λ,∆ΛT and ∆ΛU

hint towards σa, but also towards (β, γ). Their test is numerically quite robust for this example.

This result is of course not surprising, since the technological shock is the only driving force of

the dynamics of the neoclassical growth model. Having a very small impulse makes it tough

20For identification issues regarding different priors see also Beltran and Draper (2012) and Onatski and Williams
(2010).

21See Kim et al. (2008) for details regarding pruning.
22Values less than tol (e.g 1e-4=0.0001) are regarded as zero. The rank is calculated using the singular-value-

decomposition and calculating the nonzero elements on the diagonal.
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Table 2: Neoclassical model, σa = 1
Iskrev Komunjer/Ng Qu/Tkachenko

tol J M M ∆Λ ∆ΛT ∆ΛU ∆ ∆ G G

1e-01 7 6 7 7 10 11 14 14 6 6

1e-02 7 7 7 7 11 11 14 15 6 7

1e-03 7 7 7 7 11 11 15 15 7 7

1e-04 7 7 7 7 11 11 15 15 7 7

1e-05 7 7 7 7 11 11 15 15 7 7

1e-06 7 7 7 7 11 11 15 15 7 7

1e-07 7 7 7 7 11 11 15 15 7 7

1e-08 7 7 7 7 11 11 15 15 7 7

1e-09 7 7 7 7 11 11 15 15 7 7

1e-10 7 7 7 7 11 11 15 15 7 7

1e-11 7 7 7 7 11 11 15 15 7 7

1e-12 7 7 7 7 11 11 15 15 7 7

1e-13 7 7 7 7 11 11 15 15 7 7

1e-14 7 7 7 7 11 11 15 15 7 7

1e-15 7 7 7 7 11 11 15 15 7 7

1e-16 7 7 7 7 11 11 15 15 7 7

1e-17 7 7 7 7 11 11 15 15 7 7

1e-18 7 7 7 7 11 11 15 15 7 7

1e-19 7 7 7 7 11 11 15 15 7 7

1e-20 7 7 7 7 11 11 15 15 7 7

Require 7 7 7 7 11 11 15 15 7 7

Ranks of identification tests for different tolerance levels tol, bold indicates full rank.

Lags in autocovariogram T = 100, subintervalls N = 10000, numerical differentiation step 10−7.

Table 3: Neoclassical model, σa = 0.01
Iskrev Komunjer/Ng Qu/Tkachenko

tol J M M ∆Λ ∆ΛT ∆ΛU ∆ ∆ G G

1e-01 6 2 4 6 9 9 12 13 2 4

1e-02 7 3 5 7 11 11 14 15 2 4

1e-03 7 3 5 7 11 11 15 15 2 4

1e-04 7 5 6 7 11 11 15 15 3 5

1e-05 7 6 7 7 11 11 15 15 3 5

1e-06 7 7 7 7 11 11 15 15 3 5

1e-07 7 7 7 7 11 11 15 15 4 5

1e-08 7 7 7 7 11 11 15 15 4 6

1e-09 7 7 7 7 11 11 15 15 6 7

1e-10 7 7 7 7 11 11 15 15 6 7

1e-11 7 7 7 7 11 11 15 15 7 7

1e-12 7 7 7 7 11 11 15 15 7 7

1e-13 7 7 7 7 11 11 15 15 7 7

1e-14 7 7 7 7 11 11 15 15 7 7

1e-15 7 7 7 7 11 11 15 15 7 7

1e-16 7 7 7 7 11 11 15 15 7 7

1e-17 7 7 7 7 11 11 15 15 7 7

1e-18 7 7 7 7 11 11 15 15 7 7

1e-19 7 7 7 7 11 11 15 15 7 7

1e-20 7 7 7 7 11 11 15 15 7 7

Require 7 7 7 7 11 11 15 15 7 7

Ranks of identification tests for different tolerance levels tol, bold indicates full rank.

Lags in autocovariogram T = 100, subintervalls N = 10000, numerical differentiation step 10−7.
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to distinguish the other parameters, especially when actually calculating the autocovariance or

spectral density. Komunjer & Ng’s test is in this example most reliable, since it neither computes

autocovariances nor the spectral density, but rather focuses on implications given observational

equivalence.

Again, the second order approximation does not change the ranks at all. We also experienced

with four different numerical differentiation steps (1e− 3, 1e− 7, 1e− 11, 1e− 15) for calculating

the derivatives numerically and find that the results stay the same expect for the smallest step

size 1e− 15, for which results are very similar to table 2.

In summary, we conclude that the tests yield similar results and our comparative approach

is useful to understand the model dynamics and dependencies. Also we are able to get robust

insight into possible sources of nonidentification. Further, we show that in the neoclassical model

a higher order approximation yields no additional restrictions on the mean that can be used to

identify the model.

5.2 The Kim (2003) model

This model extends the neoclassical growth model to include investment adjustment costs twofold:

First intertemporal adjustment costs, which involve a nonlinear substitution between capital and

investment in capital accumulation, are introduced into the capital accumulation equation govern

by a parameter φ. Second multisectoral costs, which are captured by a nonlinear transforma-

tion between consumption and investment, enter the budget constraint given a parameter θ. In

the original paper Kim (2003) log-linearizes the model and shows that there is observational

equivalence between these two specifications: “[W]hen a model already has a free parameter

for intertemporal adjustment costs, adding another parameter for multisectoral adjustment costs

does not enrich the model dynamics” (Kim 2003, p. 534). Table 4 confirms this analytical result

throughout all identification tests. Analyzing the nullspace of J,∆Λ,M and G yields unanimously

the result that the combination (θ, φ) is observational equivalent given a first-order approximation.

This holds for tolerance levels as low as 1e − 14 for analytical derivatives. Regarding numerical

derivatives we see a dependence on the differentiation step: the smaller the step, the more likely

we erroneously conclude an identified model. This is not surprising, since the numerical error

of the DSGE solution algorithm will be relative large compared to a very small step size, and

we cannot compute the rank precisely. We thus conclude that using analytical derivatives yields

numerically better results across all criteria.

Note that identification via the second moments only yields some higher rank deficiencies:

checking M and ∆ additionally yields (a0, θ, φ, σa) as an unidentified set, whereas checking G

yields (a0, σa) and (θ, φ) as two unidentifiable subsets. Thus, the mean has already some in-

formation to strengthen identification of the model, in this case identifying a0. Considering an

approximation to the second order yields even more restrictions on the mean, as can be seen in

table 5. The criteria checking identification via the second moments only stay the same, whereas

including the mean restrictions now gives full rank for all tests starting at tolerance levels as large

as 1e-4 or even 1e-3, and even for numerical derivatives.

We thus conclude that an approximation to the second order yields additional restrictions on

the mean to identify θ and φ separately. All tests indicate that θ and φ are no longer observational

equivalent and the model can be identified using the first and second moments of data. This result

– as far as we know – is new to the literature.
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5.3 The An and Schorfheide (2007) model

This model is a prototypical DSGE model often cited in the literature. The authors already show

that the parameter ν and the steady-state ratio c/y do not influence the log-linearized solution.

Also they indicate that the parameters entering the Taylor-rule are at best only weakly identified.

Komunjer and Ng (2011), Ratto and Iskrev (2011) and Qu and Tkachenko (2012) confirm this

and show that indeed the parameters ψ1, ψ2, ρR, σR are not separably distinguishable using the

methods described in section 3. However, they all use a slightly different version of the model (log-

linearized model, simplified measurement equations, different parametrization), hence, comparing

the details of their results is only partly possible. Therefore, we will focus on the original model

in its non-linearized form and check the identification criteria across different tolerance levels.

Table 6 shows results for the linear approximation to the first order for analytical and numerical

derivatives with different differentiation steps. First, turning to analytical derivatives, all criteria

yield correctly rank-deficiency by three, however, there are slight differences for which tolerance

levels. The thresholds are 1e-15 for Iskrev’s method, 1e-11 for Komunjer and Ng’s criteria and

1e-12 for Qu and Tkachenko’s test considering identification through first and second moments.

The problematic parameter sets are shown in columns two, four and six of table 8 for the first-

order approximation. We can robustly confirm that from an identification point of view we have

to fix three parameters for the log-linearized model: ν, c/y and one parameter out of the set

(ψ1, ψ2, ρR, σR). For very small, i.e. strict tolerance levels Iskrev’s and Qu and Tkachenko’s

method fail to detect the Taylor-rule coefficients, whereas Komunjer and Ng’s approach even

points wrongly to an identified model. On the other hand for very large tolerance levels (e.g.

1e-3=0.001) we are only on the verge of detecting σR, since σR = 0.002 is of the same magnitude

as the tolerance level. Thus, when selecting a tolerance level for the rank calculation, one has to

be aware of the magnitude of the local point as well as not to set it too strict. This issue becomes

even more severe, when we calculate the derivatives numerically. Now we have a trade-off between

setting the differentiation step too large (e.g. 1e-3), and thus possibly calculating the derivatives

imprecisely, or too small (e.g. 1e-11), such that the numerical error from the solution algorithm

possibly outweighs the differentiation error. Both result in false rank calculation, as can be seen

in table 6, where we fail to detect lack of identification of the Taylor-rule coefficients even for mild

tolerance levels across all approaches. Using a feasible trade-off for the numerical differentiation

step (e.g. 1e-7), the threshold of correctly determining rank-deficiency by three are now 1e-7 for

Iskrev’s method, 1e-8 for Komunjer and Ng’s criteria and 1e-12 for Qu and Tkachenko’s test. So

compared to the analytical case, we have to loosen our tolerance level for the rank calculations or

otherwise we get wrong results. Therefore we are strongly in favor of analytical procedures and

advise using them whenever feasible; the results are unanimously more reliable even for stricter

tolerance levels.

Further J and ∆Λ can be used for diagnostic issues of the model. J is rank-deficient by two,

i.e. ν and c/y do not enter neither the mean nor the first-order solution matrices, whereas ∆Λ is

short by 4, i.e. ν, c/y, π(A) and γ(Q) do not enter the solution matrices. Thus, we conclude that

π(A) and γ(Q) are only identified via the mean using the first-order approximation, which is in

accordance to the measurement equations.

Now, considering an approximation to the second order, the picture changes slightly, see table

7 for the results. Now J is full rank: the mean, and the first- and second-order solution matrices

seem to have information for identifying all parameters. Note that a full-rank J is only necessary,
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but not sufficient for identification, as is obvious when looking at the ranks of M , ∆ and G. The

influence of different tolerance levels as well as the effect of analytical vs. numerical derivatives

are apparently very similar to the first-order approximation, since in the relevant cases we yield

rank deficiencies by three. However, columns three, five and seven of table 8 yield some alluring

insight about the problematic parameters. For Iskrev’s and Komunjer & Ng’s criteria, it’s the

combination of (ν, c/y, ψ1, ψ2, ρR, σR, π
(A)) that jointly yield three problematic sets, whereas Qu

& Tkachenko’s test points towards (ν, π(A)), (c/y, π(A)) and (ν, c/y). The appearance of π(A) in

the problematic sets is very appealing, since fixing π(A), c/y and ν we are indeed able to identify

the Taylor-rule coefficients. There is information in the mean given by the long-run inflation that

spills over to the Taylor-rule coefficients.

In summary, we conclude that our comparative approach is insightful for this prototypical small

DSGE model and we are able to get robust insight into possible sources of nonidentification.23

All tests yield similar results, however, the choice of tolerance level and numerical differentiation

step is a delicate one. Using analytical derivatives as well as comparing the output of the different

approaches seems to us the best-practice to gauge identification of the DSGE model. Further, we

show that in the An and Schorfheide (2007) model a higher order approximation yields additional

restrictions on the mean that can be used to identify the coefficients entering the Taylor rule.

This feature of the nonlinear model – as far as we know – is new to the literature.

6 Conclusion [Incomplete]

The goal of this paper is to add a comprehensive study of identification methods to the literature

on identification in DSGE models and to emphasize its importance prior to estimation. The

contribution of this paper is threefold: First, we analyze and derive all methods for identification

of DSGE models theoretically in a consistent notation and framework. We are thus able to

see similarities, like the dependence on the solution matrices, and differences like computing

autocovariances, spectral densities or other matrices. Also practical and numerical difficulties

applying the methods are discussed, and how these can lead to different conclusions. In particular,

we derive analytical derivatives for all methods and showe that using these make all methods

more robust compared to the use of numerical derivatives, since these heavily dependent on the

numerical differentiation step. We argue in favor of using analytical derivatives, whenever feasible,

due to its robustness and greater speed than relying on numerical procedures. Second, it is shown

how to analytically extend the methods to linear approximations to the second order. It is argued

that this can help increasing overall identification of a DSGE model via imposing additional

restrictions. In this way we are able to identify the Kim (2003) model from the first two moments

of data using a second order approximation as well as the coefficients of the Taylor-rule in the

An and Schorfheide (2007) model. Third, we applied all methods on DSGE models that are

known to have lack of identification. Most of the times the methods come to the same conclusion,

however, the issue of numerical errors due to nonlinearities and very large matrices can make

these methods tedious in practice and may lead to unreliable or contradictory conclusions. The

example models show that by evaluating different criteria we also gain inside into the dynamic

structure of the DSGE model. We argue that in order to thoroughly analyze identification, one

has to be aware of the drawbacks of the different methods and check whether different methods

23In the Matlab code we also analyze bigger models, i.e. models by Garcia-Cicco, Pancrazi, and Uribe (2010),
Christiano, Eichenbaum, and Evans (2005) and Smets and Wouters (2007).



6 CONCLUSION [INCOMPLETE] 28

T
ab

le
6:

Id
en

ti
fi

ca
ti

on
an

al
y
si

s
o
f

th
e

A
n

a
n

d
S

ch
o
rf

h
ei

d
e

(2
0
0
7
)

m
o
d

el
,

1
st

-o
rd

er
a
p

p
ro

x
im

a
ti

o
n

Is
k
re
v

K
o
m
u
n
je
r
/
N
g

Q
u
/
T
k
a
c
h
e
n
k
o

T
o
l

J
M

M
∆

Λ
∆

Λ
T

∆
Λ
U

∆
∆

G
G

1
e
-0

1
1
0

(1
0
,1

0
,1

0
)

9
(9

,9
,9

)
1
2

(1
2
,1

2
,1

2
)

8
(8

,8
,8

)
1
7

(1
7
,1

7
,1

7
)

1
6

(1
6
,1

6
,1

6
)

2
3

(2
3
,2

3
,2

3
)

2
6

(2
6
,2

6
,2

6
)

7
(7

,7
,7

)
9

(9
,9

,9
)

1
e
-0

2
1
1

(1
1
,1

1
,1

1
)

9
(9

,9
,9

)
1
2

(1
2
,1

2
,1

2
)

9
(9

,9
,9

)
1
8

(1
8
,1

8
,1

8
)

1
7

(1
7
,1

7
,1

7
)

2
5

(2
5
,2

5
,2

5
)

2
8

(2
8
,2

8
,2

8
)

9
(9

,9
,9

)
1
2

(1
2
,1

2
,1

2
)

1
e
-0

3
1
3

(1
3
,1

3
,1

3
)

1
0

(1
0
,1

0
,1

1
)

1
2

(1
2
,1

2
,1

3
)

1
1

(1
1
,1

1
,1

1
)

2
0

(2
0
,2

0
,2

0
)

1
9

(1
9
,1

9
,1

9
)

2
7

(2
7
,2

7
,2

7
)

3
0

(3
0
,3

0
,3

0
)

9
(9

,9
,9

)
1
2

(1
2
,1

2
,1

2
)

1
e
-0

4
1
3

(1
3
,1

3
,1

3
)

1
0

(1
0
,1

0
,1

1
)

1
2

(1
2
,1

2
,1

3
)

1
1

(1
1
,1

1
,1

1
)

2
0

(2
0
,2

0
,2

0
)

1
9

(1
9
,1

9
,2

0
)

2
8

(2
8
,2

8
,2

8
)

3
0

(3
0
,3

0
,3

0
)

9
(9

,9
,9

)
1
2

(1
2
,1

2
,1

2
)

1
e
-0

5
1
3

(1
3
,1

3
,1

3
)

1
0

(1
1
,1

0
,1

1
)

1
2

(1
3
,1

2
,1

3
)

1
1

(1
1
,1

1
,1

1
)

2
0

(2
0
,2

0
,2

0
)

1
9

(1
9
,1

9
,2

0
)

2
8

(2
8
,2

8
,2

9
)

3
0

(3
0
,3

0
,3

1
)

9
(9

,9
,1

0
)

1
2

(1
2
,1

2
,1

2
)

1
e
-0

6
1
3

(1
3
,1

3
,1

3
)

1
0

(1
1
,1

0
,1

1
)

1
2

(1
3
,1

2
,1

3
)

1
1

(1
1
,1

1
,1

1
)

2
0

(2
0
,2

0
,2

0
)

1
9

(1
9
,1

9
,2

0
)

2
8

(2
8
,2

8
,2

9
)

3
0

(3
0
,3

0
,3

1
)

1
0

(1
0
,1

0
,1

0
)

1
2

(1
2
,1

2
,1

3
)

1
e
-0

7
1
3

(1
3
,1

3
,1

3
)

1
0

(1
1
,1

0
,1

1
)

1
2

(1
3
,1

3
,1

3
)

1
1

(1
1
,1

1
,1

1
)

2
0

(2
0
,2

0
,2

0
)

1
9

(2
0
,1

9
,2

0
)

2
8

(2
9
,2

8
,2

9
)

3
0

(3
1
,3

0
,3

1
)

1
0

(1
0
,1

0
,1

1
)

1
2

(1
2
,1

2
,1

3
)

1
e
-0

8
1
3

(1
3
,1

3
,1

3
)

1
0

(1
1
,1

1
,1

1
)

1
2

(1
3
,1

3
,1

3
)

1
1

(1
1
,1

1
,1

1
)

2
0

(2
0
,2

0
,2

0
)

1
9

(2
0
,2

0
,2

0
)

2
8

(2
9
,2

8
,2

9
)

3
0

(3
1
,3

0
,3

1
)

1
0

(1
0
,1

0
,1

1
)

1
2

(1
2
,1

2
,1

3
)

1
e
-0

9
1
3

(1
3
,1

3
,1

3
)

1
0

(1
1
,1

1
,1

1
)

1
2

(1
3
,1

3
,1

3
)

1
1

(1
1
,1

1
,1

1
)

2
0

(2
0
,2

0
,2

0
)

1
9

(2
0
,2

0
,2

0
)

2
8

(2
9
,2

9
,2

9
)

3
0

(3
1
,3

1
,3

1
)

1
0

(1
0
,1

0
,1

1
)

1
2

(1
2
,1

2
,1

3
)

1
e
-1

0
1
3

(1
3
,1

3
,1

3
)

1
0

(1
1
,1

1
,1

1
)

1
2

(1
3
,1

3
,1

3
)

1
1

(1
1
,1

1
,1

1
)

2
0

(2
0
,2

0
,2

0
)

1
9

(2
0
,2

0
,2

0
)

2
8

(2
9
,2

9
,2

9
)

3
0

(3
1
,3

1
,3

1
)

1
0

(1
0
,1

0
,1

1
)

1
2

(1
2
,1

2
,1

3
)

1
e
-1

1
1
3

(1
3
,1

3
,1

3
)

1
0

(1
1
,1

1
,1

1
)

1
2

(1
3
,1

3
,1

3
)

1
1

(1
1
,1

1
,1

1
)

2
0

(2
0
,2

0
,2

0
)

1
9

(2
0
,2

0
,2

0
)

2
8

(2
9
,2

9
,2

9
)

3
0

(3
1
,3

1
,3

1
)

1
0

(1
1
,1

0
,1

1
)

1
2

(1
3
,1

2
,1

3
)

1
e
-1

2
1
3

(1
3
,1

3
,1

3
)

1
0

(1
1
,1

1
,1

1
)

1
2

(1
3
,1

3
,1

3
)

1
1

(1
1
,1

1
,1

1
)

2
0

(2
0
,2

0
,2

0
)

1
9

(2
0
,2

0
,2

0
)

2
9

(3
0
,2

9
,2

9
)

3
1

(3
1
,3

1
,3

1
)

1
0

(1
1
,1

0
,1

1
)

1
2

(1
3
,1

2
,1

3
)

1
e
-1

3
1
3

(1
3
,1

3
,1

3
)

1
0

(1
1
,1

1
,1

1
)

1
2

(1
3
,1

3
,1

3
)

1
1

(1
1
,1

1
,1

1
)

2
0

(2
0
,2

0
,2

0
)

2
0

(2
0
,2

0
,2

0
)

3
3

(3
3

,3
3

,3
3

)
3
3

(3
3

,3
3

,3
3

)
1
1

(1
1
,1

1
,1

1
)

1
3

(1
3
,1

3
,1

3
)

1
e
-1

4
1
3

(1
3
,1

3
,1

3
)

1
1

(1
1
,1

1
,1

1
)

1
2

(1
3
,1

3
,1

3
)

1
1

(1
1
,1

1
,1

1
)

2
1

(2
0
,2

1
,2

2
)

2
1

(2
1
,2

0
,2

2
)

3
3

(3
3

,3
3

,3
3

)
3
3

(3
3

,3
3

,3
3

)
1
1

(1
1
,1

1
,1

1
)

1
3

(1
3
,1

3
,1

3
)

1
e
-1

5
1
3

(1
3
,1

3
,1

3
)

1
1

(1
1
,1

1
,1

1
)

1
2

(1
3
,1

3
,1

3
)

1
1

(1
1
,1

1
,1

1
)

2
3

(2
4

,2
3
,2
4

)
2
4

(2
4

,2
3
,2

3
)

3
3

(3
3

,3
3

,3
3

)
3
3

(3
3

,3
3

,3
3

)
1
1

(1
1
,1

1
,1

1
)

1
3

(1
3
,1

3
,1

3
)

1
e
-1

6
1
3

(1
3
,1

3
,1

3
)

1
1

(1
1
,1

1
,1

1
)

1
3

(1
3
,1

3
,1

3
)

1
1

(1
1
,1

1
,1

1
)

2
3

(2
4

,2
4

,2
4

)
2
4

(2
4

,2
4

,2
4

)
3
3

(3
3

,3
3

,3
3

)
3
3

(3
3

,3
3

,3
3

)
1
1

(1
1
,1

1
,1

1
)

1
3

(1
3
,1

3
,1

3
)

1
e
-1

7
1
3

(1
3
,1

3
,1

3
)

1
2

(1
2
,1

1
,1

2
)

1
3

(1
3
,1

3
,1

3
)

1
1

(1
1
,1

1
,1

1
)

2
4

(2
4

,2
4

,2
4

)
2
4

(2
4

,2
4

,2
4

)
3
3

(3
3

,3
3

,3
3

)
3
3

(3
3

,3
3

,3
3

)
1
1

(1
1
,1

1
,1

1
)

1
3

(1
3
,1

3
,1

3
)

1
e
-1

8
1
3

(1
3
,1

3
,1

3
)

1
2

(1
2
,1

2
,1

2
)

1
3

(1
3
,1

3
,1

3
)

1
1

(1
1
,1

1
,1

1
)

2
4

(2
4

,2
4

,2
4

)
2
4

(2
4

,2
4

,2
4

)
3
3

(3
3

,3
3

,3
3

)
3
3

(3
3

,3
3

,3
3

)
1
1

(1
1
,1

1
,1

1
)

1
3

(1
3
,1

3
,1

3
)

1
e
-1

9
1
3

(1
3
,1

3
,1

3
)

1
2

(1
2
,1

2
,1

3
)

1
3

(1
3
,1

3
,1

3
)

1
1

(1
1
,1

1
,1

1
)

2
4

(2
4

,2
4

,2
4

)
2
4

(2
4

,2
4

,2
4

)
3
3

(3
3

,3
3

,3
3

)
3
3

(3
3

,3
3

,3
3

)
1
1

(1
1
,1

1
,1

1
)

1
3

(1
3
,1

3
,1

3
)

1
e
-2

0
1
3

(1
3
,1

3
,1

3
)

1
3

(1
3
,1

3
,1

3
)

1
3

(1
3
,1

3
,1

3
)

1
1

(1
1
,1

1
,1

1
)

2
4

(2
4

,2
4

,2
4

)
2
4

(2
4

,2
4

,2
4

)
3
3

(3
3

,3
3

,3
3

)
3
3

(3
3

,3
3

,3
3

)
1
2

(1
1
,1

1
,1

2
)

1
3

(1
3
,1

3
,1

3
)

R
e
q
u
ir
e

1
5

1
5

1
5

1
5

2
4

2
4

3
3

3
3

1
5

1
5

R
a
n
k
s

o
f

id
e
n
ti

fi
c
a
ti

o
n

te
st

s
w

it
h

a
n
a
ly

ti
c
a
l

d
e
ri

v
a
ti

v
e
s

fo
r

d
iff

e
re

n
t

to
le

ra
n
c
e

le
v
e
ls

to
l,

la
g
s

in
a
u
to

c
o
v
a
ri

o
g
ra

m
T

=
1
0
0
,

su
b
in

te
rv

a
ll
s
N

=
1
0
0
0
0
.

B
o
ld

in
d
ic

a
te

s
fu

ll
ra

n
k
.

In
p
a
re

n
th

e
si

s
a
re

th
e

c
o
rr

e
sp

o
n
d
in

g
ra

n
k
s

c
o
m

p
u
te

d
w

it
h

n
u
m

e
ri

c
a
l

d
e
ri

v
a
ti

v
e
s

g
iv

e
n

d
iff

e
re

n
ti

a
ti

o
n

st
e
p
s

1
e
-3

,
1
e
-7

a
n
d

1
e
-1

1
,

re
sp

e
c
ti

v
e
ly

.



6 CONCLUSION [INCOMPLETE] 29

T
ab

le
7:

Id
en

ti
fi

ca
ti

on
an

al
y
si

s
o
f

th
e

A
n

a
n

d
S

ch
o
rf

h
ei

d
e

(2
0
0
7
)

m
o
d

el
,

2
n
d
-o

rd
er

a
p

p
ro

x
im

a
ti

o
n

Is
k
re
v

K
o
m
u
n
je
r
/
N
g

Q
u
/
T
k
a
c
h
e
n
k
o

T
o
l

J
M

M
∆

Λ
∆

Λ
T

∆
Λ
U

∆
∆

G
G

1
e
-0

1
1
3

(1
3
,1

3
,1

3
)

9
(9

,9
,9

)
1
2

(1
2
,1

2
,1

2
)

8
(8

,8
,8

)
1
7

(1
7
,1

7
,1

7
)

1
6

(1
6
,1

6
,1

6
)

2
3

(2
3
,2

3
,2

3
)

2
6

(2
6
,2

6
,2

6
)

7
(7

,7
,7

)
9

(9
,9

,9
)

1
e
-0

2
1
5

(1
5

,1
5

,1
5

)
9

(9
,9

,9
)

1
2

(1
2
,1

2
,1

2
)

9
(9

,9
,9

)
1
8

(1
8
,1

8
,1

8
)

1
7

(1
7
,1

7
,1

7
)

2
5

(2
5
,2

5
,2

5
)

2
8

(2
8
,2

8
,2

8
)

9
(9

,9
,9

)
1
2

(1
2
,1

2
,1

2
)

1
e
-0

3
1
5

(1
5

,1
5

,1
5

)
1
0

(1
0
,1

0
,1

1
)

1
2

(1
2
,1

2
,1

3
)

1
1

(1
1
,1

1
,1

1
)

2
0

(2
0
,2

0
,2

0
)

1
9

(1
9
,1

9
,1

9
)

2
7

(2
7
,2

7
,2

7
)

2
9

(2
9
,2

9
,2

9
)

9
(9

,9
,9

)
1
2

(1
2
,1

2
,1

2
)

1
e
-0

4
1
5

(1
5

,1
5

,1
5

)
1
0

(1
0
,1

0
,1

1
)

1
2

(1
2
,1

2
,1

3
)

1
1

(1
1
,1

1
,1

1
)

2
0

(2
0
,2

0
,2

0
)

1
9

(1
9
,1

9
,2

0
)

2
8

(2
8
,2

8
,2

8
)

3
0

(3
0
,3

0
,3

0
)

9
(9

,9
,9

)
1
2

(1
2
,1

2
,1

2
)

1
e
-0

5
1
5

(1
5

,1
5

,1
5

)
1
0

(1
1
,1

0
,1

1
)

1
2

(1
3
,1

2
,1

3
)

1
1

(1
1
,1

1
,1

1
)

2
0

(2
0
,2

0
,2

0
)

1
9

(1
9
,1

9
,2

0
)

2
8

(2
8
,2

8
,2

9
)

3
0

(3
0
,3

0
,3

1
)

9
(9

,9
,1

0
)

1
2

(1
2
,1

2
,1

2
)

1
e
-0

6
1
5

(1
5

,1
5

,1
5

)
1
0

(1
1
,1

0
,1

1
)

1
2

(1
3
,1

2
,1

3
)

1
1

(1
1
,1

1
,1

1
)

2
0

(2
0
,2

0
,2

0
)

1
9

(1
9
,1

9
,2

0
)

2
8

(2
8
,2

8
,2

9
)

3
0

(3
0
,3

0
,3

1
)

1
0

(1
0
,1

0
,1

0
)

1
2

(1
2
,1

2
,1

3
)

1
e
-0

7
1
5

(1
5

,1
5

,1
5

)
1
0

(1
1
,1

0
,1

1
)

1
2

(1
3
,1

3
,1

4
)

1
1

(1
1
,1

1
,1

1
)

2
0

(2
0
,2

0
,2

0
)

1
9

(2
0
,1

9
,2

0
)

2
8

(2
9
,2

8
,2

9
)

3
0

(3
1
,3

0
,3

1
)

1
0

(1
0
,1

0
,1

1
)

1
2

(1
2
,1

2
,1

3
)

1
e
-0

8
1
5

(1
5

,1
5

,1
5

)
1
0

(1
1
,1

1
,1

1
)

1
2

(1
3
,1

3
,1

4
)

1
1

(1
1
,1

1
,1

1
)

2
0

(2
0
,2

0
,2

0
)

1
9

(2
0
,2

0
,2

0
)

2
8

(2
9
,2

8
,2

9
)

3
0

(3
1
,3

0
,3

2
)

1
0

(1
0
,1

0
,1

1
)

1
2

(1
2
,1

2
,1

3
)

1
e
-0

9
1
5

(1
5

,1
5

,1
5

)
1
0

(1
1
,1

1
,1

1
)

1
2

(1
3
,1

3
,1

4
)

1
1

(1
1
,1

1
,1

1
)

2
0

(2
0
,2

0
,2

0
)

1
9

(2
0
,2

0
,2

0
)

2
8

(2
9
,2

9
,2

9
)

3
0

(3
1
,3

1
,3

2
)

1
0

(1
0
,1

0
,1

1
)

1
2

(1
2
,1

2
,1

3
)

1
e
-1

0
1
5

(1
5

,1
5

,1
5

)
1
0

(1
1
,1

1
,1

1
)

1
2

(1
3
,1

3
,1

4
)

1
1

(1
1
,1

1
,1

1
)

2
0

(2
0
,2

0
,2

0
)

1
9

(2
0
,2

0
,2

0
)

2
8

(2
9
,2

9
,2

9
)

3
0

(3
1
,3

1
,3

2
)

1
0

(1
0
,1

0
,1

1
)

1
2

(1
2
,1

2
,1

3
)

1
e
-1

1
1
5

(1
5

,1
5

,1
5

)
1
0

(1
1
,1

1
,1

1
)

1
2

(1
3
,1

4
,1

4
)

1
1

(1
1
,1

1
,1

1
)

2
0

(2
0
,2

0
,2

0
)

1
9

(2
0
,2

0
,2

0
)

2
8

(2
9
,2

9
,2

9
)

3
0

(3
1
,3

1
,3

2
)

1
0

(1
1
,1

0
,1

1
)

1
2

(1
3
,1

2
,1

3
)

1
e
-1

2
1
5

(1
5

,1
5

,1
5

)
1
0

(1
1
,1

1
,1

1
)

1
2

(1
3
,1

4
,1

4
)

1
1

(1
1
,1

1
,1

1
)

2
0

(2
0
,2

0
,2

0
)

1
9

(2
0
,2

0
,2

0
)

2
9

(3
0
,2

9
,2

9
)

3
0

(3
1
,3

2
,3

2
)

1
0

(1
1
,1

0
,1

1
)

1
2

(1
3
,1

2
,1

3
)

1
e
-1

3
1
5

(1
5

,1
5

,1
5

)
1
0

(1
1
,1

1
,1

1
)

1
2

(1
3
,1

4
,1

4
)

1
1

(1
1
,1

1
,1

1
)

2
0

(2
0
,2

0
,2

0
)

2
0

(2
0
,2

0
,2

0
)

3
3

(3
3

,3
3

,3
3

)
3
3

(3
3

,3
3

,3
3

)
1
1

(1
1
,1

1
,1

1
)

1
3

(1
3
,1

3
,1

3
)

1
e
-1

4
1
5

(1
5

,1
5

,1
5

)
1
1

(1
1
,1

1
,1

1
)

1
2

(1
3
,1

4
,1

4
)

1
1

(1
1
,1

1
,1

1
)

2
1

(2
0
,2

1
,2

2
)

2
1

(2
1
,2

0
,2

2
)

3
3

(3
3

,3
3

,3
3

)
3
3

(3
3

,3
3

,3
3

)
1
1

(1
1
,1

1
,1

1
)

1
3

(1
3
,1

3
,1

4
)

1
e
-1

5
1
5

(1
5

,1
5

,1
5

)
1
1

(1
1
,1

1
,1

1
)

1
3

(1
4
,1

4
,1

4
)

1
1

(1
1
,1

1
,1

1
)

2
3

(2
4

,2
3
,2
4

)
2
4

(2
4

,2
3
,2

3
)

3
3

(3
3

,3
3

,3
3

)
3
3

(3
3

,3
3

,3
3

)
1
1

(1
1
,1

1
,1

1
)

1
3

(1
3
,1

3
,1

4
)

1
e
-1

6
1
5

(1
5

,1
5

,1
5

)
1
1

(1
1
,1

1
,1

1
)

1
4

(1
5

,1
5

,1
5

)
1
1

(1
1
,1

1
,1

1
)

2
3

(2
4

,2
4

,2
4

)
2
4

(2
4

,2
4

,2
4

)
3
3

(3
3

,3
3

,3
3

)
3
3

(3
3

,3
3

,3
3

)
1
1

(1
1
,1

1
,1

1
)

1
4

(1
4
,1

4
,1
5

)

1
e
-1

7
1
5

(1
5

,1
5

,1
5

)
1
2

(1
2
,1

1
,1

2
)

1
5

(1
5

,1
5

,1
5

)
1
1

(1
1
,1

1
,1

1
)

2
4

(2
4

,2
4

,2
4

)
2
4

(2
4

,2
4

,2
4

)
3
3

(3
3

,3
3

,3
3

)
3
3

(3
3

,3
3

,3
3

)
1
1

(1
1
,1

1
,1

1
)

1
5

(1
5

,1
5

,1
5

)

1
e
-1

8
1
5

(1
5

,1
5

,1
5

)
1
2

(1
2
,1

2
,1

2
)

1
5

(1
5

,1
5

,1
5

)
1
1

(1
1
,1

1
,1

1
)

2
4

(2
4

,2
4

,2
4

)
2
4

(2
4

,2
4

,2
4

)
3
3

(3
3

,3
3

,3
3

)
3
3

(3
3

,3
3

,3
3

)
1
1

(1
1
,1

1
,1

1
)

1
5

(1
5

,1
5

,1
5

)

1
e
-1

9
1
5

(1
5

,1
5

,1
5

)
1
2

(1
2
,1

2
,1

3
)

1
5

(1
5

,1
5

,1
5

)
1
1

(1
1
,1

1
,1

1
)

2
4

(2
4

,2
4

,2
4

)
2
4

(2
4

,2
4

,2
4

)
3
3

(3
3

,3
3

,3
3

)
3
3

(3
3

,3
3

,3
3

)
1
1

(1
1
,1

1
,1

1
)

1
5

(1
5

,1
5

,1
5

)

1
e
-2

0
1
5

(1
5

,1
5

,1
5

)
1
3

(1
3
,1

3
,1

3
)

1
5

(1
5

,1
5

,1
5

)
1
1

(1
1
,1

1
,1

1
)

2
4

(2
4

,2
4

,2
4

)
2
4

(2
4

,2
4

,2
4

)
3
3

(3
3

,3
3

,3
3

)
3
3

(3
3

,3
3

,3
3

)
1
2

(1
1
,1

1
,1

2
)

1
5

(1
5

,1
5

,1
5

)

R
e
q
u
ir
e

1
5

1
5

1
5

1
5

2
4

2
4

3
3

3
3

1
5

1
5

R
a
n
k
s

o
f

id
e
n
ti

fi
c
a
ti

o
n

te
st

s
w

it
h

a
n
a
ly

ti
c
a
l

d
e
ri

v
a
ti

v
e
s

fo
r

d
iff

e
re

n
t

to
le

ra
n
c
e

le
v
e
ls

to
l,

la
g
s

in
a
u
to

c
o
v
a
ri

o
g
ra

m
T

=
1
0
0
,

su
b
in

te
rv

a
ll
s
N

=
1
0
0
0
0
.

B
o
ld

in
d
ic

a
te

s
fu

ll
ra

n
k
.

In
p
a
re

n
th

e
si

s
a
re

th
e

c
o
rr

e
sp

o
n
d
in

g
ra

n
k
s

c
o
m

p
u
te

d
w

it
h

n
u
m

e
ri

c
a
l

d
e
ri

v
a
ti

v
e
s

g
iv

e
n

d
iff

e
re

n
ti

a
ti

o
n

st
e
p
s

1
e
-3

,
1
e
-7

a
n
d

1
e
-1

1
,

re
sp

e
c
ti

v
e
ly

.



6 CONCLUSION [INCOMPLETE] 30

T
ab

le
8:

A
n

al
y
si

s
of

p
ro

b
le

m
a
ti

c
p

a
ra

m
et

er
s

fo
r

th
e

A
n

a
n

d
S

ch
o
rf

h
ei

d
e

(2
0
0
7
)

m
o
d
el

Is
kr

ev
K

o
m

u
n

je
r/

N
g

Q
u

/
T

ka
ch

en
ko

T
ol

M
1
s
t

M
2
n
d

∆
1
s
t

∆
2
n
d

G
1
s
t

G
2
n
d

1e
-0

3
v

c/
y
,v
,ψ

1
,ψ

2
,π

(A
)

c/
y
,v
,ψ

1
,ψ

2
,ρ
R

c/
y
,v
,ψ

1
,ψ

2
,ρ
R
,π

(A
)

v
v
,π

(A
)

c/
y

c/
y
,v
,ψ

1
,ψ

2
,π

(A
)

c/
y
,v
,ψ

1
,ψ

2
,ρ
R

c/
y
,v
,ψ

1
,ψ

2
,ρ
R
,π

(A
)

c/
y

c/
y
,π

(A
)

ψ
1
,ψ

2
,ρ
R

c/
y
,v
,ψ

1
,ψ

2
,π

(A
)
,ρ
R

c/
y
,v
,ψ

1
,ψ

2
,ρ
R

c/
y
,v
,ψ

1
,ψ

2
,ρ
R
,π

(A
)

ψ
1
,ψ

2
,ρ
R
,σ
R

v
,c
/
y

c/
y
,v
,ψ

1
,ψ

2
,ρ
R
,π

(A
)
,σ
R
,r

(A
)
,σ
z

1e
-0

7
v

c/
y
,v
,ψ

1
,ψ

2
,π

(A
)
,ρ
R
,σ
R

c/
y
,v
,ψ

1
,ψ

2
,ρ
R
,σ
R

c/
y
,v
,ψ

1
,ψ

2
,ρ
R
,π

(A
)
,σ
R

v
v
,π

(A
)

c/
y

c/
y
,v
,ψ

1
,ψ

2
,π

(A
)
,ρ
R
,σ
R

c/
y
,v
,ψ

1
,ψ

2
,ρ
R
,σ
R

c/
y
,v
,ψ

1
,ψ

2
,ρ
R
,π

(A
)
,σ
R

c/
y

c/
y
,π

(A
)

ψ
1
,ψ

2
,ρ
R
,σ
R

c/
y
,v
,ψ

1
,ψ

2
,π

(A
)
,ρ
R
,σ
R

c/
y
,v
,ψ

1
,ψ

2
,ρ
R
,σ
R

c/
y
,v
,ψ

1
,ψ

2
,ρ
R
,π

(A
)
,σ
R

ψ
1
,ψ

2
,ρ
R
,σ
R

v
,c
/
y

1e
-1

1
v

c/
y
,v
,ψ

1
,ψ

2
,π

(A
)
,ρ
R
,σ
R

c/
y
,v
,ψ

1
,ψ

2
,ρ
R
,σ
R

c/
y
,v
,ψ

1
,ψ

2
,ρ
R
,π

(A
)
,σ
R
,r

(A
)

v
v
,π

(A
)

c/
y

c/
y
,v
,ψ

1
,ψ

2
,π

(A
)
,ρ
R
,σ
R

c/
y
,v
,ψ

1
,ψ

2
,ρ
R
,σ
R

c/
y
,v
,ψ

1
,ψ

2
,ρ
R
,π

(A
)
,σ
R
,r

(A
)

c/
y

c/
y
,π

(A
)

ψ
1
,ψ

2
,ρ
R
,σ
R

c/
y
,v
,ψ

1
,ψ

2
,π

(A
)
,ρ
R
,σ
R

c/
y
,v
,ψ

1
,ψ

2
,ρ
R
,σ
R

c/
y
,v
,ψ

1
,ψ

2
,ρ
R
,π

(A
)
,σ
R
,r

(A
)

ψ
1
,ψ

2
,ρ
R
,σ
R

v
,c
/
y

1e
-1

7
v

v

c/
y

c/
y

P
ar

am
et

er
se

ts
th

at
ar

e
re

sp
on

si
b

le
fo

r
ra

n
k
-d

efi
ci

en
cy

a
t

se
le

ct
ed

to
le

ra
n

ce
le

ve
ls

fo
r

fi
rs

t
(1

st
)

a
n

d
se

co
n

d
(2

n
d

)
o
rd

er
.

M
et

h
o
d

:
an

al
y
ti

ca
l

d
er

iv
a
ti

ve
s,

la
g
s

in
a
u

to
co

va
ri

o
g
ra

m
T

=
1
0
0
,

su
b

in
te

rv
a
ll

s
N

=
1
0
0
0
0
.



6 CONCLUSION [INCOMPLETE] 31

come to the same conclusion. Our Matlab code is written model-independent and can be used

easily to check identification of other models, as long as they can be represented in the proposed

framework.
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Hf(z) of f evaluated at the steady-state are defined as:

f(z) =


f1(z)

...

fn(z)



Df(z̄) :=
(
∂f(z)
∂x′t+1

∂f(z)
∂y′t+1

∂f(z)
∂x′t

∂f(z)
∂y′t

)
=


Df1(z̄)

...

Dfn(z̄)

 =


∂f1(z̄)
∂x′t+1

∂f1(z̄)
∂y′t+1

∂f1(z̄)
∂x′t

∂f1(z̄)
∂y′t

...
...

...
...

∂fn(z̄)
∂x′t+1

∂fn(z̄)
∂y′t+1

∂fn(z̄)
∂x′t

∂fn(z̄)
∂y′t



Hf(z̄) := Dvec((Df(z̄))′) =


Hf1(z̄)

...

Hfn(z̄)

 =



∂2f1(z̄)
∂xt+1∂xt+1

′
∂2f1(z̄)

∂xt+1∂yt+1
′

∂2f1(z̄)
∂xt+1∂xt′

∂2f1(z̄)
∂xt+1∂yt′

∂2f1(z̄)
∂yt+1∂xt+1

′
∂2f1(z̄)

∂yt+1∂yt+1
′

∂2f1(z̄)
∂yt+1∂xt′

∂2f1(z̄)
∂yt+1∂yt′

∂2f1(z̄)
∂xt∂xt+1

′
∂2f1(z̄)
∂xt∂yt+1

′
∂2f1(z̄)
∂xt∂xt′

∂2f1(z̄)
∂xt∂yt′

∂2f1(z̄)
∂yt∂xt+1

′
∂2f1(z̄)
∂yt∂yt+1

′
∂2f1(z̄)
∂yt∂xt′

∂2f1(z̄)
∂yt∂yt′

...
...

...
...

∂2fn(z̄)
∂xt+1∂xt+1

′
∂2fn(z̄)

∂xt+1∂yt+1
′

∂2fn(z̄)
∂xt+1∂xt′

∂2fn(z̄)
∂xt+1∂yt′
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′
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∂xt∂xt+1

′
∂2fn(z̄)
∂xt∂yt+1

′
∂2fn(z̄)
∂xt∂xt′
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∂yt∂xt+1

′
∂2fn(z̄)
∂yt∂yt+1

′
∂2fn(z̄)
∂yt∂xt′

∂2fn(z̄)
∂yt∂yt′



.

f is of dimension n× 1, the Jacobian Df(z) of dimension n× (2nx + 2ny) and the Hessian Hf(z)

of dimension n(2nx + 2ny)× (2nx + 2ny).

B Deriving analytical derivatives

In order to calculate the derivatives of the solution matrices, we will use repeatedly the commu-

tation matrix Km,n which transforms the m× n matrix A such that Km,nvec(A) = vec(A′), and

the following useful results from matrix differential calculus:

Theorem 1 (Derivative of products). Let A be a (m × n) matrix, B a (n × o) matrix, C a

http://people.bu.edu/qu/dsge3/paper.pdf
http://people.bu.edu/qu/dsge3/paper.pdf
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(o × p) matrix and D a (p × q) matrix, then the derivative of vec(ABCD) with respect to θ is

given by

d(ABCD) = (D′C ′B′ ⊗ Im)dA+ (D′C ′ ⊗A)dB + (D′ ⊗AB)dC + (Iq ⊗ABC)dD

Proof: Magnus and Neudecker (1999, p. 175). Note that dX := ∂vec(X)
∂θ′ .

Theorem 2 (Derivative of Kronecker products). Let X be a (n × q) matrix, Y a (p × r)
matrix and Kr,n the commutation matrix of order (r, n), then the derivative of vec(X ⊗ Y ) with

respect to θ is given by

d(X ⊗ Y ) = (Iq ⊗Kr,n ⊗ Ip) [(Inq ⊗ vec(Y ))dX + (vec(X)⊗ Ipr)dY ]

Proof: Magnus and Neudecker (1999, p. 185). Note that dX := ∂vec(X)
∂θ′ .

Moreover, we will make use of the following algorithm:

Algorithm 1 (Derivative of partitioned matrix). Let X be a (m× n) matrix, that is parti-

tioned such that X =
[
X1 X2

]
, with X1 being (m× n1) and X2 being (m× n2), n = n1 + n2.

1. Derive dX1 and dX2; dX1 is of dimension (mn1 × nθ) and dX2 of dimension (mn2 × nθ).

2. For i = 1, . . . , nθ

(a) Denote the i-th column of dX1 and dX2 as dXi
1 and dXi

2 respectively. dXi
1 is of

dimension (mn1 × 1) and dXi
2 of dimension (mn2 × 1).

(b) Reshape dXi
1 into a (m × n1) matrix [dXi

1](m×n1) and dXi
2 into a (m × n2) matrix

[dXi
2](m×n2).

(c) Store vec(
[
[dXi

1](m×n1) [dXi
2](m×n2)

]
) into the i-th column of a matrix dX.

3. dX is the derivative of X with respect to θ and is of dimension (mn× nθ).

Note that dX := ∂vec(X)
∂θ′ .

Now we are able to derive the expressions for Q−1, A, B−1 and C:

Derivative of Q−1 Notice that Q is partitioned into Q = [Q1 Q2],

Q1 = h′x ⊗ f2 ⊗ h′x + Inx ⊗ f4 ⊗ Inx ,

Q2 = Inx ⊗ (f1 + f2gx)⊗ Inx .

Deriving d(f2gx) using theorem 1 and mechanically applying theorem 2 repeatedly, we obtain

the derivatives dQ1 and dQ2. Now we can use algorithm 1 to compute dQ. However, we

are interested in dQ−1, thus in step 2(b) we also compute the derivative of the inverse using

−Q−1
[
[dQi1] [dQi2]

]
Q−1 (Magnus and Neudecker 1999, p. 184) and store it in step 2(c) in the

i-th column of dQ−1.

Derivative of A Regarding the derivative of A we first have to derive dM . This can be done

in the same fashion, since M is partitioned into M = (hx, gxhx, Inx , gx)′. dhx and dgx are known,

whereas d(gxhx) can be derived using theorem 1. Applying algorithm 1 we get dM , whereas for

the transpose we have the following relationship dM ′ = K2(nx+ny),nxdM . Now we are able to

compute the derivative of A using theorems 1 and 2.
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Derivative of B−1 Since B is similarly partitioned as Q, i.e. B = [B1 B2], the derivative dB−1

can be calculated analogously to dQ−1.

Derivative of C C is the sum of two matrices, for which we will derive the derivatives separately.

Consider the first part, f2 · trm[(Iny ⊗ (ηxηx
′))gxx]. Since the derivatives of (ηxηx

′) and gxx are

known, it is straightforward to compute d((Iny⊗(ηxηx
′))gxx) applying theorems 1 and 2. The only

slightly difficult part is the matrix trace function. However, algorithm 1 can be used to overcome

this difficulty. In fact, we only have one partition, for which we know the derivative. Now

taking the trm of the reshaped matrix in step 2(b) and storing this in 2(c), we get d(trm[(Iny ⊗
(ηxηx

′))gxx]). Theorem 1 then yields the derivative of f2 · trm[(Iny ⊗ (ηxηx
′))gxx]. The same steps

can be used to derive the derivative of the second part, trm[(Inx+ny ⊗N ′)HN(ηxηx
′)]. However,

we first have to derive an expression for dN and dN ′. Since N is partitioned, we can use algorithm

1 to derive dN and dN ′ = K2(nx+ny),nxdN .

Derivative of Λx The first sum of Λx consists of two parts, one Kronecker product and the

matrix vec(hxx′). First we apply theorem 2 to get the derivative of the Kronecker product.

Then we notice that d(vec(h′xx)) = d(h′xx) = Kn2
x,nx

dhxx. Thus, we are able to calculate the

derivative of the first sum using theorem 1. The derivative of the second sum, σ2hσσ is equal to

2σhσσdσ + σ2dhσσ.

Derivative of Λy The procedure is fully analogous to the derivation of Λx, the only difference

is using Knxny,nx to derive d(vec(g′xx)).

Derivative of Σx Starting from Σx = hxΣxh
′
x + σ2ηxηx

′, applying theorem 1 and rearranging

we get dΣx =
[
In2

x
− (hx ⊗ hx)

]−1 [
(hxΣx ⊗ Inx)dhx + (Inx ⊗ hxΣx)dh′x + d(σ2ηxηx

′)
]
.

Derivative of Hε(e
−iωs ; θ) Hε is given by two sums Dgx(Inx − hxe−iωs)−1σηx and ηd. The

derivatives of σηx and ηd can be calculated symbolically given the model structure. Closed form

expressions for dgx and dhx are given in chapter 2.4. Thus, we only need the derivative of the

inverted expression which is given by

d
(
(Inx − hxe−iωs)−1

)
=
(
−(Inx − hxe−iωs)

′−1 ⊗ (Inx − hxe−iωs)−1
)

(−dhx · e−iωs)

where we used d(X−1) = (−(X ′)−1 ⊗X−1)dX, see Magnus and Neudecker (1999, p. 184). Thus,

computing dHε is a straightforward application of theorem 1. The derivative of the conjugate

transpose is given by dH∗ε (e−iωs ; θ) = Knd,nεconj(dHε(e
−iωs ; θ)), where conj returns the complex

conjugate.

C Deriving numerical derivatives

In order to derive the Jacobian of a function or matrix F (θ) at a point θ0 with respect to θ, we

use a two-sided finite difference method (also known as central differences). That is:

For each j = 1, . . . , nθ

(i) Select a step size hj .
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(ii) Solve the DSGE model twice using θ = θ0 + ejhj and θ = θ0 − ejhj with ej a unit vector

with the jth element equal to 1.

(iii) Compute

dF j :=
∂vec(F (θ0))

∂θj
≈ vec

(
F (θ0 + ejhj)− F (θ0 − ejhj)

2hj

)

(iv) Store dF j as the j-th column of dF .

D Deriving the minimal state

Given the linear solution (5) and (6) of the first order approximation, we will first derive the

canonical ABCD-representation of the DSGE model, i.e.

zt = z +A(zt−1 − z) + Bet
dt = d+ C(zt−1 − z) +Det

with zt = (y′t, x
′
t)
′ collecting all model variables and et =

(
σηuut

ηvvt

)
with E(et) = 0 and E(ete

′
t) =(

Σu 0

0 Σv

)
=: Σe. We do this by appending auxiliary equations and variables for the shocks and

measurement errors (et+1 = Etεt+1 = 0), that is we consider the state vector xt = (x′1,t−1, x
′
2,t−1, e

′
t)
′

with x1,t denoting endogenous and x2,t exogenous states. Also we add the measurement equations

to the model and consider the control vector ỹt = (y′t, d
′
t)
′. The solution then becomes


x1,t
nx1
×1

x2,t
nx2
×1

et+1
nε×1


︸ ︷︷ ︸

xt+1

=


x1

nx1×1

x2
nx2
×1

0
nε×1


︸ ︷︷ ︸

x

+


0

nx1
×nx1

hx1
nx1
×nx2

he1
nx1
×nε

0
nx2
×nx1

hx2
nx2
×nx2

he2
nx2
×nε

0
nε×nx1

0
nε×nx2

0
nε×nε


︸ ︷︷ ︸

hx


x1,t−1 − x1

nx1×1

x2,t−2 − x2
nx2
×1

et − 0
nε×1


︸ ︷︷ ︸

xt−x

+σ



0
nx1
×nε

0
nx2
×nε ηu

nu×nu
0

nu×nv

0
nv×nn

ηv/σ
nv×nv




︸ ︷︷ ︸

ηx

ut+1
nu×1

vt+1
nv×1


︸ ︷︷ ︸

εt+1

 yt
ny×1

dt
nd×1


︸ ︷︷ ︸

ỹt

=

 y
ny×1

d
nd×1


︸ ︷︷ ︸

ỹ

+

 gy1

ny×nx1

gy2

ny×nx2

gye
ny×nε

gd1
nd×nx1

gd2
nd×nx2

gde
nd×nε


︸ ︷︷ ︸

gx


x1,t−1 − x1

nx1
×1

x2,t−1 − x2
nx2
×1

et − 0
nε×1


︸ ︷︷ ︸

xt−x
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Note that Dgx =
(
gd1 gd2 gde

)
, since D picks the last nd entries of ỹt. Given that et =(

σηuut

ηvvt

)
, this can be rearranged to get

 yt

x1,t

x2,t


︸ ︷︷ ︸

zt

=

 y

x1

x2


︸ ︷︷ ︸

z

+

0 gy1
gy2

0 0 hx1

0 0 hx2


︸ ︷︷ ︸

A

 yt−1 − y
x1,t−1 − x1

x2,t−1 − x2


︸ ︷︷ ︸

zt−1−z

+

gyehe1
he2


︸ ︷︷ ︸
B

et

dt = d+
(

0 gd1 gd2

)
︸ ︷︷ ︸

C

 yt−1 − y
x1,t−1 − x1

x2,t−1 − x2


︸ ︷︷ ︸

zt−1−z

+ gde︸︷︷︸
D

et

Obviously, the driving force of the model is the vector of exogenous states x2,t, which we call the

minimal state vector. Together with the evolution of the stochastic innovations εt it determines

the evolution of the endogenous states, the control and the observable variables. The minimal

representation is thus given by

x2,t = x2 + hx2︸︷︷︸
Ã

(x2,t−1 − x2) + he2︸︷︷︸
B̃

et

dt = d+ gd2︸︷︷︸
C̃

(x2,t−1 − x2) + gde︸︷︷︸
D̃

et

Some practical issues: For small and medium-sized DSGE models the distinction between en-

dogenous and exogenous states is given through theory, some variables are clearly endogenous

(like output) and some are clearly exogenous (like technology). Thus, we order the state vector

as mentioned in the text. First, we check the rank conditions for minimality and observability

given the full state vector. If the conditions fail, we remove state variables from the top until the

conditions pass. Note that we remove the entries from all first-order solution matrices as well as

from the derivatives corresponding to redundant state variables.

For big DSGE models the distinction of endogenous and exogenous states is often not as

clear. A failsafe approach deriving the minimal state vector is to consider all possible subsets of

combinations of the state vector and check the rank conditions for minimality and controllability

in each case. For a different (computational) approach handling the minimal state in big DSGE

models see Kim et al. (2008).

E Example Models

The neoclassical growth model

We will consider the simple neoclassical growth model (see e.g. Schmitt-Grohé and Uribe (2004))

and transform the model using Xt = elog(Xt) =: ext in order to focus on log-deviations from
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steady-state. Thus, f is given by the following eight equations.

0 = −eyt + eat−1+αkt−1 ,

0 = −ekt + (1− δ)ekt−1 + eyt − ect ,

0 = −e−γct + βe−γEtct+1(αeat+(α−1)kt + 1− δ),

0 = −at + ρat−1 + ua,t,

0 = −cobst + ct + vc,t,

0 = −yobst + yt,

0 = Etua,t+1,

0 = Etvc,t+1.

There are two exogenous states kt and at, and no endogenous states. The controls are ct and yt,

and the observables are cobst and yobst . There is one shock on technology ua,t, and cobst is observed

with measurement error vc,t. Thus, given our definition and ordering of variables we have

εt = (ua,t, vc,t)
′, xt = (kt−1, at−1, εt)

′, yt = (ct, yt, c
obs
t , yobst )′, D =

[
0 0 1 0

0 0 0 1

]
.

Further we set the perturbation parameter equal to the standard deviation of the shock on tech-

nology, then we have

σ = σA, ηu = 1, ηv = σc, ηx =

02×1 02×1

ηu 0

0 ηv/σ

 , ηd =

[
0 ηv

0 0

]
.

The steady-state of this model is given by

a = log[1], k = log

[(
1/β + δ − 1

α

) 1
α−1

]
, c = log

[
ea+αk − δek

]
, y = a+ αk, ε = 0.

We will consider identification of the parameter vector θ at the local point θ0:

θ = (α, ρ, β, δ, γ, σa, σc)
′,

θ0 = (0.3, 0.9, 0.95, 1, 2, 1, 1)′.

The Kim (2003) model

First we define an auxiliary parameter and variable:

s =
βδα

1− β + δβ
, λt =

(1− s)θ

(1 + θ)c1+θ
t

.

Then the model is given by the following eight equations f :

0 = −λt(1 + θ)

(
it
s

)θ (
it
δkt

)φ
+ βEtλt+1

[
α(1 + θ)a1+θ

t k
α(1+θ)−1
t + (1− δ)(1 + θ)

(
Etit+1

δkt

)φ(
Etit+1

s

)θ]

0 =

[
(1− s)

(
ct

1− s

)1+θ

+ s

(
it
s

)1+θ
] 1

1+θ

− at−1k
α
t−1, 0 = kt −

[
δ

(
it
δ

)1−φ

+ (1− δ) (kt−1)
1−φ

] 1
1−φ

0 = −at + a0 + ua,t, 0 = Etua,t+1, 0 = Etvc,t+1,

0 = −cobst + ct + vc,t, 0 = −iobst + it.
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There are two exogenous states kt and at, and no endogenous states. The controls are ct and it,

and the observables are cobst and iobst . There is one shock on technology ua,t, and cobst is observed

with measurement error vc,t. Thus, given our definition and ordering of variables we have

εt = (ua,t, vc,t)
′, xt = (kt−1, at−1, εt)

′, yt = (ct, it, c
obs
t , iobst )′, D =

[
0 0 1 0

0 0 0 1

]
.

Further we set the perturbation parameter equal to the standard deviation of the shock on tech-

nology, then we have

σ = σA, ηu = 1, ηv = σc, ηx =

02×1 02×1

ηu 0

0 ηv/σ

 , ηd =

[
0 ηv

0 0

]
.

The steady-state of this model is given by

a = a0, k =

(
δ

sa

) 1
α−1

, i = δk, c = (1− s)

[
(αkα)

1+θ − s
(
i
s

)1+θ

1− s

] 1
1+θ

, ε = 0.

We will consider identification of the parameter vector θ at the local point θ0:

θ = (α, β, δ, a0, θ, φ, σa, σc)
′,

θ0 = (0.6, 0.99, 0.0125, 0.1, 1, 2, 1, 1)′.

The An and Schorfheide (2007) model

First we define auxiliary parameters:

β =
1

1 + r(A)

400

, π∗ = 1 +
π(A)

400
, φ =

τ(1− ν)

νκπ∗2
, g∗ =

1

(c/y)∗
.

Then the model f consists of thirteen equations:

0 =
1− ν
νφπ∗2

(eτct − 1)− (eπt − 1)

[(
1− 1

2ν

)
eπt +

1

2ν

]
+ β

(
eEtπt+1 − 1

)
e−τEtct+1+τct+Etdyt+1+Etπt+1 ,

0 = 1− e−τEtct+1+τct+Rt−ρzzt−Etπt+1 , 0 = ect−yt − e−gt +
φπ∗2g∗

2
(eπt − 1)

2
,

0 = Rt − ρRRt−1 − (1− ρR)ψ1πt − (1− ρR)ψ2 (yt − gt)− uR,t,

0 = dyt − yt + yt−1, 0 = gt − ρggt−1 − ug,t, 0 = zt − ρzzt−1 − uz,t,

0 = Y GRt − γ(Q) − 100(dyt + zt), 0 = INFLt − π(A) − 400πt,

0 = INTt − π(A) − r(A) − 4γ(Q) − 400Rt,

0 = EtuR,t+1, 0 = Etug,t+1, 0 = Etuz,t+1.

There are three exogenous states Rt, gt and zt, and one endogenous state variable yt. The controls

are ct, dyt and πt, and the observables are Y GRt, INFLt and INTt. There are three shocks: a

monetary uR,t, a fiscal ug,t and a technological shock uz,t. Further, there are no measurement
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errors in the model. Thus, given our definition and ordering of variables we have

εt = (uR,t, ug,t, uz,t)
′, xt = (yt−1, Rt−1, gt−1, zt−1, εt)

′,

yt = (ct, dyt, πt, Y GRt, INFLt, INTt)
′,

D =

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 .
Further we set the perturbation parameter equal to the standard deviation of the shock on tech-

nology, then we have

σ = σz, ηu =

σR/σz 0 0

0 σg/σz 0

0 0 1

 , ηv = [ ], ηx =

[
04×3

ηu

]
, ηd = 03×3.

The steady-state of this model is given by

y = R = g = z = ε = c = dy = π = 0,

Y GR = γ(Q), INFL = π(A), INT = π(A) + r(A) + 4γ(Q).

We will consider identification of the parameter vector θ at the local point θ0:

θ = (τ, κ, ψ1, ψ2, ρR, ρg, ρz, r(A), π(A), γ(Q), σR, σg, σz, ν, (c/y)∗)′

θ0 = (2, 0.33, 1.5, 0.125, 0.75, 0.95, 0.9, 1, 3.2, 0.55, 0.002, 0.006, 0.003, 0.1, 0.85)′.
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