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Abstract

The topic of this paper is the estimation uncertainty of the Stock-Watson

and Gonzalo-Granger permanent-transitory decompositions in the framework

of the co-integrated vector autoregression. We suggest an approach to con-

struct the confidence interval of the transitory component estimate in a given

period (e.g. the latest observation) by conditioning on the observed data in that

period. To calculate asymptotically valid confidence intervals we use the delta

method and two bootstrap variants. As an illustration we analyze the uncer-

tainty of (US) output gap estimates in a system of output, consumption, and

investment.
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1 Introduction

In this paper we suggest an approach to assess the estimation uncertainty of two

permanent-transitory (PT) decompositions estimated in a co-integrated VAR frame-

work, namely of the Stock and Watson (1988, SW) and Gonzalo and Granger (1995,

GG) methods.

There are many ways to decompose integrated multivariate time series into their

unobserved permanent and transitory components, even if we restrict our atten-

tion to additive decompositions yt = yperma
t + ytrans

t (where yt is an n-dimensional

time series), and also ruling out univariate decompositions applied separately to the

elements of yt . The most widespread methods are state-space based unobserved

components models (also known as structural time series models, see Harvey and

Shephard, 1993, and Harvey and Proietti, 2005), and decompositions based on co-

integrated VARs on the other hand (vector error-correction models, VECM). The

leading examples of the VECM based decompositions are the extraction of SW

common trends and GG common factors with their corresponding transitory com-

ponents.

The state-space approach is a powerful and flexible tool which also has the ad-

vantage that the Kalman filter provides a way to assess the uncertainty surrounding

the estimates of the (smoothed) states and therefore of the permanent component. In

contrast, for VECM based measures there has not existed a way to quantify the esti-

mation uncertainty for a given period of interest. It has only been possible so far to

assess the significance of the coefficients of the transitory decomposition in general

for the whole sample (on average), by standard test procedures. Therefore the goal

of this paper is to provide additional tools to quantify the uncertainty around the

SW and GG decompositions. The general idea is to condition on the data constel-

lation prevailing in the period of interest and to focus on the parameter estimation

uncertainty arising from the remainder of the estimation sample.

These methods may also prove useful since the SW and GG measures only rely
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on the available estimated quantities from the VECM via closed-form algebraic

expressions, and thus they do not suffer from typical practical problems of iterative

numerical methods such as those that have to be used for the estimation of state-

space models.

The entire analysis will be conducted conditional on a fixed co-integration rank,

as well as treating the lag order as given. This means that the model selection uncer-

tainty will not be captured by our confidence bands, only the parameter uncertainty.

While the true co-integration rank may often be known (or at least imposed) a priori

due to theoretical restrictions, this knowledge will typically not exist for the true lag

order. But such a conditional analysis is a standard approach to construct standard

errors for VECM coefficients (including the implied impulse-response coefficients).

After formally introducing the model framework and fixing the notation in the

following section, we analyze the uncertainty of the GG and SW transitory com-

ponents in section 3. There we state the decompositions in a way that is especially

useful for our purposes, we explain our conditioning approach, and we derive the

covariance matrices of the transitory components by applying the delta method.

Afterwards in section 4 we present some bootstrapping variants as alternative ways

to assess the estimation uncertainty. In section 5 both approaches are applied to a

three-variable dataset inspired by the influential work of King, Plosser, Stock, and

Watson (1991), but updated to include more recent data. Section 6 summarizes.

2 Framework and assumptions

Consider a standard n-dimensional VAR with p lags:

yt = A1yt−1 + ...+Apyt−p +µ + εt , t = p, ...,T (1)

where the innovations are white noise with covariance matrix Θ. We can re-parameterize

this system as a VECM:
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∆yt = αβ
′
yt−1 +

p−1

∑
i=1

Bi∆yt−i +µ + εt (2)

When co-integration is present, the long-run matrix αβ
′
= −I + ∑

p
i=1 Ai has

reduced rank r which is the number of linearly independent co-integration relation-

ships (and is also the column rank of the n×r matrices α and β ). The coefficients of

the lagged differences are given by B j =−∑
p
i= j+1 Ai. We define the lag polynomial

B(L) = I−∑
p−1
i=1 BiLi. Because it will be repeatedly needed below, we introduce an

abbreviation for the following term: Q≡ B(1)−αβ ′.

It is well known that the constant term µ can serve two purposes: if unrestricted,

it may represent a linear drift term in the levels of the variables, as well as balancing

the mean of the co-integrating relations. But if it is restricted as µ = αµ0, the levels

of the data are assumed to be free of linear trend components. In the following, we

will deal with the more general case of an unrestricted constant, which is much more

popular in economics given the trending behavior of many variables in growing

economies. As a further deterministic component it would also be possible for our

analysis to allow a linear trend term in the co-integrating relations, because the

convergence rate of its estimator is also greater than
√

T . (It may be advisable

in practical work to normalize the trend term to have mean zero.) Our explicit

formulation in this paper focuses on the presented case, however.

Apart from standard regularity conditions like a well-behaved distribution of the

residuals εt , that the process was started in the distant past such that the influence of

the initial conditions vanishes, and that standard asymptotic results for the VECM

apply, we make the following assumptions:

Assumption 1. All variables are individually I(0) or I(1).

This assumption rules out higher integration orders, and also explosive roots.

Assumption 2. The matrices Q and β ′Q−1α are non-singular (with rank n and r,

respectively).
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These conditions are also used by Proietti (1997) on whose framework our anal-

ysis is based, and they are sufficient to guarantee stability of the state-space repre-

sentation of the VECM. While the conditions are not strictly necessary for stability,1

they facilitate our analytical treatment in this paper.

Assumption 3. Fixed co-integration rank r, n > r > 0, and fixed lag order p.

The correct specification of the model is essentially treated as a separate pre-

test problem outside of the estimation problem of the VECM and the transitory

components of the data. Of course, the true co-integration rank may be known

in some contexts.

Assumption 4. The co-integration coefficients β are estimated by maximum likeli-

hood (“Johansen procedure”) and are properly normalized and identified.

This assumption serves to achieve super-consistency of the estimates of the co-

integration coefficients, see Paruolo (1997). Inter alia it means that identification

is achieved by imposing restrictions on β , not on α , and that no coefficients with

a true value of zero are “normalized” to a non-zero value. Other super-consistent

estimation methods may be used as well.

In order to state the distribution of the underlying short-run coefficients, we

collect the parameters in one matrix (α,B1, ...,Bp−1,µ) and stack the coefficients

in the vector k = vec(α,B1, ...,Bp−1,µ); this vector has nr+n2(p−1)+n elements

that are freely varying.2 Note that β is not included here because its estimate will

be treated as asymptotically fixed given its higher convergence rate (T instead of

1I am grateful to an anonymous referee of an earlier version for pointing out this fact. Stability
of Proietti’s state-space representation requires that I−T is non-singular, where T is the transition
matrix of the state transition equation. The invertibility of Q makes it possible to derive (I−T)−1 by
using formulas for partitioned matrices, but it is possible to construct cases where I−T has full rank
despite Q being singular; in these cases the conditions of the Granger representation theorem are
still fulfilled. Therefore the statement by Hecq, Palm, and Urbain (2000, p. 516) that assumption 2
should follow from assumption 1 is slightly misleading. (Of course we have adapted these conditions
to match our different notation.)

2The only qualification here is given by the standard assumptions that were made about the model
class, i.e. the co-integration rank must be preserved and the system must not become integrated of
higher order. These requirements are fulfilled in the neighborhood of the true parameters.
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√
T ), i.e. its variation is asymptotically dominated by the variation of the estimators

of the elements of k. The OLS estimate of this vector k is asymptotically normally

distributed and has
√

T -convergence.3

Remark 1. Standard asymptotics of the underlying coefficients:

√
T (k̂− k) d→ N(0,Ω),

where d→ denotes convergence in distribution. The covariance matrix Ω can be

easily estimated as Θ̂⊗ (X ′X)−1 within the standard system OLS estimation once

the super-consistent estimate β̂ has been determined, where the symbol ⊗ denotes

the Kronecker product, and X is the data matrix of all regressors (including the error

correction terms).

Remark 2. The influence of the data in any finite number of observation periods

on the estimates vanishes asymptotically. Therefore the limit distribution of the

estimates k̂ is identical whether or not some observations are removed from the

sample.

3 Constructing the variances of the transitory com-

ponents

In this section we will derive the GG and SW decompositions in a representation

that is especially suitable for our purposes, and we explain how to apply the classic

delta method to the respective transitory components.

As briefly mentioned in the introduction, the idea in this paper is to condition on

the observed data relevant for the decomposition in period τ . It will become clear

that for the GG decomposition this concerns the data yτ , and for the SW decom-

position the p vectors yτ , ...,yτ−p+1 are involved. We could implement this idea by

3This also applies to the α⊥-directions of the constant term, see Paruolo (1997).
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actually removing the conditioning data from the likelihood function; this could be

achieved either by using impulse dummies for the corresponding observations, or

in the often interesting case of the end of the sample, by simply shortening the sam-

ple. However, here we use an approach which makes it unnecessary to re-estimate

the model: Taking into account remark 2 we rely on the fact that the conditioning

data are negligible relative to the rest of the large sample. Hence, given that in any

case our calculated confidence bands are only valid asymptotically, we estimate the

model once over the entire sample including the data observations on which we will

later condition. This can be regarded as a computational shortcut.

3.1 Definition and representation of the GG decomposition

As shown by Gonzalo and Granger (1995), when the permanent and transitory com-

ponents are assumed to be linear combinations of the contemporaneous values yt

only, the PT decomposition is uniquely given as follows:

yt = β⊥(α
′
⊥β⊥)

−1
α
′
⊥yt +α(β ′α)−1

β
′yt , (3)

where the first part is the non-stationary permanent component, and the second

part is the transitory component given by a linear combination of the co-integrating

relationships.

We will use the alternative formulation by Hecq, Palm, and Urbain (2000)

(based in turn on Proietti, 1997) with only slightly different notation, which proves

especially useful with the Stock-Watson decomposition below. An important pro-

jection matrix is given by

P = Q−1
α
[
β
′Q−1

α
]−1

β
′ (4)

Since ψ1t = Pyt is a linear combination of the co-integrating relations β ′yt it is

obviously stationary, and it is actually shown by Proietti (1997) that this is just the
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GG transitory component:

ytransGG
t = ψ1t = Pyt (5)

This transitory component will in general have a non-zero mean, however. For

an economic interpretation it is especially useful to consider a transformation of the

transitory component which will have an unconditional expectation of zero, because

the sign of that transformed component automatically tells us whether the observed

level of a variable is below or above its permanent component. For example the sign

of an output gap estimate is important for identifying a recessionary or overheating

economy.

To this end we use the expression (again adapted from Proietti, 1997) for the

mean of the co-integrating relationships:

E(β ′yt) =−
(
β
′Q−1

α
)−1

β
′Q−1

µ, (6)

which enables us to calculate the de-meaned transitory component:

ψ̃1t = ψ1t−E(ψ1t)

= Q−1
α[β ′Q−1

α]−1 (
β
′yt +[β ′Q−1

α]−1
β
′Q−1

µ
)

= Q−1
α[β ′Q−1

α]−1 (
β
′, [β ′Q−1

α]−1
β
′Q−1

µ
)
(y′t ,1)

′ (7)

≡ G(y′t ,1)
′

Of course it is well known how to test the hypothesis that the GG transitory

component of a certain variable vanishes completely. From the definitions of the

GG decomposition it is clear that this involves a test that the i-th row of α is zero,

which is a standard test problem given the co-integration rank and the estimated

co-integration coefficients. This paper is instead concerned with the uncertainty of
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the transitory component at a certain period, assuming that it exists at all.

3.2 The Delta method for the GG decomposition

We can express the de-meaned transitory GG component ψ̃1τ in period τ ∈{p, ...,T}

as a function of the underlying short-run coefficient vector k (whose estimates are
√

T -consistent), of the super-consistent co-integration coefficients β , and of the

data; since the Gonzalo-Granger transitory component ψ̃1τ only depends on the

contemporaneous observations, we only need to condition on yτ :

ψ̃1τ = fGG(k;β ,yτ) (8)

By (7) we have fGG = G(y′t ,1)
′. Let JGG = ∂ψ̃1τ/∂k′ be the Jacobian ma-

trix of that function with respect to k, treating the co-integration coefficients β̂ as

(asymptotically) fixed and conditioning on the data in period τ . In the appendix we

calculate this Jacobian analytically.4 With this definition we can state the first result

with respect to the estimation uncertainty of the GG transitory component.

Proposition 1. The conditional asymptotic distribution of the GG transitory com-

ponent estimator for a fixed yτ is given by:

√
T ( ˆ̃ψ1τ − ψ̃1τ)

d→ N(0,JGGΩJ
′
GG), (9)

The proposition follows directly as an application of the standard delta method.

Given the T -convergence of the co-integration coefficient estimates β̂ , their varia-

tion is asymptotically dominated by that of the other coefficients and thus formally

negligible. The influence of yτ on the estimates is either non-existent (if a dummy

variable for period τ was used) or asymptotically negligible. A standard system

4In earlier versions we used gretl’s fdjac() function as a numerical approximation. It turned out
that the approximation is almost perfect for the Gonzalo-Granger case, and still good in the Stock-
Watson case below, where it yielded results that were somewhat more volatile.
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OLS estimate Ω̂ (for a given β̂ ) and an estimate of JGG based on k̂ can be used for

a feasible version of this proposition.

Obviously, if one is interested only in the variance (in period τ) of the transitory

component of the i-th element of y, the i-th entry on the diagonal of JGGΩJ
′
GG can

be used.

Nevertheless, it is important to keep in mind that the derived confidence inter-

vals are only valid for the chosen period τ and not as confidence bands for the entire

sample, since we cannot condition on the entire sample and still have random esti-

mates. When we display our calculations in a form that resembles confidence bands

for the time series, it is just done for convenience, since different readers may be

interested in different periods.

3.3 Definition and representation of the Stock-Watson decom-

position

In a standard formulation, and assuming a fixed initial value, the permanent SW

components are given by

ypermaSW
t = y0 +Cµt +C

t

∑
s=1

εs, (10)

where C is the long-run moving-average impact matrix of reduced rank (which

however is not directly of interest here). For the co-integrated VAR model the SW

decomposition essentially yields the multivariate Beveridge-Nelson decomposition,

i.e. the permanent component is a multivariate random walk. In contrast, the per-

manent component of the GG decomposition is autocorrelated in differences. This

property of the SW decomposition implies an appealing interpretation: Given our

knowledge at time t, only the SW transitory component of the time series is ex-

pected to change in the future (because it is expected to converge to its unconditional

expectation, or in the demeaned case, to zero), so it is especially important for fore-
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casting. Of course, the GG and SW permanent components only differ by stationary

terms and are co-integrated, therefore they share the same long-run features.

Again following Proietti (1997) and Hecq, Palm, and Urbain (2000) the transi-

tory SW component can be written as the sum of two terms,

ytransSW
t = ψt = ψ1t +ψ2t , (11)

where the part ψ1t represents the error-correcting movements of the system and

is identical to the GG transitory component above, while the part ψ2t are the re-

maining transitory movements of the system which do not contribute to the long-

run equilibrium. For this latter part we need to define another lag polynomial if

p > 1: B∗(L) = B∗0 +B∗1L+ ...+B∗p−2Lp−2, where B∗j = ∑
p−1
i= j+1 Bi. Then it can be

represented as a distributed lag of the observable variables:

ψ2t =−(I−P)Q−1B∗(L)∆yt (12)

This second part remains to be demeaned as well, which can be achieved by

using the known unconditional expectation of the differences:

E(∆yt) = (I−P)Q−1
µ (13)

Using the abbreviation µ∗ ≡ (I−P)Q−1µ we can now write:
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ψ̃2t = ψ2t−E(ψ2t)

= −(I−P)Q−1B∗(L)(∆yt−µ
∗)

=
(
− [I−P]Q−1)(B∗0,−B∗0µ

∗,B∗1,−B∗1µ
∗, ...,B∗p−2,−B∗p−2µ

∗)×
(∆y′t ,1,∆y′t−1,1, . . . ,∆y′t−p+2,1)

′ (14)

=
(
− [I−P]Q−1)(B∗0,B∗1, ...,B∗p−2,−B∗(1)µ∗

)
×

(∆y′t ,∆y′t−1, . . . ,∆y′t−p+2,1)
′

Then combining the two parts we have for the SW transitory component:

ψ̃t = ψ̃1t + ψ̃2t

=
(
P,− [I−P]Q−1 [B∗0,B∗1, ...,B∗p−2

]
,sµ

)
× (15)

(y′t ,∆y′t ,∆y′t−1, . . . ,∆y′t−p+2,1)
′

≡ S(y′t ,∆y′t ,∆y′t−1, . . . ,∆y′t−p+2,1)
′,

where the last element relating to the constant term is given by

sµ =
(
Q−1

α[β ′Q−1
α]−1[β ′Q−1

α]−1
β
′+[I−P]Q−1B∗(1) [I−P]

)
Q−1

µ. (16)

Note that also for the SW transitory component it is known how to test the hy-

pothesis that it vanishes for a certain variable. In addition to the zero row of α

that was needed for the vanishing GG component, here the i-th rows of the various

short-run coefficient matrices would also have to be zero. These restrictions essen-

tially mean that the variable would be a strongly exogenous random walk. Again,

for a given co-integration rank and super-consistently estimated co-integration co-
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efficients, that would be a standard test problem.

3.4 The Delta method for the SW decomposition

The calculation of the uncertainty for the SW transitory component is analogous

to the procedure for the GG component above. Again we can express the ψ̃τ (the

demeaned overall transitory components) in period τ ∈ {p, ...,T} as a function of k,

of the co-integration coefficients β , and of the data; the only difference now is that

we have to condition on the lagged values as well, yτ , ...,yτ−p+1:

ψ̃τ = fSW (k;β ,yτ , ...,yτ−p+1) (17)

The function fSW is given by (15), fSW = S(y′t ,∆y′t ,∆y′t−1, . . . ,∆y′t−p+2,1)
′. Let

JSW = ∂ψ̃τ/∂k′ be the Jacobian matrix of that function with respect to k, where the

details are again provided in the appendix. We can state the estimation uncertainty

of ψ̃τ similar to the one of the GG decomposition in proposition 1.

Proposition 2. The conditional asymptotic distribution of the SW transitory com-

ponent estimator is given by:

√
T ( ˆ̃ψτ − ψ̃τ)

d→ N(0,JSW ΩJ
′
SW ) (18)

Again the result follows directly from applying the delta method, cf. the remarks

on proposition 1, where now the conditioning data are given by yτ , ...,yτ−p+1. The

influence of these data on the actual estimates is either non-existent (if appropriate

impulse dummies have been used in estimating the system), or it is asymptotically

vanishing, see remark 2.

The result can be made feasible again by using the estimates k̂ and Θ̂ for the

construction of Ω̂ and ĴSW . Of course, the interpretation remains only valid for a

single chosen period.
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4 The bootstrap method

The justification of the bootstrap in this case rests essentially on the same foun-

dations as the delta method before. The underlying coefficients are freely vary-

ing (for a maintained co-integration rank r), and the asymptotic distribution of the

transitory components conditional on the data at a certain observation period τ is

well-behaved. Of course we hope that the bootstrap may yield some small-sample

refinements over the asymptotic approximation by the delta method, for example

by taking into account explicitly the variation of the co-integration coefficients es-

timates.

To be concrete, the distribution of the GG transitory component for the period

of interest τ can be simulated with the following algorithm. As a starting point we

can use the standard estimates of (2).

1. Using the point estimates as the auxiliary data-generating process, simulate

artificial data for the periods t = p...T by drawing from a suitable distribution

describing the innovation process εt . This could either be a random draw

from a fitted parametric distribution like a multivariate normal distribution

with covariance matrix Θ̂ (and mean zero, of course), or re-sampling from

the estimated residuals. We will use the observed values of yt as the initial

values of the artificial data in periods t = 0..p−1. Note that even though the

resulting artificial data may be very different from the original data because it

will have different underlying realizations of the stochastic trends, this does

not affect the distribution of the transitory components.

2. Re-estimate the VECM using the same specification that was applied to the

original data, but with the artificial data created in the previous step. Then

record the estimates of ψ̃1τ as defined in equation (7), which means using the

new estimated G coefficients of the current simulation run, but always em-

ploying the originally observed data (y′τ ;1). Denote that estimate by ψ̃1τ,w,
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where w is a simulation index running from 1 to some sufficiently large inte-

ger W .

3. Repeat the previous two steps W times to get simulated distributions of (the

estimate of) ψ̃1τ .

4. For the i-th variable calculate variants of the confidence intervals for the esti-

mate of ψ̃1τ in the following two ways:

(a) First we base the intervals directly on the distributions of ψ̃1τ,w over

all w and construct a confidence interval using the empirical quantiles

of the simulated distributions: with γ as the nominal coverage of the

error band (1 minus the type-1 error) and the quantiles of ψ̃1τ,w given by

ψ̃1τ,(1−γ)/2 and ψ̃1τ,(1+γ)/2, the intervals are constructed as

[ψ̃1τ,(1−γ)/2, ψ̃1τ,(1+γ)/2]. (19)

This construction is analogous to what Sims and Zha (1999) have called

“other-percentile” bands in the slightly different context of impulse-

response analysis, and they criticized their use as “clearly [amplifying]

any bias present in the estimation procedure” (p. 1125).

(b) Because of this criticism we also consider a Hall-type bootstrap, where

the relevant distributions are given by ψ̃1τ,w− ψ̃1τ , i.e., for each variable

and period the bootstrap realizations are corrected by the original point

estimate.5 Denoting the quantiles of these corrected distributions by

(ψ̃1τ,w− ψ̃1τ)(1−γ)/2 and (ψ̃1τ,w− ψ̃1τ)(1+γ)/2, the Hall-type error bands

are given by

[ψ̃1τ − (ψ̃1τ,w− ψ̃1τ)(1+γ)/2, ψ̃1τ − (ψ̃1τ,w− ψ̃1τ)(1−γ)/2]. (20)

5In order not to overload the notation, we do not formally distinguish here between the true
transitory component (true of course conditional on period-τ data) and its original point estimate,
because we hope it is clear from the context that only the estimate can be used here.
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Note that the upper quantiles of the corrected distributions are used for

the calculation of the lower error band margins, and vice versa. This

“counter-acting swapping” serves to cancel out any bias of the estima-

tion procedure.

Of course the bootstrap procedure can be simultaneously applied to all periods in

the sample. However, we still do not get confidence “bands” because we cannot

condition on the entire sample and do valid inference. As with the delta method, we

can only derive valid confidence intervals for certain periods of interest.

For the SW transitory component the bootstrap method in this case is completely

analogous to the GG case and to save space we will not repeat the details of the

algorithm here. Essentially, the distribution of the G coefficients is replaced by that

of the S coefficients, and of course the transitory component must be constructed

using the extended data vector which includes lags, according to the formulas in

section 3.3.

5 Illustration

For an illustration of how the methods work in practice we use a three-variable

dataset inspired by the influential King, Plosser, Stock, and Watson (1991, KPSW)

article dealing with stochastic trends in US business-cycle analysis. That is, we

also use the quarterly variables (logs of) real consumption const , real (gross) invest-

ment invt , and real output inct , but instead of their sample 1947-1988 we analyze

more recent data spanning 1968q1-2010q2. We also let the series be tied together

by two co-integrating relationships (r = 2), such that any two of the three variables

are co-integrated. KPSW propose to specify the co-integrating relationships ac-

cording to economic theory as the “great ratios” of balanced growth, specifically

cons− inc and inv− inc, but for the purposes of this illustration we will work with
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freely estimated co-integration coefficients β .6 No exogenous terms are included

in the co-integration space, and the constant term is unrestricted to account for the

deterministic long-run growth trend. As in KPSW we use eight lags (p = 8) in this

illustration.

For the transitory components we focus on excess output (ytrans
t = yt − yperma

t ,

the negative of the output gap); figure 1 shows the point estimates of the transitory

components of both decompositions, GG and SW. Both estimates seem quite similar

for this data –apart from fluctuations of the SW gap measure in the very short run–

which may suggest the presence of common cyclical features (Proietti, 1997). The

great recession of 2008-2010 is clearly visible as a large drop in excess output. In

general we note that a falling excess output measure corresponds quite well to the

NBER dating of the US recessions.

Before turning to the estimation uncertainty of the transitory components in spe-

cific periods it may be useful to briefly test whether the transitory output component

is at all significant in this system. For the GG transitory component this check can

be directly implemented as the standard test of the null hypothesis of a zero row

in α for the output equation. In our illustration here, this test yields the following

result: P(χ2(2)>11.19) = 0.0037, and thus the GG output gap is clearly significant

in general, over the entire sample. Obviously, this finding automatically implies

the significance of the SW output gap, since having a row of zeros in α is also a

necessary (but not sufficient) condition for a vanishing SW transitory component.

In the next step we calculate the confidence intervals for the output gap as given

by the GG decomposition, shown in figure 2. All intervals have a nominal asymp-

totic coverage of 90%, and we have employed the described shortcut where the

observation on which we condition is still included in the estimation sample, but its

influence should be negligible compared to the rest of the sample. For the bootstraps

6These great ratios are actually not so great in terms of their stationarity properties in the sub-
sample after the publication of KPSW. This is another reason to freely estimate the co-integration
coefficients instead of imposing unit values.
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Figure 1: Estimated output gaps as transitory components of the GG and SW
permanent-transitory decompositions. Shaded areas indicate NBER recession dat-
ing.

we re-sample from the estimated residuals.

First of all we notice that for most periods the intervals are quite similar. How-

ever, there are some exceptions; around 2005 for example the delta method intervals

are tighter than their bootstrapped counterparts. And in the final observations for

2010 the Hall-type bootstrap intervals are shifted upwards somewhat in comparison

to the naive bootstrap intervals (as well as compared to the delta method intervals,

which are of course symmetric around the respective point estimates of the gap). Fi-

nally, whether the confidence intervals in general should be perceived as relatively

wide or tight is probably a matter of taste. Nevertheless, while for the latest obser-

vation(s) the interval is quite wide indeed, the output gap interval estimate does not

cover zero.

Finally, figure 3 displays the corresponding measures and calculations for the

SW decomposition of the output series in the co-integrated system. Similar remarks

as before apply concerning the comparison of the three different interval “series”.

18



-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 1970  1975  1980  1985  1990  1995  2000  2005  2010

Point estimate
Delta intervals

Bootstrap naive intervals
Bootstrap Hall intervals

Figure 2: GG decomposition, confidence intervals for the output gap; displayed to-
gether for all periods in the sample for convenience, while the interpretation should
be for a single period only.

-0.1

-0.05

 0

 0.05

 0.1

 1970  1975  1980  1985  1990  1995  2000  2005  2010

Point estimate
Bootstrap naive intervals

Bootstrap Hall intervals
Delta intervals

Figure 3: SW decomposition, confidence intervals for the output gap; displayed to-
gether for all periods in the sample for convenience, while the interpretation should
be for a single period only.
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6 Summary

While a permanent-transitory decomposition of non-stationary time series in a co-

integrated system can always be mechanically calculated, it has not been clear until

now if even the sign of the transitory component in the period of interest can be fully

established with a sufficient degree of confidence, given the sampling uncertainty

of the estimated coefficients. So far it has only been possible to test the overall

significance of the transitory components for the entire sample.

Therefore, we have proposed an additional approach to assess the sampling

uncertainty of widespread permanent-transitory decompositions, where we take as

given the data constellations that are observed at the period of interest (possibly the

latest observation period available). These measures provide additional informa-

tion compared to the standard overall test results. For this conditional approach we

have derived a delta-method and two bootstrap-based ways to quantify the estima-

tion uncertainty of the Stock-Watson (common-trends-based) and Gonzalo-Granger

(common-factor-based) decompositions.

In the empirical illustration we calculated the uncertainty of output gap esti-

mates for the US. For example, it turned out that for the latest available observation

(2010q2) the GG-based and SW-based output gap estimates have very wide confi-

dence intervals (for 90% nominal coverage) which do not include zero, however.

A Derivation of the Jacobians

In this appendix we provide a detailed derivation of the relevant Jacobian matrices

needed for the delta method. The symbol ⊗ denotes the Kronecker product.

First we address the Gonzalo-Granger transitory component ψ̃GG
t = ψ̃1t , fol-

lowed by the second transitory component ψ̃2t , which together form the Stock-

Watson (-Proietti) transitory component ψ̃SW
t = ψ̃1t + ψ̃2t . The short-run param-

eters of the model are collected in the following parameter matrix of dimension
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(n, (r+(p−1)n+1)):

Param = [ α,
(n,r)

B1
(n,n)

, ...,Bp−1, µ

(n,1)
],

and we define the parameter vector as

k = vec(Param) = [vec(α)′,vec(B1)
′, ..,vec(Bp−1)

′,vec(µ)′]′.

A.1 Useful rules

For convenience we reproduce some of the differentiation rules and other useful

formulas from Lütkepohl (1997), the notation is unrelated to ours of the rest of the

paper.

• 10.6.3 (5), p. 201, which is a quite general formula that can be used for several

nested special cases. All matrices are in general functions of the vector x, the

matrix U has q rows and the matrix W has r columns:

∂vec(UY−1V Z−1W )

∂x′
= (W ′Z′−1V ′Y ′−1⊗ Iq)

∂vec(U)

∂x′

−(W ′Z′−1V ′Y ′−1⊗UY−1)
∂vec(Y )

∂x′

+(W ′Z′−1⊗UY−1)
∂vec(V )

∂x′

−(W ′Z′−1⊗UY−1V Z−1)
∂vec(Z)

∂x′

+(Ir⊗UY−1V Z−1)
∂vec(W )

∂x′

• 10.4.4 (8), p. 188, where the matrix Y is a function of the vector x:

∂vec(AY B+C)

∂x′
= (B′⊗A)

∂vec(Y )
∂x′
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• 7.2 (5), p. 97, where the matrix A has m rows and n columns, and B is (n, p):

vec(AB) = (B′⊗ Im)vec(A) = (B′⊗A)vec(In) = (Ip⊗A)vec(B)

• 2.4(13) for the special case of two column vectors x and y (which also implies

vec(x⊗ y) = x⊗ y):

vec(yx′) = x⊗ y

• 10.4.1 (3), p.183:
∂vec(AXB)
∂vec(X)′

= B′⊗A

• 10.6.3 (1), p.200:

∂vec(Y−1)

∂x′
=−(Y ′−1⊗Y−1)

∂vec(Y )
∂x′

A.2 The Gonzalo-Granger component

The component ψ̃1τ = G(k;β )(y′τ ,1)
′ is a function of k via G, conditional on the

data yτ , where G(k;β ) = Q−1α[β ′Q−1α]−1 (β ′, [β ′Q−1α]−1β ′Q−1µ
)

is a parti-

tioned matrix, corresponding to the partitioning of (y′t ,1). (The first part of G,

Q−1α[β ′Q−1α]−1β ′, is Proietti’s P matrix.)

The covariance matrix of k is directly given from the system estimation, and to

infer the covariance matrix of ψ̃1t by the delta method we need the Jacobian of this

vector-to-vector mapping, i.e.:

∂vec(ψ̃1t)

∂vec(k)′
=

∂ψ̃1t

∂k′

We first formulate some of the parameters as explicit matrix products. For α we

have
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α = Param×


Ir

0((p−1)n,r)

0(1,r)

 ,
and thus:

vec(α)
7.2(5)
=

([
Ir,0(r,(p−1)n+1)

]
⊗ In

)
k

=
[
Inr,0(nr,n2(p−1)+n)

]
k (21)

Next, Bi is given as:

Bi = Param×



0(r,n)

0((i−1)n,n)

In

0((p−1−i)n,n)

0(1,n)


,

which implies:

vec(Bi)
7.2(5)
=

([
0(n,r), ..., In, ...,0(n,1)

]
⊗ In

)
k

=
[
0(n2,nr),0(n2,n2(i−1), In2,0(n2,n2(p−1−i)),0(n2,n)

]
k (22)

In the same way, the estimated constant term µ can be expressed as:

µ = Param×

 0(r+(p−1)n,1)

1

 ,
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and also vec(µ) = µ , so:

µ
7.2(5)
=

([
0(1,r+(p−1)n),1

]
⊗ In

)
k

=
[
0(n,nr+n2(p−1)), In

]
k (23)

Then, using the abbreviation µ̃ ≡
[
β ′Q−1α

]−1
β ′Q−1µ we can also re-express

the partitioned matrix
(

β ′,
[
β ′Q−1α

]−1
β ′Q−1µ

)
≡ (β ′, µ̃) as a product/sum. Since

the second part is a column vector (r,1), vec(µ̃) = µ̃ , first it is clear that simply

vec(β ′; µ̃) =

 vec(β ′)

µ̃

=

 vec(β ′)

0(r,1)

+
 0(rn,1)

µ̃

 .
However, it is useful to express especially the second part which depends on k

as a matrix product to apply the formulas for derivatives. We have
(
0(r,n), µ̃

)
=(

0(1,n),1
)
⊗ µ̃ , and after stacking we get:

 0(rn,1)

µ̃

=

 0(n,1)

1

⊗ µ̃
2.4(13)
= vec

(
µ̃
[
0(1,n),1

])

So altogether we can use

(
β
′, µ̃
)
=
(
β
′,0(r,1)

)
+
(
0(1,n),1

)
⊗ µ̃, (24)

or in stacked form:

vec
(
β
′, µ̃
)
=

 vec(β ′)

0(r,1)

+ vec
(
µ̃
[
0(1,n),1

])
(25)

Now we can calculate some derivatives of smaller parts:

24



∂vec(α)

∂k′
(21)
=

∂

[
Inr,0(nr,n2(p−1)+n)

]
k

∂k′

=
[
Inr,0(nr,n2(p−1)+n)

]
(26)

With this result, and remembering that we treat β as asymptotically fixed, the

derivative of the product αβ ′ is given by:

∂vec(αβ ′)

∂k′
7.2(5)
= (β ⊗ In)

∂vec(α)

∂k′
(26)
= (β ⊗ In)

[
Inr,0(nr,n2(p−1)+n)

]
(27)

Turning to the derivative of the sum of the Bi coefficients, we obtain:

p−1

∑
i=1

∂vec(Bi)

∂k′
(22)
= ∑

∂

[
0(n2,nr),0(n2,n2(i−1), In2,0(n2,n2(p−1−i)),0(n2,n)

]
k

∂k′

(10.4.1(3))
= ∑

[
0(n2,nr),0(n2,n2(i−1), In2,0(n2,n2(p−1−i)),0(n2,n)

]
=

[
0(n2,nr), In2, ..., In2,0(n2,n)

]
=

[
0(n2,nr),1(1,p−1)⊗ In2 ,0(n2,n)

]
(28)

Putting this (28 and 27) together yields the derivative of Q = B(1)−αβ ′:

∂vec(Q)

∂k′
=

∂vec(B(1)−αβ ′)

∂k′

=
∂vec(I−∑Bi−αβ ′)

∂k′

= −∑
∂vec(Bi)

∂k′
− ∂vec(αβ ′)

∂k′

= −
[
0(n2,nr),1(1,p−1)⊗ In2,0(n2,n)

]
(29)

−(β ⊗ In)
[
Inr,0(nr,n2(p−1)+n)

]
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And we can build upon this to also obtain the derivative of Q−1:

∂vec(Q−1)

∂k′
10.6.3(1)

= −
(
Q′−1⊗Q−1) ∂vec(Q)

∂k′
(30)

Now the derivative of (the vector) µ is quite straightforward from (23):

∂ µ

∂k′
=
[
0(n,nr+n2(p−1)), In

]
(31)

Next we provide the derivative of β ′Q−1α , where we use formula 10.6.3(5)

(where we treat β ′=̂U,Q=̂Y,α=̂V , and the additional matrices Z and W are identity

matrices in this case):

∂vec(β ′Q−1α)

∂k′
= 0− (α ′Q′−1⊗β

′Q−1)
∂vec(Q)

∂k′
+(Ir⊗β

′Q−1)
∂vec(α)

∂k′
−0+0

= (α ′Q′−1⊗β
′Q−1)×([

0(n2,nr),1(1,p−1)⊗ In2,0(n2,n)

]
+(β ⊗ In)

[
Inr,0(nr,n2(p−1)+n)

])
+(Ir⊗β

′Q−1)
[
Inr,0(nr,n2(p−1)+n)

]
= (α ′Q′−1⊗β

′Q−1)
[
0(n2,nr),1(1,p−1)⊗ In2,0(n2,n)

]
+

+
(
(α ′Q′−1

β ⊗β
′Q−1)+(Ir⊗β

′Q−1)
)[

Inr,0(nr,n2(p−1)+n)

]
= (α ′Q′−1⊗β

′Q−1)
[
0(n2,nr),1(1,p−1)⊗ In2,0(n2,n)

]
+

+
(
(α ′Q′−1

β + Ir)⊗β
′Q−1)[Inr,0(nr,n2(p−1)+n)

]
(32)

Using these previous intermediate results, and repeating the expression for the

relevant transitory component,

ψ̃1τ = Q−1
α[β ′Q−1

α]−1 (
β
′, µ̃
) yτ

1

 ,
we apply formula 10.6.3(5) by setting U=̂Q−1,V =̂α,Z−1=̂[β ′Q−1α]−1, and W as

the rest of the expression (the matrix Y of the formula is an identity matrix here).
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Obviously, this is where the conditioning data yτ enter. Thus:

∂ψ̃1τ

∂k′
=

{(
(y′τ ,1)

(
β
′, µ̃
)′
[β ′Q−1

α]′−1
α
′
)
⊗ In

}
∂vec(Q−1)

∂k′

−0

+
{
(y′τ ,1)

(
β
′, µ̃
)′
[β ′Q−1

α]′−1⊗Q−1
}

∂vec(α)

∂k′

−
{
(y′τ ,1)

(
β
′, µ̃
)′
[β ′Q−1

α]′−1⊗Q−1
α[β ′Q−1

α]−1
}

∂vec(β ′Q−1α)

∂k′

+Q−1
α[β ′Q−1

α]−1
∂vec

(
(β ′, µ̃) [y′τ , 1]

′)
∂k′

(33)

where the embedded derivatives ∂vec(Q−1)
∂k′ , ∂vec(α)

∂k′ , and ∂vec(β ′Q−1α)
∂k′ have been

solved before in (30), (26), and (32), and with respect to the last line we also notice

that (β ′, µ̃)(y′τ ,1)
′ = β ′yτ + µ̃ , and since β ′yτ does not depend on k, we only need

to determine the derivative ∂ µ̃/∂k′. Here we again apply 10.6.3(5) by setting U =

I,Y−1 = [β ′Q−1α]−1,V = β ′,Z−1 = Q−1,W = µ , which yields:

∂vec(µ̃)
∂k′

=
∂ µ̃

∂k′
= 0

−
(
µ
′Q′−1

β (β ′Q−1
α)′−1⊗ [β ′Q−1

α]−1) ∂vec(β ′Q−1α)

∂k′

+0

−
(
µ
′Q′−1⊗ [β ′Q−1

α]−1
β
′Q−1) ∂vec(Q)

∂k′

+[β ′Q−1
α]−1

β
′Q−1 ∂ µ

∂k′
(34)

The embedded derivatives ∂vec(β ′Q−1α)
∂k′ , ∂vec(Q)

∂k′ , ∂ µ

∂k′ are given in equations (32),

(29), and (31). Inserting these expressions we obtain an operational version of

equation (34) for use in (33).

Most of the computations only have to be performed once (per estimation sam-

ple), and for each analyzed observation τ only the matrix multiplications and addi-
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tions in (33) have to be calculated that involve the conditioning data yτ .

A.3 The Stock-Watson component

As ψ̃τ = ψ̃1,τ + ψ̃2,τ , where the first part is the Gonzalo-Granger component for

which we have already found the derivative, only ∂ψ̃2,τ/∂k′ remains to be com-

puted. Since ψ̃2,τ = ψ2,τ − E(ψ2,τ), we can separately analyze ∂ψ2,τ/∂k′ and

∂E(ψ2,τ)/∂k′, and subtract them afterwards.

As B∗j = ∑
p−1
i= j+1 Bi is involved ( j = 0..p− 2), we can use ∂vec(Bi)/∂k′ from

(28), where it is implicitly used, to obtain:

∂vec(B∗j)

∂k′
=

∂vec
(

∑
p−1
i= j+1 Bi

)
∂k′

=
p−1

∑
i= j+1

∂vec(Bi)

∂k′

=
[
0(n²,nr),0(1, j)⊗ In2,1(1,p−1− j)⊗ In2,0(n2,n)

]
, (35)

where the 0(1, j)⊗ In2 element comes from the lacking B1...B j components.

A.3.1 The part ∂ψ2,τ/∂k′

The non-demeaned additional component relating to the short-run dynamics in the

differences is given by

ψ2,τ =−(I−P)Q−1B∗(L)∆yτ ,

where B∗(L) = B∗0+B∗1L+ ...+B∗p−2Lp−2, and as before P = Q−1α(β ′Q−1α)−1β ′.

This can also be written with explicit data vectors:

ψ2,τ =−(I−P)Q−1 [B∗0, ...,B∗p−2
]


∆yτ

∆yτ−1

...

∆yτ−(p−2)


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In order to differentiate this component, we apply formula 10.6.3(5) again by

setting: U=̂− (In−P) = P− In, Y−1=̂Q−1, V =̂
[
B∗0, ...,B

∗
p−2

]
, Z−1=̂In(p−1), and

W =̂[∆y′τ , ...,∆y′
τ−(p−2)]

′. We get:

∂ψ2,τ

∂k′
=

([
∆y′τ , ...,∆y′

τ−(p−2)

][
B∗0, ...,B

∗
p−2
]′

Q
′−1⊗ In

)
∂vec(P− In)

∂k′

−
([

∆y′τ , ...,∆y′
τ−(p−2)

][
B∗0, ...,B

∗
p−2
]′

Q
′−1⊗ (P− I)Q−1

)
∂vec(Q)

∂k′

+
([

∆y′τ , ...,∆y′
τ−(p−2)

]
⊗ (P− I)Q−1

) ∂vec
[
B∗0, ...,B

∗
p−2

]
∂k′

(36)

−0

+0

The derivative in the second line (dealing with Q) is known from equ. (29). The

derivative in the first line is equal to ∂vec(P)/∂k′= ∂vec
(
Q−1α(β ′Q−1α)−1β ′

)
/∂k′,

which is of course very similar to the result in equ. (33), except that (β ′, µ̃)(y′τ ,1)
′

is replaced by just β ′ at the end. Therefore:

∂vec(P)
∂k′

=
(

β (β ′Q−1
α)
′−1

α
′⊗ In

)
∂vec(Q−1)

∂k′

+
(

β (β ′Q−1
α)
′−1⊗Q−1

)
∂vec(α)

∂k′

−
(

β (β ′Q−1
α)
′−1⊗Q−1

α(β ′Q−1
α)−1

)
∂vec(β ′Q−1α)

∂k′
(37)

All the embedded derivatives of this expression are already known, see (30),

(26), and (32).

Finally we address the third line of (36). First we note that we can re-express
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[
B∗0, ...,B

∗
p−2

]
in stacked form:

vec
[
B∗0, ...,B

∗
p−2
]

=

 1

0(p−2,1)

⊗ vec(B∗0)+ ...+

 0(p−2,1)

1

⊗ vec(B∗p−2)

=
p−2

∑
j=0




0( j,1)

1

0(p−2− j,1)

⊗ vec(B∗j)


=

p−2

∑
j=0

vec
(
vec(B∗j)

[
0(1, j),1,0(1,p−2− j)

])
where in the last line we have exploited the formula 2.4(13) for column vectors.

Now we can find the derivative of vec
[
B∗0, ...,B

∗
p−2

]
by applying formula 10.4.4(8):

∂vec
[
B∗0, ...,B

∗
p−2

]
∂k′

=
p−2

∑
j=0




0( j,1)

1

0(p−2− j,1)

⊗ In2

 ∂vec(vec(B∗j))

∂k′

Of course,
∂vec(vec(B∗j))

∂k′ =
∂vec(B∗j)

∂k′ , which we know already from (35), and after

inserting that we get:

∂vec
[
B∗0, ...,B

∗
p−2

]
∂k′

=
p−2

∑
j=0




0( j,1)

1

0(p−2− j,1)

⊗ In2

× (38)

[
0(n²,nr),0(1, j)⊗ In2,1(1,p−1− j)⊗ In2 ,0(n2,n)

]

Thus we have provided all needed embedded derivatives to make equ. (36) and

thus ∂ψ2,τ/∂k′ operational. Again, most of these matrix computations only have

to be performed once per sample and can be reused with new constellations of

conditioning data.
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A.3.2 The part ∂E(ψ2,τ)/∂k′

We still need to consider the de-meaning term:

E(ψ2,τ) =−(I−P)Q−1B∗(1)(I−P)Q−1
µ

and sometimes we also use the abbreviation µ∗ = (I−P)Q−1µ .

We again apply formula 10.6.3(5) with these correspondences: U=̂− (I−P),

Y−1=̂Q−1, V =̂B∗(1)(I−P), Z−1=̂Q−1, W =̂µ . This yields:

∂vec(E(ψ2,τ))

∂k′
=

(
µ
′Q
′−1(In−P)′B∗(1)′Q

′−1⊗ In

)
∂vec(P− In)

∂k′

−
(

µ
′Q
′−1(In−P)′B∗(1)′Q

′−1⊗ (P− In)Q−1
)

∂vec(Q)

∂k′

+
(

µ
′Q
′−1⊗ (P− In)Q−1

)
∂vec(B∗(1)(In−P))

∂k′

−
(

µ
′Q
′−1⊗ (P− In)Q−1B∗(1)(In−P)Q−1

)
∂vec(Q)

∂k′

+
(
(P− In)Q−1B∗(1)(In−P)Q−1) ∂ µ

∂k′
(39)

Most of the embedded derivatives here are already known, see (37), (29), and

(31), but the third line needs to be addressed. By applying yet again formula

10.6.3(5) in a very special case (U=̂B∗(1) and V =̂In−P, the rest are identity ma-

trices), we get:

∂vec(B∗(1)(I−P))
∂k′

=
(
(In−P)′⊗ In

) ∂vec(B∗(1))
∂k′

+(In⊗B∗(1))
∂vec(In−P)

∂k′
(40)

Here in turn we just need to determine the derivative in the first line; for the

embedded derivative in the second line we have ∂vec(I−P)/∂k′ =−∂vec(P)/∂k′,

which is known (up to the sign) from equ. (37). Because B∗(1) = ∑
p−2
j=0 B∗j , we
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simply have:

∂vec(B∗(1))
∂k′

=
p−2

∑
j=0

∂vec(B∗j)

∂k′

=
[
0(n2,nr), In2,2In2, ...,(p−1)In2,0(n2,n)

]
=

[
0(n2,nr), [1,2, ..., p−1]⊗ In2,0(n2,n)

]
(41)

where equ. (35) has been used.

This completes the derivation of the analytical Jacobians for the delta method as

used in the paper.
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