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A Wavelet Approach to Synchronization
of Output Cycles∗

Andreas Esser†

Abstract: The dynamic comovement between time series is a key concept in
macroeconomic analysis. The extent to which series are cyclically synchronized is
particularly important for evaluating the feasibility of common policy measures
for groups of countries. This paper investigates concepts in the time domain and
in the frequency domain that have traditionally been used to detect and describe
such cyclical comovements in output data. However, methods from the former
category cannot account for different cycle lengths, while the statistics from the
latter category fail to capture transient relationships.
Therefore, the use of multivariate wavelet analysis and a modification of the

cohesion statistic from Fourier analysis is suggested to simultaneously assess
comovement at the frequency level and over time for both country pairs and
larger aggregates. The main finding from applying this method to output cycles is
that synchronization does indeed vary across both dimensions and that important
events during the time span of the sample, such as the introduction of the Euro,
can be visualized. As a further benefit of the wavelet approach, it turns out to
be hardly sensitive to the technique employed to extract the cyclical component
from the output series.
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1 Introduction

Finding ways to assess comovement of economic time series has been a key
issue for economic research, due to its relevance for a broad range of topics.
Traditionally, measures to capture such relationships have been based in the
time domain, while recently approaches in the frequency domain have gained
popularity as well. However, results have often been rather vague and displayed
lack of robustness, making it worthwhile to consider alternative approaches. A
promising concept widely used in a broad variety of scientific applications, but
not very often in economics, is wavelet analysis. The main idea behind this
concept is to split up a given function or continuous-time signal into different
scale components and study each of them with a resolution matching its scale. In
particular, the continuous wavelet transform is well-suited to the issue because
it allows to consider both aspects pertaining to the time domain and to the
frequency domain simultaneously. While the wavelet approach can be used for
many different investigations of comovement in economics, in this paper it is
applied to output data. The degree of synchronization will be assessed for various
countries representing members of the European common currency zone as well
as major economies from outside that group. In particular, a new measure for
synchronization of groups of countries which is localized in both time and scale is
presented.
The issue of business cycle synchronization has received much attention with

the creation and ongoing extension of the European Monetary Union. A lot of
research on this topic has focused on the long-run convergence of member countries
to common levels for important macroeconomic aggregates. The Maastricht
convergence criteria as a prerequisite for admission to the group of countries using
the Euro reflect several of these aspects, such as price stability, similar long-term
interest rates, and exchange rates limited to a narrow band. These criteria have –
among others – also been put forward as requirements for an optimum currency
area (OCA) by Mundell (1961).
However, suitability for a monetary union does not only require long-term

convergence between countries but also common characteristics in the cyclical
components of their economies. That is, a sufficient degree of business cycle
comovement is required to conduct a common monetary policy effectively. If
asymmetric shocks were affecting member countries of a currency union and as a
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consequence business cycles were not synchronized, a common policy measure
could not yield favorable outcomes in all member countries; with those adversely
affected being bereaved of their own tools to achieve stability for their particular
situation. To evaluate whether the benefits of a monetary union – namely lower
transaction costs and possibly more transparent pricing – outweigh these costs
of giving up the option of individual policy intervention, the linkage of business
cycles thus turns out to be an important issue in addition to looking at the
long-term convergence goals.

According to the original definition of a business cycle by Burns and Mitchell
(1946) it is characterized as a recurrent sequence of expansions and contractions
in aggregate economic activity which is not periodic like a seasonal pattern and
which cannot be divided into shorter cycles with similar amplitude and features.
When using Gross Domestic Product data as a proxy for economic activity, the
business cycle thus captures those components of output with higher frequencies
than long-term growth components, but lower ones than short-term noise. It is
generally agreed that business cycles typically range in length from approximately
two to eight years.

Various methods have been introduced to measure business cycles. Approaches
in the literature involve categorizing output series into periods of sustained growth
and decline as advocated by Bry and Boschan (1971) or Harding and Pagan (2006),
considering growth rates over a specific interval, or applying various filtering
techniques that are able to extract cycles of a specified length. Among these, the
Hodrick-Prescott filter (Hodrick and Prescott, 1997) is most widely known and
used in economic applications, yet other methods are able to cut off frequencies
corresponding to business cycles more precisely, such as the bandpass filter due to
Christiano and Fitzgerald (2003). Results from different synchronization statistics
will be compared to assess in which cases the selection of filtering procedure is
crucial to the findings. It would be desirable to have synchronization measures
that show little dependence on the exact choice of extraction technique, because
none of the different approaches can be claimed to be generally superior to the
others.
The further setup is as follows. The next section provides a brief overview of

previous literature on business cycle synchronization. Afterwards, the character-
istics of the output data used for the empirical investigation are presented and
the filtering methods to extract the cycle are discussed. Section 4 introduces and

3



applies several methods to capture synchronization in the time domain, while
section 5 does the same for approaches in the frequency domain. Synchronization
across the time and the frequency domain using wavelet analysis is investigated
in section 6. Finally, section 7 concludes.

2 Literature Review

Previous studies have suggested a variety of different measures to capture business
cycle synchronization for pairs or groups of countries. Just using regular con-
temporaneous correlation coefficients between growth cycles of EU-12 members,
Fatas (1997) finds higher values in the sub-sample after the creation of the Euro-
pean Monetary System (EMS) than in the pre-EMS period. Döpke (1998) also
considers contemporaneous correlation for the cyclical component obtained from
applying the Hodrick-Prescott filter to output data of five core Euro countries
using a rolling window approach. He observes increases in correlation for most
countries, yet with several exceptions pointing in the other direction. Looking at
pairwise correlations and employing the band-pass filter introduced by Baxter
and King (1999), Wynne and Koo (2000) find that there is some synchronization
between founding members of the European Union, while evidence is weaker for
newer member states.
Instead of using output data, which is typically only available at a quarterly

frequency, several authors also resort to using industrial production data, which
is provided as a monthly series. Among these, Artis and Zhang (1997, 1999) find
that synchronization has increased for country pairs within the EMS, while it has
diverged for others. Their finding, however, cannot be replicated by Inklaar and
de Haan (2001) with the same data but a slightly longer sample. Massmann and
Mitchell (2004), using rolling windows rather than just a pre-EMS and a post-EMS
subsample on the same data, finally conclude that the Euro area has switched
between periods of close comovement and phases of divergence throughout the
sample. For recent years, they record evidence of increasing synchronization.

Harding and Pagan (2002, 2006) propose a way of modelling the synchronization
of cycles that is quite different from the correlation measure in previous papers.
They suggest analyzing a constructed binary variable, which is set equal to unity
in case of an upward movement in a series and to zero when the direction is
downward. This allows them to capture expansions and contractions with much
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more emphasis on the turning points of the series and hence the classical view
of the business cycle by Burns and Mitchell (1946). However, by discarding all
information besides the sign, a lot of detail is lost in this process. Correlations
are then computed between these binary series, leading to only low values for
individual Euro member countries against the group average.
Another main branch of the literature is based on frequency domain analysis.

Several studies have adopted this tool to study relationships at the frequency
level (e.g. A’Hearn and Woitek, 2001; Breitung and Candelon, 2006). Measures to
quantify a comovement relationship between variables at the frequency level have
been suggested by Croux et al. (2001), who introduce the dynamic correlation
coefficient and a multidimensional counterpart termed cohesion. Using these
statistics, Croux et al. find that cycles of U.S. states are more similar than those
of European countries, while Valle e Azevedo (2002) also finds high dynamic
correlations between European countries and the Eurozone average. Allowing for
time-varying coherence, Hughes Hallett and Richter (2006), however, conclude
that the coherence between the United Kingdom and the Eurozone is unstable at
best, while it is even decreasing for Germany and the Eurozone.

In recent years, some studies have appreciated the advantages wavelet analysis
offers for the study of business cycles. Among these, Jagrič and Ovin (2004) com-
pare different wavelet types to measure synchronization of industrial production
for Slovenia and Germany and find evidence of increasing synchronization over
time. On the other hand, Crowley and Mayes (2008) use wavelet analysis for
quarter-on-quarter growth rates of France, Germany, and Italy with the result
that cycles continue to differ for each of the pairs. Rua (2010) introduces a refined
version of the cross-wavelet spectrum to find that the amount of comovement
depends on the frequency and changes over time. Finally, Aguiar-Conraria and
Soares (2011) compare industrial production data for each EU-15 country against
the weighted EU average and find the highest degree of synchronization for France
and Germany, with more peripheral countries being more detached. All wavelet
approaches present in the literature so far only allow to check pairs of series for
comovement, not larger groups.
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3 Data and Cycle Extraction

The data set used in this paper comprises output data for a number of key
European economies, namely France, Germany, Italy, the Netherlands, Spain,
Switzerland, and the United Kingdom. For the following analyses, besides this
baseline group of countries, two further groups are considered for comparison
purposes. One leaves out the latter two countries of the above list, hence focusing
only on countries which share the Euro as a common currency, while the other
one adds Japan and the United States representing important economies outside
Europe. In summary, and introducing the abbreviations used throughout the
paper, the country groups thus are

• Euro: FR, DE, IT, NL, ES;

• European: FR, DE, IT, NL, ES, CH, UK;

• all: FR, DE, IT, NL, ES, CH, UK, US, JP.

All data are obtained from the OECD’s Quarterly National Accounts database
and represent annual levels of seasonally adjusted output data measured at current
prices. Data is available for each quarter from the beginning of 1961 to the end
of 2010, covering a total of 50 years.
To investigate the cyclical properties of the data, a variety of measures are

computed. These include growth rates as well as the cyclical components obtained
from different filtering techniques. A problem of using growth rates is that they
severely amplify high-frequency components and consequently attenuate lower
frequencies (Baxter and King, 1999). This increases the noise in the extracted
cycle and thus limits the usefulness of the approach. Nevertheless, they are
widely used as a proxy for business cycles, so that both quarter-on-quarter and
year-on-year growth rates will be considered.

In addition to them, two further cycle extraction methods will be used. The
Hodrick-Prescott filter (Hodrick and Prescott, 1997) separates a series into a
cyclical and a trend component and allows different degrees of smoothing by
adjusting a penalty parameter for deviations from the trend. Here, the parameter
will be set to 1, 600, the standard for quarterly data in the literature. This filter
is probably the most widely used in economics, yet King and Rebelo (1993) stress
that it may seriously alter measures of persistence, variability, and comovement.

6



Lastly, Christiano and Fitzgerald (2003) propose a band-pass filter using an
asymmetric weighting scheme that avoids having to cut off values at the beginning
and end of the sample, which would otherwise be the case for a symmetric version.
It is devised as a combination of a low-pass and a high-pass filter and designed to
pass through cycles with a length between 8 and 32 quarters without modification,
but eliminate movements that have a different frequency.

It is clear that the choice of cycle extraction technique affects any result on cycle
synchronization, because the approaches are dissimilar in nature. Yet, as pointed
out in section 2, they are often used interchangeably with the same purpose in
mind. Also, there is disagreement on how strongly the choice actually influences
results. Canova (1998) points out that alternative filters extract different types of
information from the original series and asserts that the idea of having just one
method corresponding to the exact definition of a business cycle is misleading. As
a consequence, he explicitly suggests to subject data to various filtering methods.
Burnside (1998) does not consider this to be a problem, yet acknowledges that
different filtering techniques may provide different insights concerning the cycle.
Massmann and Mitchell (2004) raise the point that the choice of filtering technique
can affect the exact shape of what is then termed the “cyclical component”, but
may at the same time have no impact regarding convergence or synchronization.
Yet the results from the literature that vary greatly with the choice of method
imply that this might actually well be the case. To account for these observations,
it is worthwhile to compare the different filtering methods when checking for
possible synchronization.

4 Synchronization Measures in the Time
Domain

As outlined in the previous section, many studies on cyclical comovement have
considered the standard contemporaneous correlation coefficient as a measure of
alignment. That is,

ρxy = σxy
σxσy

(1)
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has been computed for two series xt and yt, with σxy denoting the covariance
between x and y. Exemplarily, this exercise is considered for the cyclical com-
ponent of the HP filter here. Table 1 reports the resulting correlations for each
combination of countries.

FR DE IT NL ES CH UK US JP

FR 1.000 0.549 0.710 0.699 0.705 0.641 0.472 0.328 0.410

DE 1.000 0.468 0.654 0.523 0.643 0.385 0.393 0.629

IT 1.000 0.619 0.706 0.627 0.362 0.342 0.438

NL 1.000 0.610 0.641 0.439 0.392 0.437

ES 1.000 0.641 0.412 0.299 0.439

CH 1.000 0.295 0.290 0.497

UK 1.000 0.546 0.443

US 1.000 0.352

JP 1.000

Table 1: Static correlations for the cyclical component of the HP filter at business
cycle frequencies

It is apparent that the correlation is stronger between countries of the Eurozone,
as shown in the upper left corner of Table 1 up to the dashed lines. For that group,
the average correlation is 0.624, with some subgroups such as France–Italy–Spain
showing even higher figures. While across the European country group, delimited
by the next set of dashed lines, the average drops to 0.562, this stems notably
from the poor alignment of the United Kingdom’s cycle with that of the Euro
countries, while Switzerland – being entirely surrounded by Euro members – has
much higher correlations with each of them. Finally, looking at the whole set
of countries, the data indicate that the United States’ cycle is only correlated
weakly with those of all other countries except the U.K. For the combinations
involving Japan, correlations are also below 0.5 with the notable exception of the
Japan–Germany pair with ρ = 0.629. The average of correlations for the entire
set of countries amounts to 0.501 and is thus lower than for both of the smaller
groups.

A rolling window approach can be used to investigate changes that have occurred
in this quantity. Instead of considering the entire time series, the correlation
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coefficient is computed for 10-year windows moving across the entire sample from
1960 to 2010. Figure 1 illustrates this development over time for the example of
the correlation between the German and the French cycle and compares results
for the different methods of cycle extraction. The upper left panel is based on the
quarter-on-quarter growth rates and the upper right panel considers the yearly
growth data. In the lower half of the figure, the left panel shows the results using
the cyclical component of the HP filter and the right panel depicts those based
on the CF filter. The years on the x-axis denote the centers of the respective
10-year-intervals for which the correlation measure is computed.

quarter-on-quarter growth year-on-year growth

HP filter CF filter

Figure 1: Development of the correlation between the cyclical components of
output for France and Germany over time. The years on the x-axis of
each panel denote the centers of rolling ten-year intervals.

An immediate observation from Figure 1 is that the results depend strongly
on the method that is used to extract the cycle. Furthermore, the correlation
substantially varies over time, following no apparent pattern except for some
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increase towards the very end of the sample in all four cases. In any case, from
these statistics no inference can be drawn concerning the length of common cycles
leading to correlation, so the following section will venture into the frequency
domain in order to find measures better suited to capturing periodicities of a
particular frequency.

5 Synchronization Measures in the Frequency
Domain

In order to obtain appropriate comovement indices or measures for common
cyclical features, this sections shifts the focus to frequency-domain approaches.
The goal is to extract short-run and long-run properties of the relationship
between series by considering cyclical components of a particular frequency.

Let the spectral density functions of two time series x and y be given by Sx(ω)
and Sy(ω), respectively, while the cross spectrum for the two is denoted by Sxy(ω).
As a widely-used concept in the literature, coherency between x and y is defined
as

hxy(ω) = Sxy(ω)√
Sx(ω)Sy(ω)

. (2)

Croux et al. (2001) argue that a slightly different quantity is a better choice for
the analysis of comovement. They consider just the real part of coherency, and
refer to that quantity as the dynamic correlation between x and y at frequency
ω. Dynamic correlation can also be specified as

ρxy(ω) = Cxy(ω)√
Sx(ω)Sy(ω)

, (3)

where Cxy(ω) denotes the cospectrum. A useful feature of dynamic correlation is
that it can not only be computed for a specific choice of frequency ω, but also be
defined for an entire frequency band Λ = [ω1, ω2] by integrating the spectra over
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the individual frequencies; that is,

ρxy(Λ) =
∫

Λ ρxy(ω)
√
Sx(ω)Sy(ω)dω√∫

Λ Sx(ω)dω
∫

Λ Sy(ω)dω
. (4)

If the entire range of frequencies is covered, the dynamic correlation coefficient
is the same as the static correlation coefficient from the previous section. By
choosing Λ to represent only a sub-interval of the entire range of frequencies,
however, a special focus can be put on correlations pertaining to cycles of a
particular length. Because interest predominantly lies in the synchronization of
series at business cycle frequencies, the frequency band to be considered is chosen
to represent cycles with a period between 2 and 8 years. This approximately
means Λbc = [.20, .79]. Results for this choice of Λ using the cyclical component
of the HP filter as data input are summarized in Table 2.

FR DE IT NL ES CH UK US JP

FR 1.000 0.561 0.749 0.762 0.799 0.663 0.518 0.364 0.402

DE 1.000 0.497 0.695 0.586 0.660 0.440 0.462 0.667

IT 1.000 0.704 0.735 0.666 0.398 0.365 0.389

NL 1.000 0.699 0.729 0.462 0.398 0.482

ES 1.000 0.681 0.430 0.316 0.430

CH 1.000 0.328 0.332 0.467

UK 1.000 0.571 0.534

US 1.000 0.431

JP 1.000

Table 2: Dynamic correlations for the cyclical component of the HP filter at
business cycle frequencies.

The results resemble those of the contemporaneous correlation coefficients
from the previous section. Those connections between countries that appeared
especially weak or strong in Table 1 also do in Table 2. On average, the dynamic
correlations at business cycle frequencies are slightly higher than the correlations
considering all frequencies. The averages for ρ(Λ) are 0.679 for the Euro group,
0.608 for the European group, and 0.538 when looking at all combinations of
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the nine countries. This gives some indication that cyclical comovement may be
higher at business cycle frequencies than elsewhere.

While dynamic correlation can only capture a cyclical relationship between two
variables, it is possible to construct weighted averages of dynamic correlations
for all possible combinations of two countries from a larger set yt = (y1t . . . ynt)′.
The corresponding quantity introduced by Croux et al. is termed cohesion and
computed as

cohy(ω) =
∑
i 6=j wiwjρyiyj

(ω)∑
i 6=j wiwj

, (5)

where wi and wj are the weights assigned to variables yi and yj, respectively.
Choosing wi = 1 for all i is possible, yet since the countries within the dataset
are very dissimilar in terms of inhabitants and economic power, weighting by
population or GDP may be more appropriate. For the empirical results in
this section, the wi represent the population in millions of the countries under
consideration.

Again, it is possible to construct the cohesion measure for a frequency band Λ,
yielding

cohy(Λ) =
∑
i 6=j wiwjρyiyj

(Λ)∑
i 6=j wiwj

, (6)

Table 3 reports cohesion at business cycle frequencies for the three subgroups
and all four types of cycle extraction methods.

subgroup qtr. growth yr. growth HP filter CF filter

all .516 .555 .467 .484

European .552 .607 .574 .592

Euro .602 .664 .646 .648

Table 3: Cohesion at business cycle frequencies.

The column corresponding to the cyclical component of the HP filter confirms
the result from the pairwise analysis using dynamic correlations. The general
pattern, namely cohesion being highest for the Euro countries, followed by the

12



European group and lastly the whole set of countries, remains the same regardless
of the filtering technique considered. However, the actual values for cohesion are
somewhat different depending on the detrending method. For the HP and CF
filters, they are spread across a bigger interval, with the value for the full group
being smaller than those obtained using growth rates, but vice versa for the Euro
group.
While the cohesion measure allows to look at the frequencies of interest more

closely, it does not provide information concerning the development of comovement
patterns over time. To this end, a rolling window approach is used again. The
cohesion measure from equation (6) is computed for 10-year windows moving
across the entire sample from 1960 to 2010. Figure 2 shows the development of
the measure over time. The four filtering techniques are arranged in the same
way as before. In each panel, the solid line corresponds to the Euro group, the
dotted one represents the European group, and the dashed one shows results for
all countries considered together.

According to all filtering methods, there is little evidence of increasing business
cycle cohesion for the entire group of countries. Only for the HP-filtered data, a
small rise over the years is observable; for the growth rate data, cohesion even
falls considerably below its value for the initial window (1965–1975) for some
time. For the other two groups, and particularly for the adopters of the Euro,
cohesion increases towards the end of the sample. Except for the very early part
of the quarterly growth series, cohesion for the Euro countries always exceeds
that of the European group, which is in line with the results for the full sample.
However, the patterns produced by the different filtering techniques are rather
distinct. When looking at either of the growth rate panels, cohesion only rises
during the first half of the sample and remains at about the same level afterwards.
Using the cyclical component of the HP filter to the contrary yields cohesion
values that increase throughout the sample. The result using the CF filter is
especially surprising as it indicates a steep rise in cohesion for the first 15 years,
followed by a decline during a period of approximately equal length and finally
increasing values for the last 20 years again.
To consider the question whether cohesion is the same for cycles of different

length, the previous summary statistic is disentangled. Rather than considering
the range of business cycle frequencies as a whole, Figure 3 displays the pattern
of cohesion across both time and frequencies in a three-dimensional plot. Again,
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quarter-on-quarter growth year-on-year growth

HP filter CF filter

Figure 2: Development of cohesion at business cycle frequencies over time. The
solid lines represent data from the Euro countries, the dotted lines
correspond to the European group of countries, while the dashed line
is based on data for all countries. The years on the x-axis of each
panel denote the centers of rolling ten-year intervals.

10-year rolling windows are used. For the sake of clarity, only the European
country group is considered in this figure, however, the respective graphs for the
whole set of countries and for the Euro group are similar. In the three-dimensional
plot of Figure 3, the x-axis denotes the frequencies, while the y-axis depicts the
years representing the centers of the ten-year intervals.

When looking at the changes over time, it is notable that the measure increases
during the first 20 years of the sample for most frequencies, but then levels off. It
can be seen that cohesion is generally highest for the low frequencies, representing
long-term growth effects. Also within the range of business cycle frequencies,
that is, for ω approximately between 0.20 and 0.79, longer cycles display higher
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quarter-on-quarter growth year-on-year growth

HP filter CF filter

Figure 3: Comparison of cohesion results for the European country group. Co-
hesion is shown for all possible time-frequency combinations, with the
frequencies on the x-axis and the years denoting the centers of rolling
ten-year intervals on the y-axis.

cohesion than shorter ones. The decline in cohesion during the 1980s when looking
at the CF-filtered data is present at all frequencies.
As a whole, the results presented in this section give some indication that

comovement between output cycles for key Euro countries is more pronounced
compared to other major economies. Furthermore, especially for the Euro coun-
tries a tendency towards increasingly strong common cycles is apparent over
time. However, the results differ quite a bit depending on the filter used and the
rolling window approach is a merely auxiliary technique to get some sense of the
temporal evolution.
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6 Wavelets

A common feature of the approaches discussed so far is their exclusive focus on
either the time or the frequency domain. While regular correlation coefficients
can capture relationships over time, no indication regarding the length of cycles is
given. Similarly, considering dynamic correlation or cohesion, the time information
included in the series is lost. Rolling window approaches as presented in the
previous sections do provide some insights as to the evolvement of these measures
over time, yet it is desirable to have one combined measure involving both the
time and the frequency domain. Thus, this section presents a way to reconcile
these two dimensions by the use of wavelet analysis.

6.1 The Wavelet Transform

The basic notion of a wavelet transform, as outlined in Daubechies (1988, 2006), is
to consider a mapping from a given time series into a function of time and frequency.
Two main types of wavelet transforms can be distinguished. The Discrete Wavelet
Transform (DWT) limits itself to select discrete parameter values which are
subsequently considered along the time and frequency dimensions. Because the
result of the transformation from one to two dimensions is extremely redundant,
this still allows to recover the original series from the DWT. The characteristic of
just looking at specific values makes the DWT widely used in applications such
as image processing, where compression of data is an essential objective. DWTs
have also been considered in economics, e.g. by Ramsey and Lampart (1998) to
investigate relationships between money supply and nominal income, or Shik Lee
(2004) to analyze price and volatility spillovers in stock markets.

However, for the task of detecting business cycle synchronization, the second
type of wavelet transforms – the Continuous Wavelet Transform (CWT) – is
more appropriate. It is computationally more demanding, but provides the full
redundant outcome of the transformation from a single time series into a set of
time and frequency values. Therefore, the interpretation of results is made much
easier.
Wavelet analysis addresses the issue that in Fourier analysis the time infor-

mation included in a series is no longer available after transformation. It is not
possible to pinpoint when an event took place or whether any of the cyclical
components changed over time. While this is not much of a problem if series
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exhibit similar properties throughout the sample, analysis becomes problematic
as soon as different regimes and events begin and end within the time span under
investigation. For the question at hand, the creation and enhancement of EMU
ties constitute numerous such changes during the sample. All these transient
dynamics are lost when relying on pure frequency analysis.
The key idea behind using wavelets thus is to look at the spectrum as a

function of time and hence capture temporary developments as well. This is
achieved by not considering waves of infinite duration, such as the sine or cosine in
Fourier analysis, but rather “little waves” (or “ondelettes” in the original French
literature). They consist of just a brief oscillation whose amplitude goes towards
zero very fast as the function approaches ±∞. Intuitively, a wavelet can be
compared to the recording of an earthquake by a seismograph.
To cover the entire real line despite the decay property required for wavelet

functions, sets or families of wavelets are considered. They are derived from a
mother wavelet ψ by scaling and shifting. A family ψτ,s of daughter wavelets
would then read

ψτ,s(t) = 1√
s
ψ
(
t− τ
s

)
. (7)

The scaling parameter s influences the width of the wavelet through stretching
(s > 1) or compressing (s < 1) and the translation parameter τ controls the
location of the wavelet by shifting its position in time. A wavelet created with a
specific frequency and duration will then resonate if the signal embedded in the
data contains components of this particular frequency.

The mother wavelet has to fulfill several technical conditions as pointed out by
Daubechies et al. (1992). Its mean,

∫∞
−∞ ψ(t)dt, must equal zero, while the integral

of its square,
∫∞
−∞(ψ(t))2dt, has to be one. The latter requirement yields the

limitation of the wavelet to a certain time interval. Additionally, the admissibility
condition 0 < Cψ =

∫∞
0
|ψ̂(ω)|
ω

dω <∞, where ψ̂(ω) =
∫∞
−∞ ψ(t)e−iωτdt denotes the

Fourier transform of ψ, has to be met. The simplest choice of wavelet is the Haar
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wavelet (Haar, 1910) defined by

ψH(t) =


1 for 0 ≤ t < 0.5,

−1 for 0.5 ≤ t < 1,

0 otherwise.

(8)

which can be obtained by combining two rectangular functions. Its disadvantage
is the obvious non-continuity of the function.

The vast majority of recent studies using CWTs instead focus on one group of
continuous mother wavelets known as Morlet wavelets (Goupillaud et al., 1984)
and given by

ψω0(t) = π−1/4eiω0te−t
2/2. (9)

The Morlet wavelet depends on one parameter, ω0. It is usually chosen to be
ω0 = 6, which is also the value that will be used throughout the analysis here.
The popularity of the Morlet wavelets arises from a number of favorable

properties. When considering the desired localization in both time and frequency,
the Heisenberg uncertainty principle asserting that both cannot be determined
to arbitrary precision simultaneously has to be considered. The Morlet wavelet
minimizes the size of this Heisenberg window of uncertainty around a point,
thereby reaching the lower bound for the inevitable uncertainty. Furthermore,
the concentration of ψ in time is the same as in frequency, providing the best
balance with respect to the two dimensions. Finally, as Lilly and Olhede (2009)
outline, there are several ways to relate the scale parameter s, responsible for
stretching the wavelet and thus corresponding to the space between oscillations,
to Fourier wavelengths. For the Morlet wavelet with ω0 = 6, all these associated
frequencies coincide, so the scale parameter can be treated like the frequency in
Fourier analysis.
Thus focusing on this particular choice of wavelet, the CWT for some time

series x(t) with respect to the wavelet ψ is given by

Wψ,x(τ, s) =
∫ ∞
−∞

x(t) 1√
s
ψ∗
(
t− τ
s

)
dt, (10)

where the asterisk denotes complex conjugation. The CWT maps the original
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one-variable function into a function of both τ and s, making it possible to conduct
inference on both time and frequency simultaneously. The main difference of the
CWT compared to a Fourier transform is the use of the wavelet instead of sine
and cosine functions and the appearance of τ as a localization parameter in the
time domain. The wavelet power spectrum corresponding to the CWT is denoted
as

WPSψ,x(τ, s) = |Wψ,x(τ, s)|2 . (11)

6.2 Cross-Wavelet Analysis

While the measures described so far aim at detecting time-frequency patterns in
a single time series, the question of whether business cycles are aligned requires
checking for common patterns in both. Measures for this purpose can be derived
from their counterparts in pure frequency analysis.
For two time series x and y, the cross-wavelet transform (XWT) has been

introduced by Hudgins et al. (1993) as

Wxy(τ, s) = Wx(τ, s)Wy(τ, s)∗, (12)

suppressing the ψ in the index from now on, since the investigation is only
concerned with the Morlet wavelet. It represents the covariance between two
series at each possible combination of time and frequency and can hence serve as
an indication of how similarities are distributed in this two-dimensional space.
The result is exemplarily visualized in Figure 4 for the pairs that can be

constructed from the HP-filtered cyclical components of the members in the Euro
country group. Dark areas depict time-frequency combinations spotting a high
cross wavelet transform, while lower values are presented in lighter shades. For
convenience, the y-axis denotes the length of the cycles in years rather than the
corresponding scale parameter. While the results differ for the individual pairs,
there is a general tendency that higher cross-wavelet transforms can be observed
for cycles with a period of at least four years. Concerning the development over
time, cross-wavelet transforms are generally lower in the middle of the sample
than in the initial or final years. The highest values can be observed for the last
decade, after the introduction of the Euro. Only for a few country pairs, such as
Germany–Italy or Germany–Netherlands, the indication of comovement for cycle
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lengths around five years is uninterrupted throughout the sample. Furthermore,
there is some evidence of synchronization at higher frequencies, that is, for shorter
cycles, during the 1970s and towards the end of the sample for most country
pairs. The graphs in Figure 4 also illustrate the deficiencies of approaches which
are either purely time- or purely frequency-based. The former would miss all
differences depicted along parallels to the vertical axis, while the latter would
disregard all changes over the horizontal axis.

FR–DE FR–IT FR–NL FR–ES

DE–IT DE–NL DE–ES

IT–NL IT–ES

NL–ES

Figure 4: Cross Wavelet Transforms (XWT) at business cycle lengths for pairs
of Euro countries. For each panel, the y-axis shows the length of the
cycle in years and the x-axis shows the localization in time. Time-scale
combinations with a higher XWT are shaded darker.
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A serious drawback of the cross-wavelet transform as introduced in equation (12)
is the lack of normalization. The wavelet coherency measure, due to Torrence
and Webster (1999), addresses this concern through normalizing Wxy(τ, s) by the
spectrum of each series. The resulting statistic is very similar to the concept of
coherency in pure frequency analysis and is defined as

Rxy(τ, s) = |S(Wxy(τ, s))|√
S(|Wx(τ, s)|2)S(|Wy(τ, s)|2)

, (13)

where S(·) denotes a smoothing operator. The smoothing operator is applied
with regard to both frequencies and time. Suitable choices for the operator
are discussed in Torrence and Webster (1999) and Torrence and Compo (1998).
Basically, smoothing can be obtained by a convolution with a window function
along both the time and scale dimensions:

S(W (τ, s)) =
∫ τ+∆1/2

τ−∆1/2

∫ s+∆2/2

s−∆2/2
W (t, ς)f∆1,∆2(t, ς)dtdς,

where f∆1,∆2 satisfies
∫ ∫

f∆1,∆2(t, ς)dtdς = 1. Wavelet coherency thus is unity if
at a particular time and scale, a perfect linear relation exists between the two
time series; while at the other extreme, it is zero if the series are independent.
Although the exact choice of the smoothing function f is somewhat arbitrary,
this is not different to the situation in Fourier analysis, where coherency is based
on the smoothed periodogram.1

Just as for the coherency measure in pure frequency analysis, the appeal of the
statistic in equation (13) is its similarity to the standard correlation coefficient,
so that it can be considered as a correlation coefficient localized in time-frequency
space (Grinsted et al., 2004).

Because of the similarity to its Fourier counterpart, the approach can also easily
be extended to provide insight for entire groups of countries, allowing to compare
the group of Euro countries with other sets. Consider a vector yt = (y1t . . . ynt)′

with n ≥ 2 and positive weights w = (w1 . . . wn)′ attached to each element of yt.
The proposed measure is motivated in the same manner as Croux et al.’s (2001)
measure of cohesion in the frequency domain and will hence be referred to as

1Both in the Fourier and in the wavelet case, the coherency measure would be unity everywhere
without smoothing.

21



wavelet cohesion. It equals

wavecohy(τ, s) =
∑
i 6=j wiwjRyiyj

(τ, s)∑
i 6=j wiwj

. (14)

To simplify the measure, weights can be chosen as wi = 1 for all i. While this may
be appropriate if each element in yt were of the same importance, with countries
in the dataset greatly varying in size, it is more reasonable to take account of
this fact by a suitable weighting scheme. Hence, like previously for the cohesion
measure in pure frequency analysis, the wi are chosen to be the population of the
countries in 2010, i.e. at the end of the sample.

quarter-on-quarter growth year-on-year growth

HP filter CF filter

Figure 5: Wavelet cohesion for country group “all” at business cycle lengths.
The y-axis shows the length of the cycle in years and the x-axis shows
the localization in time. Time-scale combinations with higher wavelet
cohesion are shaded darker.
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quarter-on-quarter growth year-on-year growth

HP filter CF filter

Figure 6: Wavelet cohesion for country group “Europe” at business cycle lengths.
The y-axis shows the length of the cycle in years and the x-axis shows
the localization in time. Time-scale combinations with higher wavelet
cohesion are shaded darker.

With this new wavelet cohesion measure, it is possible to capture synchroniza-
tion of business cycles for groups of countries. Figures 5 to 7 show graphical
representations of the wavecohy(τ, s) statistic using the county groups consisting
of all, the European, and the Euro member states, respectively. The contour
plots indicate wavelet cohesion for the entire time span of the sample and for
cycle lengths between two and eight years. Areas colored in the darkest shade
of gray indicate a cohesion statistic between 0.8 and 1.0 and thus the highest
possible degree of synchronization. Each contour line and switch to a lighter
shade then represents a decrease in cohesion by a 0.2 increment, leaving areas
with little cohesion – wavecohy(τ, s) between 0 and 0.2 – entirely white.
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quarter-on-quarter growth year-on-year growth

HP filter CF filter

Figure 7: Wavelet cohesion for country group “Euro” at business cycle lengths.
The y-axis shows the length of the cycle in years and the x-axis shows
the localization in time. Time-scale combinations with higher wavelet
cohesion are shaded darker.

Figure 5 shows cohesion for all countries together. It indicates that except for
the very beginning of the sample, synchronization is present for cycles with a
length of approximately five years, as cohesion at this scale exceeds surrounding
higher and lower frequencies. During the late 1980s and early 1990s, the link is
least substantial. Also within that time span, cohesion is particularly low for
shorter cycles between two and four years. More generally, cohesion is low for
cycles shorter than four years everywhere except at the very end of the sample,
where all frequencies show a clear increase in cohesion. Another notable aspect is
that, unlike for the purely time- and frequency-based measures of the previous
sections, there is only very little discrepancy between the results for the different
cycle extraction methods and the conclusions concerning cyclical comovement
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behavior hold regardless of the filtering method.
For the European country group, whose wavelet cohesion results are depicted

in Figure 6, the overall picture is rather similar to that for the complete set
of countries. Evidence of cohesion is a bit stronger than before and again it is
most pronounced for cycles of around five years length. Since around 2000, those
five-year cycles have very high cohesion values of above 0.8. Interestingly, the
time-scale combination of two- to three-year cycles around 1990, which spotted the
smallest cohesion in Figure 5 now exhibits a somewhat stronger synchronization
link than its surroundings.
Finally Figure 7, considering only the Euro member countries, confirms the

presence of synchronization for five-year cycles throughout the sample. Unlike
for the other groups, however, there is considerable cohesion already during the
early years. As in the previous groups, cohesion is generally somewhat lower in
the 1980s than before and after. The “island” of high cohesion for shorter cycles
around 1990 is again present and more substantial than for the European group.
For the years subsequent to the introduction of the Euro in 1999 and for cycles
longer than five years, there is very extensive cohesion throughout. The results
of the different filtering approaches are not as similar as for the group consisting
of all countries, yet unlike for the purely time- or frequency-based approaches, all
important features are qualitatively the same across methods.
The use of wavelets thus does not only introduce the advantage of combining

the analysis of time and frequency dimensions, but it also turns out that the
statistics are much more robust to the choice of filtering technique. While both
the contemporaneous correlation coefficients and the different approaches in the
frequency domain yield results that vary depending on which measure is used to
extract the cycle, this is not the case for wavelet analysis.

7 Conclusion

This paper has compared a variety of methods targeted at measuring business
cycle synchronization. It has shown that it is insufficient to consider the time
domain and the frequency domain separately and established the sensitivity of
present statistics to the choice of cycle extraction technique. As a more refined
approach, the paper has pointed out that wavelets are a valuable tool for the
analysis of business cycles, because they allow to consider a localization of common
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periodicities in scale and time. In particular, a new measure of comovement
between several – rather than just a pair of – series has been introduced for a
wavelet setting.

The wavelet cohesion statistic asserts that cyclical components in output with
a length of approximately five years are synchronized to a certain degree for
various sets of countries. This lies well within the range typically considered
as business cycles and corresponds exactly to the finding of Artis et al. (1997)
who pinpoint the typical business cycle length to be between five and six years.
Cohesion is stronger for countries sharing the Euro, in particular since the actual
introduction of the currency, but also in earlier years already. These findings align
with those of previous studies such as Rua (2010), who considers fewer countries
and just bivariate relationships over a shorter sample. Furthermore, using the
wavelet approach, Canova’s (1998) criticism of arbitrariness in the choice of cycle
extraction technique is remedied, because the deliberate choice of filter does not
affect the result eventually obtained for synchronization.
The wavelet-based measures turn out to be very useful because results show

comovements both hinge on the frequency of cycles and develop over time. These
two dimensions are easily incorporated in the wavelet cohesion statistic, while
other approaches have to resort to auxiliary tools to provide insight beyond a
single one of the dimensions. By virtue of the simple extendibility to groups
and the possibility to obtain an intuitive visualization of the synchronization
relationships, the technique should also prove very useful and warrant more
widespread use in further areas of economics.
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