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Abstract

We analyze the theoretical moments of a nonlinear apprdiomto real business cycle model with
stochastic volatility and recursive preferences. We firat the conditional heteroskedasticity of
stochastic volatility operationalizes a time-varyingkrasljustment channel that induces variability
in conditional asset pricing measures and assigns a stiasfaortion of the variance of macroeco-
nomic variables to variations in precautionary behaviothbwhile leaving its ability to match key
macroeconomic and asset pricing facts untouched. We eadctile theoretical moments directly
and decomposes these moments into contributions fronsshithe distribution of future shocks
(i.e., risk) and from realized shocks and differing ordérafproximation, enabling us to identify
the common channel through which stochastic volatilitysolation operates and through which
conditional asset pricing measures vary over time. Undetidnal investment and varying capital
utilization, output drops in response to an increase in bsk the contributions to the variance of

macroeconomic variables from risk becomes negligible.
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1 Introduction

Assessing the statistical and structural implicationsawfimear DSGE models with recursive pref-
erences and stochastic volatility for asset pricing anéhass cycle dynamics is an unfinished task
in macroeconomics. We derive the theoretical moments olimeer moving average approxima-
tions to the model and decompose these moments into camrisirom the individual orders of
nonlinearity in realized shocks (amplification effectsil &mm the moments of future shocks (risk
adjustment effects). With this decomposition, we find thatksastic volatility activates a time-
varying risk adjustment channel in macroeconomic varghalzounting for a substantial amount
of total variation. We identify this conditional heteroslestic mechanism as the sole driving force
of the conditional asset pricing measures under study. difables us to tell the story of a varying
pattern of risk in the economy eliciting changes in housa$igirecautionary responses as priced
by measures such as the conditional market price of risk. M fiowever, that stochastic volatil-
ity contributes to the model’s ability to match asset prctacts only by increasing the overall
volatility of macro variables—taken as given exogenouslgndowment settingghat reach the
opposite conclusion—and that frictional investment armitde capital utilization allow the model
to predict a drop in output in response to an increase in gekifive volatility shock) at the cost
of making the importance of this risk channel to the variapdf macro variables moot.

While there is growing interest in stochastic volatilitydaBpstein and Zin's (1989) recursive
preferencesin recent literature, there is little work that studies thinj effect of these two el-

ements for both asset pricing and business cycle dynamfasdreasen (2012), focusing on the

1See, e.g., Bansal and Yaron (2004)

2See also Kreps and Porteus (1978) and Weil (1990). Backus 085) offers a recent review of these and
related preferences.

3Bloom (2009) studies the impact of stochastic volatilitytta firm level and documents a short drop followed
by an overshooting in aggregate economic activity follayénvolatility shock. Justiniano and Primiceri (2008) add
stochastic volatility to a linearized New Keyensian modektudy the documented reduction in volatility of U.S.
economy since the early 1980’s (See Blanchard and Simorlj20@ Stock and Watson (2003), as well as Sims and
Zha (2006) for areview.). Fernandez-Villaverde et al 1(28) and Born and Pfeifer (2013) use New Keynesian models
to study the effect of changes in the volatility of policy idoles on the aggregate economy. Tallarini (2000) among



different specifications of the conditional heteroskeidédgtand the consequential difference in
the quantitative performance of a New Keynesian model,stakérief look at the implications
of the model on both sides. Bidder and Smith (2012), takingpdehuncertainty perspective a la
Hansen and Sargent (2007), study fluctuations in the was-distribution as sources for business
cycles in a model with stochastic volatility and recursivefprences. We differ from both their
works in our aim to analyze the propagation mechanism ohststic volatility implemented as a
volatility shock in a production model, and we examine tHe of stochastic volatility in attaining
the Hansen-Jagannathan bounds (See Hansen and Jagarih@€ighwithout compromising the
fit vis-a-vis the macroeconomy to complement the empiraalluation of the model regarding
replicating asset pricing regularities.

We solve the model using the nonlinear moving average petion derived in Lan and Meyer-
Gohde (Forthcoming), which takes the infinite sequencealfzed shocks, past to present, as its
state variable basis and adjusts the deterministic palingtion for the effect of future shocks by
scaling their distribution with the perturbation paramek®llowing Caldara et al.'s (2012) assess-
ment of the accuracy of third order perturbations in a bussreycle model with recursive prefer-
ences and stochastic volatility and as it is the minimum ongeded to capture the time-varying
shifts in risk premium as noted in Andreasen (2012, p. 30@) \&an Binsbergen et al. (2012,
p. 638), we approximate the policy function to third ordeheThonlinear moving average policy
function and its third order approximation can be decomgaseaightforwardly into the order of
the amplification effects (the impact of the realized shpeksl risk adjustment (the anticipation
effect of future shocks). We find, in the analysis of the ingeulesponses of both macroeconomic
and asset pricing variables, a volatility shock by itsetigagates solely through the time-varying

risk adjustment channel. For conditional asset pricingsuess such as the expected risk premium,

others, note recursive preferences can contribute toviegahe longstanding asset pricing puzzles (equity premiu
and risk free rate) documented in Mehra and Prescott (198%)\eeil (1989) without compromising the model's
ability of replicating macroeconomic dynamics; and Rudshuand Swanson (2012) and van Binsbergen et al. (2012)
use a model with recursive preferences to study the dynashite yield curve.



volatility shocks and productivity growth shocks propagiadividually through the time-varying
risk adjustment channel only. Moreover, the effect of sastic volatility shocks on the expected
risk premium is several orders of magnitude larger thandhatoductivity growth shocks, high-
lighting again the importance of this time variation in thepgrsion of probability measures used
to form expectations for conditional asset pricing.

Using the third order nonlinear moving approximation, wewetheoretical moments that are
in general not available in the nonlinear DSGE moddis a similar vein to our nonlinear moving
average, Andreasen et al. (2013) compute theoretical msmiemg a pruned state space pertur-
bation® since after pruning, the unknown higher moments are noaifinctions of the known
moments of lower order approximations. However, we are tbfarther derive a decomposition
of the theoretical variance that neatly dissects the iddizi contributions of amplification and risk
adjustment effects to the total variance of the model. Withvariance decomposition, we find that
adding stochastic volatility changes the composition ef\vhriance of the macroeconomic vari-
ables. In the presence of stochastic volatility, more vamais generated in the time-varying risk
adjustment channel. As for macroeconomic variables, mewsnn the risk adjustment channel
can be explained by the household’s precautionary motikes finding implies households aware
of shifts in the distributions of future shocks will adjuketr precautionary behavior commensu-
rately.

The paper is organized as follows. The competitive realiass cycle model with recursive
preferences and stochastic volatility is derived in secB8ioln sectiond4, we present the nonlinear
moving average perturbation solution to the model. Thebcations are introduced in sectidn

We then derive the theoretical moments in sec@md apply our method to analyze the model in

4The nonlinear moving average approximation, as its polioycfion directly maps exogenous shocks into the
endogenous variables, only needs the moments of the exageshocks when computing the theoretical moments.
We implement our approach numerically by providing an addar the popular Dynare packageA state space
perturbation policy function, by contrast, maps the endoges variables into themselves and resulting in an infinite
regression in theoretical moments requiring higher mom#iidn moments being computed.

6See Lan and Meyer-Gohde (2013a) for an overview of prunimgtarrelation to our nonlinear moving average.



section?. In section8, we extend the baseline model to frictional investment aaribible capital

utilization. Sectior® concludes.

2 Stochastic Volatility

2.1 Related Literature

As documented in Blanchard and Simon (2001), Stock and Wg&@03), Sims and Zha (2006),
Fernandez-Villaverde and Rubio-Ramirez (2010) and nwihgrs, the volatility of employment
growth, consumption growth and output of the U.S. econormynfil984 to 2007 has evidently
declined by one third comparing to their values during théQk%and early 1980s. Nominal volatil-
ities also have declined by more than half. This period oétitity reduction in aggregate time
series, often labeled as the Great Moderation, motivagesttidy of its causes. The literature thus
far offers three main ways of modeling, and therefore anadythis volatility shift: i) stochastic
volatility, i.e., model the volatility of the exogenous pesses under investigation as an autore-
gressive process, or ii) a GARCH process, or iii) the vatgtdwitches between two (or more)
states, i.e., Markov regime switching models. As pointetyu-ernandez-Villaverde and Rubio-
Ramirez (2010, p. 10), stochastic volatility can captusmyimportant features of the empirical
volatility shift and differentiates the special effect aflatility from others, this approach has been
adopted in many studies.

By incorporating stochastic volatility, Fernandez-%ilerde and Rubio-Ramirez (2007) show
variations in the volatility of investment-specific techogical shock and preferences shock ex-
plain most of variations in the volatility of in output andurs worked. Justiniano and Primiceri
(2008) estimate a DSGE model with stochastic volatility andclude the decline in the volatil-
ity of output, hours worked and consumption is largely owia@ change in the variance of the
investment-specific technological shock, e.g., a changfesirariance of the investment shock ex-

plains on average 30% of variability in output growth sinad+1980s. On the other hand, Bidder



and Smith (2013) investigate the implication of stochasgti@tility on asset pricing and find that,
their endowment model economy generates a much higher ditimoral market price of risk with
stochastic volatility in the exogenous consumption gropribcess than without. Meanwhile, the
presence of stochastic volatility does not lead to a notieeahange in risk free rate, and thus
improves the model’s ability in attaining the Hansen-Jagdinan bound. Bansal and Yaron (2004)
also find, in the presence of stochastic volatility in thegemous consumption growth, the maxi-
mal Sharpe ratio, i.e., the lower bound of the market pricesti is about three times larger than
its value in the absence of stochastic volatility.

All these findings motivates the study of whether stochasilatility is a driver of business
cycle fluctuations. As noted in Born and Pfeifer (2013), demin aggregate uncertainty can
potentially induce changes in economic activities throlidgime precautionary motive as household
tends to save more to ensure itself against the increasae fiisk, ii) the (inverse) Hartman-Abel
effect which is, in essence, firm’s precautionary reactioresponse to the increased future risk,
and iii) real option effect at work. These three transmissieechanisms of volatility change are
however, partial equilibrium effects. In a general equilim model where prices can adjust to
accommodate changes in uncertainty, the effect of vdlatihange on economic activities could
differ from that in a partial equilibrium model, both qualitvely and quantitatively.

Using a partial equilibrium model, Bloom (2009) show a p@sitvolatility shock causes a
drop in output and employment, both by about 1%. Bloom et281®) report a drop in output
by just over 3% when general equilibrium effects are shut @ffi the other hand, the effect of
stochastic volatility appears, but not without exceptiemaller in size when general equilibrium
effects are taken into account. Fernandez-Villaverdd.€2811b) show a volatility shock to the
real interest rate leads to a drop in output, consumptimesiiment and hours by, 05%, 2%

and 0001% respectively. Fernandez-Villaverde et al. (2011a) find the previous faggregates

"This is the case for Argentina, see Fernandez-Villavetad ¢2011b, p. 2550).



fall by about 015%, 002%, Q6% and 015% respectively in response to an increase in the uncer-
tainty of fiscal policy. Born and Pfeifer (2013) also studg tmcertainty of fiscal policy and its
effect. They also find, with the baseline parameterizatidh@r model, an increase in uncertainty
causes a contraction on economic activities—the four agdes fall by 0045%, 003%, Q1%
and 004% respectively. Basu and Bundick (2012) investigate tfeetof stochastic volatility in
both technology and preference shock process. A volashiyck to either of the two processes
leads to a drop in output, consumption, investment and hdaurtsat different quantitative level.
The four aggregates fall by aboui0d%, Q06%, Q01% and 006% respectively in response to
a volatility shock to technology, and by aboutl®%, 016%, Q2% and 021% in response to a
volatility shock to preference. While the first order impaffect of aggregate uncertainty is not
pictured and explicitly reported, Bachmann and Bayer (fming) show the contribution from
aggregate uncertainty to the volatility of output, constiorg investment and hours is negligible.
Still in a general equilibrium framework, Bloom et al. (20QXhd Bidder and Smith (2013) both
find however, stochastic volatility can have large effeceocnnomic activities. A volatility shock
causes a fall in output, consumption, invest and hours buta®¥%, 1%, 20% and 7% in Bloom
et al. (2012), and by about 2%.,526, 25% and 1% in the worse case model of Bidder and Smith
(2013).

To summarize, the studies cited above tend to agree an s&ciesolatility leads to a recession,
yet differ in their views on the size of such a recession. Mueg, Bloom (2009) and Bloom
et al. (2012) find the recession due to the increase in unertasts for only 6 and 12 months
respectively, as opposed to a more prolonged recessionteddyy the other studies. Additionally,
there is few studies investigating the potential effectto€Bastic volatility on the market price of
risk in a production economy. It worth noting that the cdmition from stochastic volatility to
asset pricing in an endowment economy does not necessarly @ver to a production economy,

as such contribution is not entirely independent from tlticed form, empirical specification of



consumption growth.
2.2 General Operation within DSGE Models

One general wayto introduce stochastic volatility is to replace a homosigtit shockw, with
e“uy, whereg is a mean zero stochastic variable. The exponential fumetisure thad“ is always
positive, enabling the interpretation of the producg®fand homoskedastic standard deviation of
wx as the shock’s conditional standard deviation. As we wiltbecerned with local approxima-
tions in this study, it will be useful to have a Taylor seriés.@onditionally heteroskedastic shock

€%y as we approximate our equilibrium system to a given order.

Lemma 2.1. The Taylor expansion of
1) e oy

around the point; = wx = 0is given by

@) ey = (i%q) @

Proof. See the appendices. O

To assess the general equilibrium effects of stochastatiio}, consider the following general
model
(3) 0=Et[f(Yere, Vo, Yt—1,&) + HeY ]
wherey; is the vector of the endogenous variables, anthe vector of normally distributed ex-
ogenous shocks apart from the stochastic volatility shecleuconsideratiort] a constant vector,
w is a normally distributed exogenous shock subjected toehasiic volatility procesg,” itself
given by

(4) G =PG-1+TNt

8See, e.g., Fernandez-Villaverde et al. (2011b)

90ur shock subject to stochastic volatility enters the mdidelarly throughHe“wy. The vectorH could, for
example, contain zeros everywhere but for the row assakisitd, say, an autoregressive process for technology; in
this row, the entry would be the homoskedastic standardatieniof technology shocks.

7



where|p| < 1 is the autocorrelation of the procesg,its standard normal innovation with> 0
scaling these innovations to enable non-unity standarthtiens.

The solution to 8) is a time-invariant functiory, taking as its state variable basis, the shocks
and states induced by stochastic volatifity= [¢_1 s{d]', wheree? = [ax nt}’, as well as the
remaining shocks and states= b/t—l a{]'. Solutions are indexed by the perturbation parameter
o € [0,1] scaling the distribution of future shocks
(5) Yt =9(0,%,%")

(6) Y1 =0(0. [V ogf,4]' [¢ o))

The role of the parametere [0, 1] can be seen in the policy functiontat 1, where it premultiplies
shocks datet+ 1. That is, from the timeé perspective of the conditional expectations operator in
(3), shocks datetl+ 1 are unknown and are the source of risk in the model whichakeddyo.
Wheno = 0, the model is deterministic and the the deterministiccitesate is a fix point of the
mappings in %) when all shock realizations are equal to their mean (iexg)zvalues.

We are now in a position to provide the third order Taylor apmation of §) about the

deterministic steady state.

Proposition 2.2. The recursive solution of3] expanded out to third order at the deterministic

steady state is given by
1 1 1 W
Yt %5902 + égozzzt + égozzwzt
+ (gcth—l + gnwnt) o
1
+ > (gqmthfl + gr]oozr]t) Wz
1
+5 (91 + 200G 1M+ Gz
(7) + Terms independent of stochastic volatility

Proof. See the appendices. O

Notice, importantly, that only derivatives with respecthe risk scaling parameterprovide a

8



channel for stochastic volatility to interact with variabloutside of the stochastic volatility and the
shock it impacts. The remaining terms, i.e., those that dawolve derivatives with respect to the
risk scaling parametes, capture the direct effect of a change in volatility on steodkawn from
the distribution subjected to the change. We split the thider approximation of the recursive
solution of @) in proposition2.2into these two components.

First, the component that captures the effect of changdeeidispersion of the distribution of

shocks on the magnitude of shocks realized from this digiob.

Definition 2.3. At third order, the amplification component gfig
ytam piification_ (gcco(t—l + gr]cor]t) o
1
+ > (gcwzqtfl + gnooznt) Wz

1 2 2

(®) +5 (900 1+ 20maG-1: + G )
In essence, an increase in the dispersion of this distobwerves to magnify the realizations

of shocks from the undispersed distribution, hence oui |&amplification.”

Second, the component that captures the effect of changles dispersion of the distribution

of shocks on the evaluation of expectations

Definition 2.4. At third order, the risk component of ks
i 1 1 1
©) Y™ = 5002 + 590202 + 50022

In essence, an increase in the dispersion of this distabuticrease the risk or measurable
uncertainty regarding future stochastic variables, henceabel, “risk.”
The volatility shockn; can only affect the conditional distribution of future skeonly if the

stochastic process is persistent, as we summarize in the following

Corollary 2.5. At third order, the risk component of,¥9), is nonzero if and only if; is persistent,

thatis ifp #£ 0.



Proof. See the appendices. O

We have defined the volatility process ) uch that changes in the volatility occur simultane-
ous with realizations of shocks, that is batrandwy, enter () with a subscript. Volatility shocks
will only affect risk or measurable uncertainty regardinguie shocks it is serially correlated,

such that and innovation to the volatility process alsocéféuture volatility.

3 The Model

In this section, we derive a stochastic neoclassical gromaldel with the recursive preferences
and stochastic volatility. We will follow Tallarini (200@losely so that our model coincides with
his in the special case of constant (i.e., non stochastia}ility. Preferences are recursive in an
exponential certainty equivalent with the period utilitynttion logarithmic in consumption and
leisure. Production is neoclassic using time-to-builditedand labor, whose productivity grows
as a random walk with drift and innovations subject to ststhbally varying volatility.

The economy is populated by an infinitely lived householkis®geto maximize its expected

discounted lifetime utility given by the recursive prefeces

2
(10) Ve =InG+gin(1—N) B, In (B [exp(3.1) )
whereC; is consumptionl\; labor,B € (0,1) the discount factor and
_,1-B)(1-Xx)
(11) y=2 140

indexes the deviation with respect to the expected utijjtgenotes the coefficient of relative risk
aversion (CRRA) for atemporal wealth gamBfeandy > 0 controls labor supply. Witly equal
to the elasticity of intertemporal substitution (EIS) wiis equal to one herel(Q) collapses to the

expected utility. The household optimizes over consunmadiad labor supply subject to

(12) Ci+ K = WINg + rfKe 14+ (1—8)K¢_1

10see also Swanson (2013).

10



wherekK; is capital stock accumulated today for productive purposecrrow,W real wage r<
the capital rental rate ariilc [0, 1) the depreciation rate. Investment is the difference batwiee
current capital stock and the capital stock in the previargop after depreciation
(13) It = K¢ — (1—8)K¢_1

We assume a perfectly competitive production side of the@axy, where output is produced
using the labor augmented Cobb-Douglas technolgy K& ; (eztl\lt)l_a. Z; is a stochastic
productivity process and € [0, 1] the capital share. Productivity is assumed to be a randoik wal
with drift, incorporating long-run risk into the modél
(14) & =2 — 21 =2a+0,"€z, &4 ~N(0,1)
with &, the innovation t&;. 6,€°%t can be interpreted as the standard deviation of the proghycti
growth witha; the homoskedastic component. Following, e.g., Fernahikerde et al. (2011b)

and Caldara et al. (2012), we specify the heteroskedastiponento,;, as

(15) Ozt = PoOzt-1+ T€ay; €ay ~ N(0,1)
where|pg| < 1 andt is the standard deviation ef,,. The model is closed by the market clearing

condition
(16) =G+l
setting consumption and investment equal to output in eadbgh.
The solution is characterized by the intratemporal labg@psuproductivity condition equal-
izing the utility cost of marginally increasing labor suppb the utility value of the additional

consumption obtained therewith
1 Y
v 1 (1—a)—
1-N G N
HIAs noted by Bansal and Yaron (2004, p. 1502), in an endownoemiceny with recursive preferences and stochas-
tic volatility, better long-run growth prospects leads tase in the wealth-consumption and the price-dividendati

Rudebusch and Swanson (2012, p. 108) incorporate bothrréal@ninal long-run risk in a production economy with
recursive preference, and find long-run nominal risk impsothe model’s ability to fit the data.

(17)

11



and the intertemporal Euler equation

(18) Ee[Mi1(1+rea)] =1

where the real risky rate comes from combining firms’ profit and households’ utility ximaiza-
tion

(19) 1+ =aKdiH(@EN)  +1-8=r+1-5

and wherem, 1 the stochastic discount factor or pricing kernel is given by

= M [0C1 _ o G exp(3Maa)
T v /oG Cit1Er [exp($Vey1) ]
with 4 implicitly evaluated at the maximum.

(20)

As the economy is nonstationary, growing at the mteve detrend output, consumption, in-
vestment, capital stock and value function to stationagheemodel. This is achieved by dividing
all nonstationary variables but the value function, whichstndetrended differently, by the con-
temporaneous level of productivief.1? Labor supplyN: and leisure 1- N as well as the returns
re andrK are stationary and therefore do not need to be transforntatiosary variables will be
denoted by lower case letters.

Reexpressing the pricing kernel in terms of stationaryaldes, the stochastic trend or long-run

risk can be seen directly in the pricing kernel

exp(% [Vt—i—l + rlg (a+ 0_2902’”18z,t+1)] )

Et [EXD<\§/ [Vt+1 + 1T1[3 (a+ 0_zeoz’t+1€z,t+1)] )]
where the stochastic trenaize®zt+1e,¢, 1, enters the kernel through the twisted continuation witilit

(21) erl = Bief(a+o_zeoz’t+lsz,t+l)
Cit1

as well as through the stochastic discount factor that wobtdin under expected utilitﬁq%l,
and thereby explicitly relates the volatility process 1 to the pricing kernel as in, e.g., Bansal
et al. (Forthcoming).

To analyze asset prices, we append the model with the fallpadditional asset pricing vari-

ables: the real risk-free rateHrtf = E(m1) "%, the squared conditional market price of risk—

125ee the appendix for details.

12



the ratio of the conditional variance of the pricing kerrlstjuare of its conditional meth—

(Et[(mi1—Emy1)?]) 2

2
cmpr = that measures the excess return the household demandsaforge
Eimeya

an additional unit of risk, the expected (ex ante) risk premerp, = E; (rt+1 — rtf), and the (ex

post) risk premiunmp; = ry — rt‘l1 as the difference between the risky and risk-free rate.

4 Perturbation Solution and Risk Adjustment Channel

We solve the model in the foregoing section with a third oggEturbation. As shown by Caldara
et al. (2012), low order local approximations via perturdraimethods can solve models such as
ours quickly with a degree of accuracy comparable to glokthads. Moreover, as at least a third
order approximation is necessary for the analysis of tigHng shifts in risk premia and related
measures at the heart of our analysis, we solve the modelrtbdider. We use the nonlinear
moving average perturbation derived in Lan and Meyer-GqRrdethcoming) as it delivers stable
impulse responses and simulations and, as we shall shoblesrenalytical calculation and risk
decomposition of moments.

For the implementation of the nonlinear moving averageypledtion, we collect the (station-

arized) equilibrium conditions into a vector of functions

(22) 0= Et[f (Y1, Y6, Yt-1,8)]

wherey; is the vector of the endogenous variables, anthe vector of the exogenous shocks,

assuming the functiofi in (22) is sufficiently smooth and all the momentsspkxist and finité?.
The solution to 22) is a time-invariant functiory, taking as its state variable basis the infinite

sequence of realized shocks, past and present, and indgxeel jperturbation parameterc [0, 1]

B3we square the market price of risk to bestow it with the déferability at the deterministic steady state necessary
for our perturbation approach

14see for example, Judd (1998, ch. 13) and Jin and Judd (2002 famplete characterization of these assumptions.
While the normal distribution for shocks we choose is at odith Jin and Judd’s (2002) assumption of bounded
support, Kim et al. (2008) dispute the essentiality of tisistamption, lending support to our distribution choice

13



scaling the distribution of future shocks
(23) Yt =Y(0,&,&-1,...)

Assuming normality of all the shocks and settimg- 1 as we are interested in the stochastic
model, the third order approximation—a Volterra expanssee Lan and Meyer-Gohde (Forthcoming)—
of (23), takes the form

®_o, 1 1, Ve 1S oy (e o
(24) Y=Yt oYt 5 i; (Vi +Yo2,) & + 5 jzmzjy,,.(st_ | &)

100 00 00

+= Yicji (Et—k Q& —j ® &)
6% %S

wherey denotes the deterministic steady state of the model, athnddicthe partial derivatives
Yo2,Yo2,Yi,Yji andyk ;i are evaluated. 24) is naturally decomposed into order of nonlinear-
ity and risk adjustment=y, yj i andyy ji capture the amplification effects of the realized shocks
(&,&-1,...) in the policy function 23) at first, second and third order respectively. The two phrti
derivatives with respect tg, y,2 andy,2; adjust the approximation for future ri$R.While y,2 is

a constant adjustment for risk and a linear function of théavee of future shock§, Yo2,i varies
over time, interacting the linear response to realized lsheodth the variance of future shocks

essentially adjusting the model for time variation in theditional volatility of future risk.

5 Calibration

We select three calibrations for the numerical analysifiefrhodel. For the baseline calibration,
most of the parameter values are taken from Tallarini (2@@@)are listed below.

[Table 1 about here.]

The discount factof = 0.9926 generates an annual interest rate of about 3 percerd. Th

capital sharex = 0.339 matches the ratio of labor share to national income. HEpretiation

More generally, a constant teriyys, at third order adjust24) for the skewness of the shocks. See Andreasen
(2012). As we assume all the shocks are normally distribyigds zero and not included ir24) and the rest of our
analysis.

16see, Lan and Meyer-Gohde (Forthcoming, p. 13) for the déoaf this term.
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rated = 0.021 matches the ratio of investment to output. The paramyateset to 100, translating
to a relative risk aversion parameter with respect to comgiom of about 25 following Tallarini
(2000)17 The labor supply parameteris chosen such that labor in the deterministic steady state,
N, is 0.2305 to align with the mean level of hours in data followindldiani (2000). With, X,
andy as abovey = —0.3676 in line with Tallarini (2000).

For the parameters of the volatility shock, the literatuages in the range of the persistence—
Pg, from 0.9, Caldara et al. (2012) and Bidder and Smith (2012),96 OFernandez-Villaverde and
Rubio-Ramirez (2010), and to9® or 1, Andreasen (2012) and Justiniano and Primiceri (2808
and in the range of its instantaneous standard deviatgifrem 0.01, Andreasen (2012) and Jus-
tiniano and Primiceri (2008), to.D, Fernandez-Villaverde and Rubio-Ramirez (2010), artils,
Bidder and Smith (2012). We follow the parameterization mfd&r and Smith (2012), implying a
cumulative variance comparable to the value in Fernaniléererde and Rubio-Ramirez (2010,
p. 20), that “generates changes in volatility similar to ¢mes observed in the [post-war] U.S.”
Following Tallarini (2000), we adjust the homoskedastimponent of the standard deviation of

productivity growth to match the standard deviation of flognsumption growth.
[Table 2 about here.]

While still allowing preferences to be recursive, the canswolatility calibration shuts down
stochastic volatility by settings = 1 = 0, this enables direct comparison with Tallarini’'s (2000)
results. In addition, by comparing with the results frombaseline calibration, this exercise helps
identify the contribution of the stochastic volatility, ltgelf and/or in interaction with recursive
preferences, to the model. The expected utility calibrasbuts stochastic volatility down and is

implemented by setting = 1 (equivalentlyy = 0).

Tallarini (2000) giveéf}é for this measure of risk aversion. Swanson (2013) incotpayshe active labor margin

as in Swanson (2012), givq;é@ for this same measure of risk aversion. At our calibratibase measures correspond
to 25831 and 298 respectively.
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We will use all the three calibrations to analyze the contidns of recursive preferences and
stochastic volatility to the model’s performance in mabghempirical macroeconomic and asset
pricing statistics. "'Explain with macro moments and why!'Explain Hansen-Jagnannathan

bounds!!!

6 Theoretical Moments

In this section, we derive the theoretical moments of thedtbrder approximation24). The
nonlinear moving average policy functio@3) and its third order approximatior24) both map
exogenous shocks directly into endogenous variables. Tdmants of endogenous variables can
therefore be computed directly as they are functions of tttsvkh moments of exogenous shocks.
We further decompose the theoretical variance, disentaptiie individual contributions of the
risk adjustment and amplification channels to the totalrare. Note that throughout the derivation
of theoretical moments, we assume normality of the exogesbocks and all the approximated
variables are covariance stationafy.

By contrast, the state space perturbation policy functiahits nonlinear approximations map
the endogenous variables into themselves. Computingtietheoretical moment of such a non-
linear approximations oi-th order, for example, requires the knowledge of highear{tm-th)
moments of endogenous variables that are in general nanlfoactions of the approximations
up to and includingr-th order. To this end, the calculation results in an infinggression in the
moments of endogenous variables. While theoretical mosn&fimonlinear state space perturba-
tion approximations are in general not available, thereatempts in recent literature. Andreasen
et al. (2013) calculate theoretical moments by pruning thielinear approximations, such that

the higher (thamm-th) moments are functions of approximations lower thandineent order of

18while removing normality does not disable the calculatibtheoretical moments, the derivation will be more
complicated as additional terms involving skewness antdrigup to fifth) moments of the shocks emerge. See Lan
and Meyer-Gohde (Forthcoming) for proof of the covarianegignarity.
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approximation, and therefore computable given the refnalts all lower orders-®
6.1 Mean

The mean (first moment) of the third order approximati@d) (is straightforward to calculate.
Applying the expectations operator @4 yields
(25) E Y] =5+ oy + 5 iyj,j Efe e

The last term in24) vanishes as the triple Krori(;cker product in expectatidineolumnwise
vectorization of the third moment of the exogenous shoafgakto zero under normality. Like-
wise, the Kronecker product in expectation is the columewectorization of the second moment
of the exogenous shocks. Only the contemporaneous varappears because the shock vector
is assumed serially uncorrelated. The other two terms sontps;_; in (24) also disappear as
the shock is mean zero. From a different perspective, trexmatistic steady state is the mean of
the zeroth order approximation where all shocks, pastepteand future are zero. It remains the
mean in a first order approximation, as the exogenous shoekaean zero (first moment is zero).
At second order, the second moments of the shocks are inladeth past and present (in the
term Y 7,Yj,iE [& @ &]) as well as future shocks (in the teyge)—which are assumed nonzero,
generating an adjustment from the deterministic steadg.sWWhen the approximation moves to
the third order, the calculation of the mean &#)would be accordingly adjusted for the first three
moments of all the realized and future shocks, but the mearezel normality assumptions render
the first and third moments of the shocks zero, thus leaviad@tst moment at third order identical

to its value from a second order approximation.

19 As shown in Lan and Meyer-Gohde (2013a), nonlinear movireraye perturbations at the third order differ
from their pruned state space counterparts in that theyeareied around and correct the first derivative of the policy
function for the stochastic steady state implied by the oade@pproximation, leading to accuracy gains in a mean
squared sense.
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6.2 Variance and Autocovariances

While we could conceivably compute the second momentsgwee and autocovariances) a#)
using the Volterra expansion directly, it would be a rath@nplicated operation on the products of
multi-layered infinite summation of coefficients. As an algive, we use the recursive expression
of (24) derived in Lan and Meyer-Gohde (2013a) to compute the skowments.

Computing the second moments using the recursive expres$i(24), we need to proceed
sequentially through the orders of approximation and ekf#le linearly recursive (in order) struc-
ture of the solution. That is, the second moments of the aqupittion at any order can always be
expressed as the sum of the second moments of the appraxinedtine previous order and the
second moments of all the previous order increments (tlierdifce between two approximations
of adjacent order, subtracting the constant risk adjustrokthe higher order). In other words,
the embedded decomposition into order of approximatiohénrtonlinear approximations of the
policy function @3) is preserved in its second moments.

The first order approximation o28) takes the form of a linear moving averagél,)

y+
5 oYi&—i, and can be expressed recursivel§Pas
(26) WYy = a (V- ) o o

(1)

where the differencg ™ —y is the deviation of the first order approximation with respecthe

deterministic steady state, and identical to the first omeement

(27) dy =" -y
which captures the addition to the approximation conteduby the time varying terms of the

current, here first, order of approximation yds the zeroth order approximati®rand the constant

20see Lan and Meyer-Gohde (2013a). This is, of course, anatadmdsult for linear models. Compare, e.g., the
state space representations of Uhlig (1999) with the ifimibving average representations of Taylor (1986).
21This is the terminology in Anderson et al. (2006, p. 17) anddBirka and Hansen (2012, p. 22).
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risk adjustment of first ordey,, is zero. In addition
(28) E [dy@la{] ~0
as the current shock is not correlated with the endogenatighbl@s in the past. Under the or-
thogonality condition 28), the sequence of autocovariances of endogenous variables this
order equivalently, of the first order increme*rﬁl) = r}” =E [dyt(”dyt(f)j/] , Solves the following
Lyapunov equation
(29) Y = ar" o 4 BoE[ece ;18

The second order approximation of the policy functi@B)(captures the amplification effects
of the realized shocks up to second order, and the consskradjustment for future shocks
(30) W —y+ %yo2 + _i)ﬁ & i+ % i'iyj’i (&—j ®&—i)

Defining the second order incremI(;nt o
(31) dy? =yi? -y - %yoz
which more clearly illustrates the notion of increment we here: the addition the approximation
contributed by time varying components of current ordertfer difference between the current
and previous order of approximation, hqv(@ - yt(l), less the additional constant contributed by
the current order, her%yoz). With this notion, the second order approximati@@)(can be con-
sidered as the sum of first order approximation, the consatorrection term and second order
increment
(32) W2 =YY Sy -y
The above decomposition of second order approximationralfitypasses on to its moments —
Starting with the mean, taking expectation 82) yields
(33) Ey® =Ey” + %yoz +Edy?
Therefore the mean of second order approximation is a sureofrtean of first order approxi-

mation, i.e., the deterministic steady state, the constsktorrection term, and the mean of the
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second order increment. Likewise, the second moments cde¢bend order approximation can
be expressed as the sum of the second moments of the firstamoi@ximation and those of the
order increment. We summarize the results for a second @@moximation in the following

proposition

Proposition 6.1. Assuming the exogenous shocks are normally distributed;tthautocovariance

of the second order approximatio8d) is of the form

2 (1) 2)
(34) o =rf" 4r
where
(35) r)j,(a _E (yt(z) _E yt<2)> ()’t@j E Yt@),}
(36) = = e ()
(37) g {(dﬂ ~Edyf?) (ay?) - Edﬁ)’]
Proof. See the appendices. O

The second order incremedyt(z) can also be expressed recursivi@yWith that recursive

expression in hand, the unknO\Erd)fz) in (33) and rgz) in (34) can be obtained by solving some
standard linear matrix equations and an appropriate Lyapaguation. The details are relegated
to the appendices.

Similarly, to compute the second moments of endogenouahlas using the third order ap-

proximation @4), we define the third order increment
(38) dy® = y* —y?
which is merely the difference between the third and secoddrapproximations, as the third or-

der approximation adds no additional constant terms unakenality. WWe summarize the resulting

second moment calculations at third order in the followingposition

22See, again, Lan and Meyer-Gohde (2013a).
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Proposition 6.2. Assuming the exogenous shocks are normally distributed tthautocovariance

of the third order approximatior2d) takes the form

(39) SR e S (rg”’@)'
where
(40) e () (%)
(41) rf” - (dy(3 dyt<3]>

.

]

(42) M

1) <dy(1 df])

and F’i’@ is as defined in Propositiod.1
Proof. See the appendices. O

F3j’<3) is thej’th autocovariance of endogenous variables computed tisentpird order approx-
imation 24), FES) the j'th autocovariance of the third order incremei;{g’), and Fgl)’(s) the j'th
autocovariance between the first and the third order inan&mi@fl) anddyt@. Analogous to 34)
in Proposition6.1, (39) decomposes the second moments into order of approximatitven the
approximation moves to the third order, the second momenesidogenous variables are those
computed using second order approximati®d) (adjusted by the second momentsdtyﬁ‘3> itself
and the interaction with the first order incremellyﬁl).

With the recursive form of the third order incremeei:)f?’),23 the two unknown quantitiesE,ES)

andrgl>’(3>, in (39) for calculating the covariance matrices of the third oragproximation can be

computed by formulating appropriate Lyapunov equatiore details are in the appendices.
6.3 A Variance Decomposition

The third order approximation24), decomposes naturally into orders of nonlinearity ank ris

adjustment. This dissects the individual contributionthefsequence of realized shocks and future

233ee, again, Lan and Meyer-Gohde (2013a).
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shocks and a variance decomposition can be accordinglyedetio analyze the composition of the

volatility of endogenous variables.

Let yt(s)riSk = %yoz + % Y i—0Yo2 i&-i denote the risk adjustment channel, with a constant risk ad-

justment at second ordefy,2) and a time-varying risk adjustment channel at third orger Y,z € i)
andyl>@™P collect all the other terms in the third order approximatf2d) capturing the amplifi-

cation effects, we can rewrit@4) as

(3)risk

(43) W =y (3)amep

+W
Centering the previous equation around its m&muiltiplying the resulting expression with its

transposition and applying the expectations operatodyittle following variance decomposition

Proposition 6.3. Assuming the exogenous shocks are normally distributed;dliariance of the
third order approximation24) takes the form
risk risk,am am

where

(45) I‘g(3>ri5k _E [(yt(S)risk e yl(3)ris|<) (yt(S)risk B Eyt(S)risk> ’}
(46) I_)é(3)amp _E {(yt(s)amp_ EM(S)amp) (yt(S)amp_ EM(S)amp) '}

(47) I_)é(3)l’iskﬁamp _E [(yt(s)am P E%?,)am p> yt(3)risk’] n <E [(yt(s)am P E%s)am p> yt(3)risk’] )/

Proof. See the appendices. O

The variance of the endogenous variabl'%éf), can thus be expressed as the suni g%?”“
that stores the variations come from the time-varying rigkistment channel a\IonE%(a)mp that
stores the variations come from the amplification channe&ldhree orders andl %(S)riSkﬁamp that
stores the variations come from the interaction betweemwbeaypes of channels.

(3)risk (3)amp Jrisk

. , . . (3
Bothy; andy; can be expressed recursively. With those recursive expresE‘é

and F’é(s)amp can be computed by formulating appropriate Lyapunov eqoat{See the appendices

24Note Ey”"™* = 1y, andEy Y ™=y + 35 oy jE & © ).
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risk,amp

for details). Asl"é(s) is already known from Propositiof. 2, F{,(s) can be computed by sub-

. (3)risk (3)am (3)
tractingr¥ " andry  fromr} .
6.4 Simulated Moments

As an alternative to the theoretical moments, we can simuled third order approximatior24)
and compute the moments of the simulated series to analgzstd#listical implications of the
model. Lan and Meyer-Gohde (Forthcoming) show that noalira@proximation of the policy
function 3) preserve the stability of the linear approximation or fosder approximation and,
hence, does not generate explosive time paths in simugation

Simulation methods for moment calculations are, howewaraiways feasible for state space
perturbations. Aruoba et al. (2006), Fernandez-Villdeeand Rubio-Ramirez (2006) and Kim
et al. (2008) note that higher order Taylor approximatianstate space perturbation policy func-
tion can be potentially explosive in simulations. Truneatof the distribution from which exoge-
nous shocks are drawn or the application of pruning schelikegroposed by Kim et al. (2008)
for a second order approximatiéhcan prevent such behavior. While this imposes stability on
simulations of higher order approximations, pruning is dnhac procedure as noted by Lom-
bardo (2010) and potentially distortive even when the satioih is not on an explosive path (See,
Den Haan and De Wind (2012)). Though this might give rise &somable doubts regarding the
accuracy and validity of moments calculated using pertisha, we will show that this is not the
case with our nonlinear moving average.

As (24) generates stable time paths, moments computed by simyl@4) should asymptoti-

cally converge to their theoretical counterparts.

[Figure 1 about here.]

25See Lan and Meyer-Gohde (2013a) for an overview and conguadtpruning algorithms at second and third
order and their relation to our nonlinear moving average.
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Figurelis an example of this check. It depicts the evolution patiefdensity of the simulated
variance of the pricing kernel in the model described in i8ac@ under the baseline calibration.
Densities of the simulated variance of the pricing kernel ealculated using a kernel density
estimation and 100 simulations at the indicated length.tfiberetical variance, denoted by the red
dashed line, is @666 and all densities are in general centered around this.va@he distributions
of simulated variance are more dispersed in short-run sitioms, tightening up to the theoretical
value as the length increases consistent with asymptatiwergence of the simulated moments to

their theoretical counterparts we calculated above.

7 Analysis of the Baseline Model

In this section, we report the performance under differatibcations of the model approximated
to third order. We present impulse responses using the methban and Meyer-Gohde (Forth-
coming) to shocks in productivity growth and its volatilitgr both macroeconomic and asset
pricing variables. We then proceed to the moments and thétsesf the variance decomposition
introduced in sectiof.3to identify and quantify the individual contribution frorhe time-varying
risk adjustment channel to the total variation. Finally, e@st doubt on the efficacy of stochastic

volatility in aiding the model ability in attaining the Hasis-Jagnanthan bounds.
7.1 Impulse Responses and Simulations

We analyze the impulse responses to shocks in productikatytty) and shock in its volatility for
macroeconomic and asset pricing variables. We also simthiatconditional market price of risk
under stochastic volatility and with growth shocks of canstvariance to observe the change in

the variations of this variable under conditional heteeaisticity.

[Figure 2 about here.]
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Figure2 depicts the impulse response and its contributing comgsriencapital to a positive,
one standard deviation shock in volatility, i.e., ép,,. The upper panel displays the impulse
responses at first, second and third order as deviationstfreimrespective (non)stochastic steady
states (themselves in the middle right panel). In the thedfeiteft panel and the middle column
of panels in the lower half of the figure, the contributionstiie total impulse responses from
the first, second and third order amplification channeld, i3, yii andy;; in the third order
approximation 24), are displayed. Notice that there is no response in thepéfaration channels.
All responses to this volatility shock come from the lowdt fganel of the figure where the time-
varying risk adjustment channgl. ; is displayed. In other words, for capital, a volatility skdwy
itself propagates solely through the time-varying riskuattnent channel.

Capital responds positively to a positive volatility shogkis captures the household’s precau-
tionary reaction to the widening of the distribution of fretshocks® Our risk-averse household
accumulates a buffer stock in capital to insure itself agfaime increased future risk of productivity

growth shocks from a more dispersed distribution.
[Figure 3 about here.]

Figure 3 displays the responses of macroeconomic variables astidegdrom their risk cor-
rected steady states to a positive, one standard deviatiatility shock. The household accu-
mulates a buffer stock of capital by increasing currentstveent on impact of the shock. As the
allocation has not changed, the household finances thistmest through a decrease in current
consumption, resulting in an increase in the marginaltytilf consumption. The intratemporal la-
bor supply equationl(?) implies this increased marginal utility of consumptioads to an increase
in the marginal utility of leisure, and therefore a decreaseme spend on leisure. The increased

labor effort, with the capital stock being fixed on impactias i state variable and with the pro-

26See also Fernandez-Villaverde and Rubio-Ramirez (2am6)van Binsbergen et al. (2012) for precautionary
savings behavior in DSGE perturbation.
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ductivity having not changeff, translates into an increase in current output partiallgeifing the
costs borne by consumption of the increased investmenh&buffer stock of capital. Thus, this
model predicts a boom in economic activity following an mase in risk, as firms produce and
households work to accumulate the necessary buffer stockhA&r model of frictional investment
that, for example, includes variable capacity utilizatioapital adjustment cost and consumption
habit formation can overturn this result, as discussed aticge8. While the impulse responses
for the macroeconomic variables are not pictured with themtributing components, responses
of these variables to a volatility shock come solely fromtihee-varying risk adjustment channel.
The volatility shock is persistent but not permanent. Asstheck dies out and productivity shocks
fail to materialize from their widened distribution, theusghold winds down its buffer stock of

capital by increasing consumption and leisure, leadingfédl & output and investment.
[Figure 4 about here.]

Figure4 depicts the impulse responses and their contributing coeapts for the expected risk
premium to positive, one standard deviation shocks in prtrdty and its volatility, i.e., inez¢ and
€0, (Figuredaand4b respectively). Firstly, note that both the volatility ang@uctivity growth
shock propagate solely througk ;, the time-varying risk adjustment channel of this variedie
there are no responses in the amplification channels of ahg dfiree orders. Second, the response
of the expected risk premium to the volatility shock is altnwg orders magnitude larger than
that to the productivity growth shock, implying the ovenaljority of variations in this variable
is driven solely by volatility shocks with the contributidom the productivity growth shock to
the total variation negligible. Moreover, the positivegesse of the expected risk premium to an
increase in volatility highlights the role of long run risk asset pricing as noted by Bansal and

Yaron (2004), Bansal (2008) and Bansal et al.’s (Forthcgiir risks and volatility in asset prices

2/Note that, it is the distribution governing future produitti shocks that is being shocked here, not the level of
productivity itself.
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are driven by those in economic fundamentals. An increas®latility in long run productivity
growth therefore drives up risks in asset prices and makesigoasset riskier. Household thereby
demands a higher compensation for doing so. l.e., an ineigaslatility of long run risk carries

a positive risk premium.
[Figure 5 about here.]

Figure5 depicts the simulated time paths of the squared conditimaaket price of risk® un-
der the constant volatility and the baseline calibratiothefmodel (Figur&aandSbrespectively).
When there is no volatility shock, the conditional market@exhibits minimal fluctuations along
the simulation path. Adding stochastic volatility, howevaduces a substantial amount of varia-
tions in this variable. This is consistent with the intetpt®n that volatility shocks are a source
of conditional heteroskedasticity. The displayed timaatayn in the conditional market price of
risk is roughly consistent with the empirical variationgle (lower bound of) market price of risk
as measured over different periods of time the past 130 caldy8ee, Cogley and Sargent (2008,

p. 466)).
7.2 Moments Comparison

We compare the mean and standard deviations of the thirad apggoximation 24) to those re-
ported in Tallarini (2000) for his model and post-war U.Sad& he results of the variance decom-
position in Sectiorb.3are reported, allowing us to pin down the contribution fréwm time-varying

risk adjustment channel to the total variance of the endogewrariables.
[Table 3 about here.]

The third and fourth column of Tabl@ report the theoretical means under the baseline and

constant volatility calibration of the model. The last aolu displays the means of the constant

28\We square this variable to eliminate the kink at the deteistilmsteady state and make perturbation applicable.
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volatility calibration as reported by Tallarini (2000) witis iterative modified linear quadratic
approximation based on Hansen and Sargent (1995). By camgptre last two columns we

observe, for both macroeconomic and asset pricing vasaloler theoretical means are in line
with those of Tallarini (2000).

In the presence of risks induced by the long run productigrtywth shocks (with or without
stochastic volatility), the means of macroeconomic quigsti(reported in the first five rows of
the third and fourth column) are uniformly larger than thearresponding deterministic steady
state value (reported in the first five rows of the first columme)nforcing the interpretation of
household’s precautionary reaction to future shd@kis contrast, the mean of risky and risk free
rates (reported in the last two rows of the third and fourtluiem) are uniformly lower than their
deterministic counterparts (reported in the last two rofwde first column). This follows directly
from the increase in the mean of capital which reduces theageaeturn on equity (risky rate) and

consequentially the risk free rate as noted by TallarinD®0
[Table 4 about here.]

The second and third column of Talleeport the theoretical standard deviations of the third
order approximation24) under the baseline and constant volatility calibratiothefmodel. Com-
paring to the standard deviations reported in the last twanaos, our theoretical standard devia-

tions are in line with those reported in Tallarini (2000)thbaodel based and empirical.
[Table 5 about here.]

Table5 reports the results of the variance decomposition unddvdkeline (stochastic volatil-
ity) and the constant volatility calibration. For each badition, the table reports the percentage

contributions of the first order amplification chanr}ép and the time-varying risk adjustment

29That the mean of higher order approximation of macroecon@mantities captures precautionary reactions and
hence are different from their deterministic steady statenterparts are also noted by Tallarini (2000), Michel (201
and Coeurdacier et al. (2011) in state space context.
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channelyt<3)riSk to the total variance of the endogenous variables as thelbweajority of vari-

ations come from these two channels. The second and thitomeoleport the decomposition
results in absence of volatility shock and the last two calsmm presence of volatility shock. For
the conditional market price of risk and the expected risnpum, all variation comes from the
time-varying risk adjustment channel regardless of whethere is volatility shock. This is con-
sistent with the impulse responses for the expected riskipira (Figure4), where we observed
that both the productivity growth and volatility shock pegate solely through the time-varying
risk adjustment channel.

For the risk premium and macroeconomic variables, addiagadtatility shock alters the com-
position of variance. In the absence of the volatility shatle contribution of the time-varying
risk adjustment channel is negligible and almost all vaaratomes from the first order amplifica-
tion channel. Adding stochastic volatility, however, cgternalizes the time-varying risk channel,
as a large portion of variance now comes through changeshknas measured by conditional
heteroskedasticity. Since, for macroeconomic varialdesons in the time-varying risk adjust-
ment channel can be explained by the risk-averse housshmlketautionary motives, this variance
decomposition result implies that such motives accoun&farger portion of variance in the pres-
ence of stochastic volatility than in the absence thereofpfesence of changing risk induces the
pattern of precautionary behavior here—with investmeumtpot, and labor driven substantially by
risk adjustments—as the capital margin cannot be freelysagfl contemporaneously in response
to shifts in the distribution of technology shocks, pushthg adjustment onto production, the
other factor of production, labor, and the component of exgeare, investment, over which the
household does not have a direct smoothing motive.

From a methodological point of view, in the absence of vbtgtshock, a first order linear ap-
proximation would thus appear sufficient for computing thearetical variance of macroeconomic

variables. However, theoretical variances need to be ctedpusing a third order approximation in
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the presence of stochastic volatility and for conditiorsalet pricing measures, as otherwise a large
portion or all of the variance will be missed through the eegbf time varying risk adjustment

and higher order amplification effecl$.

7.3 Stochastic Volatility and Hansen-Jagannathan Bounds

We evaluate the model’s ability in attaining the Hanseradagthan bounds under the three dif-
ferent calibrations. The bounds present an important ecapimeasure that depend on the first
two moments of the pricing kernel for a model’s ability of liepting asset pricing regularities.
Contrary to studies in endowments models where the variaiite log consumption growth pro-
cess is fixed exogenously, the variance of log consumptiowtirhere is endogenous, deriving
eventually from the productivity process. While addingcstastic volatility doeseteris paribus
move the model closer to the Hansen-Jagannathan boundgsitsd at the cost of increasing the
variance of the consumption process. Adjusting the hondastec component of productivity to
hold the varaice of log consumption growth constant, theartowards the Hansen-Jagannathan

bounds is negated.
[Figure 6 about here.]

Figure 6 depicts the unconditional mean standard deviation paiteepricing kernel generated
by the model under the three different calibrations. Unterliaseline (stochastic volatility) and
the constant volatility calibrations, the preferencesmarecursive form. While the volatility of the
kernel increases with the coefficient of relative risk ai@rgor atemporal wealth gambles (here
from x equals one to five, ten, twenty, thirty, forty, fifty, and onendred), the unconditional mean
of the kernel is left (essentially) unchanged as the el&gtaf intertemporal substitution (EIS)

is parameterized independent of risk aversion in recurzigéerences, and the model approaches

30This provides insight, and a proviso in the presence of ststhvolatility, into the practice of computing macro
variables using first and conditional asset pricing measwi¢h third order approximations as in Rudebusch and
Swanson (2012).
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the Hansen-Jagannathan Bounds from below. The expectity ediibration generates a volatile
pricing kernel at the cost of reducing its unconditional meas the EIS and risk aversion are
inversely correlated in the expected utility, generatingl\&/(1989) risk free rate puzzle. Figua
shows that given the same value of risk aversion, the cailtravith stochastic volatility (baseline
calibration) generates a more volatile pricing kernel tki@a constant volatility calibration. In
other words, to generate certain amount of volatility inphieing kernel, the model with volatility
shock appears to need less risk aversion than the modelwtitfdnis is achieved, however, at
the cost of increasing the variance of the log consumptiowtr. As figure6b shows, if we hold
that variance constant at its empirical counterpart by cedpthe homoskedastic component of the
productivity growth shock—as Tallarini (2000) does thrbagt his study, the effect of volatility
shock in terms of further increasing the volatility in thecorg kernel vanishes, reiterating the
conditional heteroskedastic interpretation of volatiihocks.

This casts doubt on the portability of the results of Bansal #aron (2004) and others that
identify stochastic volatility as a potential contributor the resolution of asset pricing puzzles
summarized in the pricing kernel’s ability to reach the Handagannathan bounds. When an
endowment setting is abandoned in favor of a production mduke variance of log consumption
growth can no longer be held exogenously. Increasing tharnvae of the volatility process leads to
an increase in the variance of the log consumption procesiglind) the overall volatility constant
by adjusting the homoskedastic component of the prodiigiwocess downward counteracts the
increased variance of the volatility process nearly cotepleleaving the model as well off with

regards to the Hansen-Jagannathan bounds as without sticor@atility.

8 An Extension to Frictional Investment

In this section, we extend the model in secti®rio demonstrate that when the model is no

longer frictionless an increase in risk may lead to a fall utpait as argued for in Bloom (2009),
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Fernandez-Villaverde et al. (2011b), Basu and Bundick220Bloom et al. (2012) and Bidder and
Smith (2012). To accomplish this, we extend the model in timeethsions. First, we add variable
capital utilization with endogenous depreciation to eadlduseholds to accumulate their precau-
tionary buffer stock of capital in response to a volatilibosk by reducing capital utilization and
thereby decreasing depreciation as an alternative todsirtg investment! Second, we impose
capital adjustment costs to increase the relative ateotiss of this alternate channel of capital
accumulation with respect to increasing investm®r.numerical analysis of this extended model
suggests, when capital adjustment cost is sufficiently high thus household primarily chooses
to decrease utilization rate to build up buffer stock of talgh response to a volatility shock, the
resulting decrease in capital for production and the camseiipl fall in current output outweighs
the simultaneous increase in output induced by increasea laput.

The infinitely lived household still seeks to maximize itpegted discounted lifetime utility
given by the recursive preferenced) over consumption and labor supply subject to the budget
constraint {2). The representative firm now maximizes profits- WN; — I; in each period by
choosing labor input, investment and the capital util@atiate, subject to the following capital

accumulation law and production technolégy
(48) Yo = (ke 1)% (%N
(49) Ki = (1—0)Ke—1+@Ki-1

The capital adjustment cost functiam,in (49) penalizes investment, in units of current capital,

3lvariable capital utilization allows household to adjugpital in service immediately, as opposed to a time-to-build
fashion, in response to shocks that alters the marginalyotadty of capital, see Greenwood et al. (1988), Burnside
and Eichenbaum (1996) and King and Rebelo (1999) for detaitealysis of models’ propagation mechanism in
presence of variable capital utilization.

32See Hayashi (1982) for the theoretical foundation of capilustment cost, Jermann (1998) for its application in
asset pricing and Baxter and Crucini (1993), Baxter and i8r(t995) and Baxter and Farr (2005) for its contribution
to explaining international trade and business cycles.

33wWe follow Uzawa (1969) and introduce adjustment costs assatwith investment. See, e.g., Lucas (1967) for
an alternative.
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for deviating from its frictionless level, and follows Jeainm’s (1998) specification

I by < I )11/Ek
(50) N (p(Kt—l) 1-1/8 \ Ki—1 R

whereby andcy are constants that will be set to ensure that adjustmens emstneutral in the

deterministic steady state a&gthe elasticity of the investment capital ratio with resgectobin’s
q.3* With variable capital utilizationy in (49) and @8), firms can adjust the capital input in
production contemporaneously. However, increasirigads to faster capital depreciation and the

depreciation function follows Baxter and Farr’'s (2005)@feation

(51) & =5(w) = %‘Euuﬁ“ +cu

whereb, andc, are constants that will be chosen such that capital is fuilized in the determin-
istic steady state arf, the elasticity of marginal depreciation with respect toutikzation rate3°
The model is closed by the market clearing conditib) @s before.

The firm’s optimal utilization plan in presence of capitajusiment cost, equating the marginal
benefit in terms of additional output produced to the maiginat in terms of additional units of,
is capital being worn out
(52) a% = %/Ktl
The risky rate of return on capital in the presence of bothtabpdjustment cost and variable
utilization is now

(53) +

Yt 1-0+@ It )
=10 — =1
t ( Ki-1 @ Kt-1 %1

We keep the parameters of the baseline model in se8ttheir values stated there (see Table
1), except for the homoskedastic component of the standatidten of productivity growthgz ,
which we adjust to match the standard deviation of (log) oomstion growth. As do Christiano

et al. (2005) and Rios-Rull et al. (2012), we impose fullitaputilization in the deterministic

34.e.,& = — (@' /@) /(It/Ki—1) whereq = d@ /d(l;/K:—1) the marginal capital adjustment cost and the inverse of
Tobin's q, andy’ = 0¢f/d(1:/Ki—1), see Baxter and Crucini (1995) for example.

l.e.,&u = /8 whered = 0& /ou; the marginal capital utilization ari{ = d¢{ /du, see Baxter and Farr (2005)
for example.

33



steady state by letting = 1, and ensure the adjustment cost does not affect the deistimi
steady state by setting=1/K and@ = 1 as also noted in van Binsbergen et al. (2012).

For ¢y, the literature varies in the range froml01 from van Binsbergen et al. (2012), t@8
from Jermann (1998% to 133 from Baxter and Jermann (1999) and to 15 from Baxter andifiruc
(1995) with changes in investment becoming less costiiascreases (See Baxter and Crucini
(1993)). We sek = 1.5, making utilization rate a preferred channel of adjustapital in service
in response to a volatility shock as changes in investmefdiily costly with this value. Note
that, as the value d increases and adjusting capital through investment bestess costly, the
extended model might again predict a boom in response tocagase in risk.

For the elasticity of utilization§,,, Baxter and Farr (2005) examine three valugs= 1, taken
from Basu and Kimball (1997 0.1 taken from King and Rebelo (1999), along with a highly
elastic case under the valu®8. We se€, = 0.1 and note that the primary concern of the analysis
of this extended model, the response of variables to a litatihock, is qualitatively robust to this

highly elastic case as well.
[Figure 7 about here.]

Figure7 depicts the impulse responses of macroeconomic variaggsessed as deviations
from their risk corrected steady states, under a third aaxgproximation to a positive, one standard
deviation volatility shock. As in the baseline model (Segufe 3), the household accumulates a
buffer stock of capital in response to the increased vahabf future productivity shocks. To ac-
cumulate this stock, however, the household decreasedilization rate, thereby slowing down
depreciation. With this additional margin available to Hoisehold to accumulate capital, the in-
crease in investment relative to capital, financed by deargaonsumption, is noticeably smaller

than that in the model with baseline calibration.In additithe labor supply equatiod?) still

360.23 is near the lower bound of the empirical range as noted bigt2ino et al. (2001)
3’Baxter and Farr (2005) note the imprecision of Basu and KIfsi{a997) estimation of this value.
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implies an increase in the marginal utility of consumptiolidwing the decrease in consumption
to finance increased investment and leads to an increase im#nginal utility of leisure, and
therefore a decrease in time spend on leisure. Unlike in theetrunder baseline calibration, the
increased labor effort, with productivity having not chaddagain, it is only the volatility of the
distribution of future productivity shocks that is beingpsked), fails to increase current output as
the effect on output from the decrease in utilization rate #x@ consequential under-deployment
of capital is stronger. Thus, this model predicts a fall inremic activity following an increase in
risk as opposed to a boom predicted by the model with basediliferation. The volatility shock is
persistent but not permanent and as the shock dies out addgtinaty shocks fail to materialize
from their widened distribution, the household winds dotgrbuffer stock of capital by increasing
consumption, leisure and the utilization rate, leading falkin investment but a rise in output
as the effect of the increase in the utilization rate agamidates. Both the duration of the drop
in output and its subsequent overshooting are consistehttie results documented by Bloom
(2009).

Though, labor and investment still rise in response to atdtyashock here. Additions to
the model, such as in Bidder and Smith (2012), with Jaimoaiuth Rebelo’s (2009) preferences
and Constantinides’s (1990) consumption habit formatghow that a positive volatility shock
leads to a simultaneous drop in output, investment, utibra consumption and labor. Owing
to Jaimovich and Rebelo’s (2009) preferences, labor supglyeir model is largely independent
of wealth effects, and thus declines with other macroecoa@uantities. The habit formation
slows down consumption adjustment, increasing the pergistand magnitude of a recession.
By taking the demand side into account, Basu and BundickZp6fow this uniform drop in
macroeconomic aggregates in response to an increase umsiigka New Keynesian model with a
countercyclical markup through sticky prices. On impaca @blatility shock, the increased labor

supply as a precautionary reaction reduces firms margisabé@roduction and thereby increases
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the markup since price is sticky. A higher markup winds doendemand for both consumption
and investment goods, leading to a fall in output and empywmNonetheless, it is noteworthy
that adjustment costs and variable capital utilizatiomalare sufficient to generate the drop in

output that Bloom (2009) identified empirically.

[Table 6 about here.]

The third column of Tabl® reports the theoretical standard deviation of the extemdediel.
Comparing to the model with baseline calibration, the stéaddleviation of the logarithmic in-
vestment capital ratio is noticeably smaller, consistétit the interpretation that adjusting capital
through investment is very costly in the presence of adjastmost, leaving investment relatively
less volatile. The substantial drop in the standard desnaif the logarithmic investment output ra-
tio reinforces this interpretation as the volatility of @stment now contributes much less, through

capital, to that of output when the utilization margin isieated.

[Table 7 about here.]

The last two columns of Tabl@ report the variance decomposition result of the extended
model. Comparing to the results of the model with baselirldmEion reported in the fourth
and fifth columns, the contribution from the time varyingkradjustment channel to the total
variation of all the listed variables, except conditionariret price of risk and conditional risk
premium, drops dramatically. This is not surprising, asptauction side of the extended model
is less risky than that of the model with baseline calibratie the presence of variable utilization
and adjustment cost highlights the intratemporal suligiriteffects in response to shocks, i.e.,
household can adjust capital and thereby output immegliatelthe impact of shocks, as noted
by Greenwood et al. (1988), Burnside and Eichenbaum (1986 Kang and Rebelo (1999), and

need not wait till next period. This is in contrast to the basemodel, where the capital input
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could not be adjusted in response to shifts in risk (fixedaatilon rate and time to build capital).
Variable utilization and adjustment cost tend to incresevblatility of the pricing kernel as noted
in Cochrane (2005% by stretching out its time varying risk adjustment chanmel thus shifting

risk adjustments to risk free rate.

9 Conclusion

We have studied a business cycle model with recursive gnedess and stochastic volatility with
a third order perturbation approximation to the nonlineaving average policy function. We
use the impulse responses generated by this third ordeoxdppation to analyze the propagation
mechanism of a volatility shock, and find that for macroecoitovariables, a volatility shock
by itself propagates solely through a time-varying riskuatinent channel. For conditional asset
pricing variables, this time-varying risk adjustment chahis the only working channel for the
transmission of shocks, both to productivity growth andrdkatility.

We have derived a closed-form calculation of the theorktimanents of the endogenous vari-
ables using a third order approximation. Our calculatiomofments lends itself to a decomposi-
tion that disentangles the individual contributions ofehwarying risk adjustment and amplifica-
tion channels to the total variance. In our baseline modelfimd that adding stochastic volatility
alters the composition of variance, making a time-varyisg channel a substantial contributor
of variance. For macroeconomic variables, variations tloate from the time-varying risk ad-
justment channel can be explained by the household’s piecany savings desires and, in the
presence of stochastic volatility, we find a large portiowarfiations in macroeconomic variables
is driven by precautionary behavior.

Our extended model with frictional investment predicts apdand subsequent overshooting

of output in response to a volatility shock, consistent vathpirical findings. Yet, with variable

38The standard deviation of risk free rate of the extend moslamaller than that of the model with baseline
calibration, as variable utilization reduces the overalétility of the extend model, see footna2e.
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capital utilization, the capital input in production candjusted contemporaneously in response
to shocks, eliminating the importance of the time-varyiislg adjustment channel for macroeco-
nomic variables. This finding, skeptical of the importantstochastic volatility for precautionary
behavior in production models, is corroborated by our figdhrat stochastic volatility contributes
to the baseline model’s ability to reach the Hansen-Jaghanaounds only inasmuch as it in-
creases the overall volatility of the model.

In linear approximations, variance decompositions cangpied to study the individual con-
tribution of each shock to the total variance. The channilsk adjustment and amplification we
have derived here are a first step towards a shock-specifiergrasition of nonlinear perturbation
approximations. This would enable the identification ofitidévidual contributions of each shock,

not only to total volatility, but also to individual order$ monlinearity and risk adjustments.
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A Appendices

A.1 Proof of LemmaZ2.1

As (1) is linear inwy, only the zeroth and first derivatives with respectdocan be nonzero. As

we approximate around the pouat = 0, all derivatives of zeroth order with respectipare zero.

a(e;;[‘*’t w—and the Taylor series

w=¢=0

Hence, the Taylor expansion df)(is the product otoy—

of €% around the poing = 0 , which is given byy* 1.
A.2 Proof of Proposition 2.2

Z° enters into the modeBj through the terntd e“cy, which itself enters the model linearly. Hence
and following lemma.1, terms througly, 9,2, andg,2. are independent of stochastic volatility.
Additionally, thatz” enters into the model only through the tekhe“w, which enters linearly,
means that terms of the forgy.. are given by(gc'(,othl + gnmnt) oy following lemma2.1and the
first order autoregressive definition of the volatility pess¢g in (4). These terms dependent on
stochastic volatility interact with all the states, at the next order—accordingly terms of the form
g, 2 are given by:—zL (gqmzct71+gnwzr]t) wz—and with the states of the volatility procesg, 1
andn;,3—hence, terms of the form,.s are given by; (QQZthZ_l + 20cnwG—1Nt + gnzwrﬁ) 0.
Finally, turning to terms involving the perturbation pater, o, terms througty,,iwk, i.€.,
first order ing, are zero following Jin and Judd (2002), Schmitt-Grohé ldride (2004), and oth-
ers. Likewiseggs will be zero following our assumption of normality of all ex@nous processes,
see Andreasen (2012) for an investigation of the conse@sersfmonnormality. This leaves terms
through,g,42, 952,, aNdg 2 as claimed in the proposition. That these terms are in gedepen-
dent on stochastic volatility will be addressed in the prafodorollary 2.5 as there we will exam-

ines a condition under which these terms can explicitly @wshto be independent of stochastic

39But not the shocka, as it enters the modeB) linearly through the terntie“wy, and, as such, only terms first
order in it are nonzero, see Lemid.
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volatility.
A.3 Proof of Corollary 2.5

First, the derivatives with respecttp ;. Recall from @) that¢ = pg_1+1ns.
0=  {f(Vr1, Yo, Yt 1,&) + He o }
(54) =Ty Yy Yo+ fyy P+ fyye + HeMap
at the deterministic steady staye, = y andwy = 0 which gives
(55) 0= (fyryy+ fyryep+fy)yo =y =0
where the invertibility of( fyryy+ fyryep + fy) follows from the stability ofyy andp, see Lan and
Meyer-Gohde (2013b).
Now differentiate $4) twice with respect t@, the perturbation parameter,
0=%g2¢_, { T (Yer1, ¥, V-1, &) + HeY o }
=D { (fyryy + fy) ye+ fyyvdp+ He%otp}
=T { (fy Yy + ) } e+ 2% {(fy ¥y + ) } Yoo+ (Tyr ¥y + Fy) Yo
(56) + P2 {fy }¥ip+2%0 {1y} Zo {¥e } 0+ 1y T2 {¥¢ } 0
From B5), yc = y¢ = 0 in a steady state; following Jin and Judd (2002) and Scharithé and
Uribe (2004), first order derivatives with respeciot@re likewise zero-c = 0. Thus, ifp =0,
the foregoing i&°
(58) (fyr¥y + fy) Yozc = 0= Y2 =0
Turning finally to the derivatives with respectrjp. Recall again from4) that¢ = pG_1+ 1Nt

0= { f (V1. Yt Vo1, &) + HeVoa }

40This begs the question, whethep,. can ever be different from zero; i.e. whether stochastiatildl can ever
have an effect through the risk channelp H 0, the conditional expectation di) at the deterministic steady state is

(57) Yoz = = (e Yy e 1) ™ (s VouocBe [717] + 2y (Yo @ yx) B [ 612 ) o
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(59) =Ty Yy Vi + fy YO T+ fyyn + He" @t
at the deterministic steady stage, =y, wx = 0, andy. = 0 which gives
(60) 0= (fyryy+fy) ¥n=Yyc=0
where the invertibility of( f,+yy + fy) follows from the stability ofyy, see Lan and Meyer-Gohde
(2013Db).
Now differentiate $9) twice with respect t@, the perturbation parameter,
0 =Zgon { T (Yer1 Yo, Yt-1,&) - HeVwx }
=T { (ty-%) + ) + fyy T He
=Dz { (TyrYy + 1) }Yn +2%6 { (Ty+yy + Ty) } Yon + (fyryy + fy) Yoz
(61) +@02{fw}yng%{fw}%{yg}wfw@c,z{yg}r
From ©0), y, = 0 in a steady state, likewise =y = 0 from (55); following Jin and Judd
(2002) and Schmitt-Grohé and Uribe (2004), first ordenderres with respect to are likewise
zero—ygc = 0 andygc = 0. If p=0, 611 vanishes from the systems of equations and all derivatives

with respect to it are equal to zer@,. {yg} =Ds {yg“} = 0; accordingly the foregoing4s
(63) (fy+¥y + fy) Yon =0= Yo2n =0

A.4 Detrending the Model

Stationary consumption, investment, capital stock angutydenoted by the lower case letters,

are defined as follows

_ G .k _Ke Y
(64) Ct:ga Itzgukt:gu MZ@;

For notational ease in detrending the model, we define a ewdlshocle,, containing both

4IThis begs the question, whethep, can ever be different from zero; i.e. whether stochastiatildl can ever
have an effect through the risk channelp 0, the conditional expectation di§) at the deterministic steady state is

(62) Yoz = = (e vy + 1) (T YozeP + fy Veua e [717] + 2002 (yo 0 ) B [ 47 | ) 1

46



the homoskedastic and heteroskedastic components ofdHagiivity growth shock
(65) Eat = 0677

The productivity growth process can therefore be written as
(66) a=4—24i1=2a+Ea;

While detrending, the exponential form of the foregoing Wwé frequently used

e

eli-1

The goal is essentially to substitu@, It, Ki and; for their stationary counterparts in the

(67) = - =Pt

relevant model equations. We start with the productiontionc

©% (4) = (k1 1)° (PN
(69) =W = (%) ktafl 1-a
(70) =V = eia(aJrSa’t)ktaletl*a

Detrending the capital accumulation law

(71) (k) = (1-8) (le-26"1) + (ire?)
(72) k= (1-8) 5kt
73) k= (1 8)e ™ FHtke_y +i

Detrending the market clearing condition is straightfaidvas it is a contemporaneous rela-

tionship
(74) (ie?) = (cie?) + (ire?)
(75) =V = G+t

Combing 0), (73) and (75) yields the detrended resource constraint
(76) G+ kt _ efa(ﬁJrSa,t)kta_llea + (1_ 6)8751783”({,1
Detrending the labor supply equation
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(78) 1 qJNt (1 CX) a+sat kta —

The risky ratay is stationary and we reexpress it in terms of the stationaraliles
(79) 141 =(1-8) +a (k1% 1)* " (n)
(80) =141 = (1-3) + okt le@teall-a\l-a

We now move to the value function. As the felicity functionlagarithmic in nonstationary
consumption, removing the trend in consumption will leateren linear in the level of productivity
that when subtracted froW gives the stationary value function
(81) V=V, —blne®t =V, —
Substituting the relevant variables for their stationawrnierparts yields

(82) Vi +DbZ =In (ce?) +Yin(1— M)+B In (Et [exp(y[vt+1+b2¢+1])}>

(83) =Sw=Inc+yYin(1-N)+ B\—/In (Et {exp(y {Vt—i—l‘f‘ b (Zt+1 B bb—Blzt)} )} )

It follows that the remaining nonstationarities can be etffé

b—1
(84) o 1
which pins dowrb as
1
(85) b= 1

Inserting @5) in (83) yields the stationary value function
(86) vi =Ing+WIn(1—Ny) + B\g/ In <Et [exp(y lvt+1 +—5 1 ! 5 (a+ Sa,t+l>} ) } )

While stationary, the foregoing value function does notfitiie problem statemeri2?) in the
text, thus can not be implemented directly in perturbatioftveare packages like Dynare. This
problem is caused by nonlinear twisting of the expectedioaation value, and can be fixed by
redefining this conditional expectation as a new variabl@kmin periodt. Besides, the twisted

expected continuation value is numerically unstable, du&é logarithmic transformation, when
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y approaches zero or becomes very large. To counteract thidefiné?

(87) =k [GXD(V [Vt—i—l‘f‘ 1= ! B€t+1 —\_/D]

wherev denotes the deterministic steady state value of the statioralue function6) and can

be computed as follows

o1 B
(88) V= 15 {Inc+ Win(1— N)+1—Ba}
Substitutingv; 1 in (86) for \ yields the normalized, stationary value function
(89) Vi =Inc+Win(1—N) + B- [Invt+y <1—Ba+v>]

With the stationary value function in hand, we reexpresgtie@ng kernel in terms of station-

ary variables
y 1
crel eXp(‘ [Vt+1 + 1TBZt+1:| )
G184+ [exp( [Vt+1—|— rlﬁztjq} )]
Multiplying both the denominator and numerator of the faieg with exp(—%%zt), and

(90) Ms1=

rearranging yields

exp( ¥ Vi1 + 115 (@+e
(91) M1 = B_e (@+eati1) p(2 [ t+1 17;3( a,t+1)])
o B [exp(% [V““l t 171[3 @+ 5a,t+1)] ﬂ
Writing out the definition of,t41 yields 1) in the text. Recognizing the expectational term in

the previous equation can be replaced by the proﬂwtp(lz’ [\7+ r%a]), we substitute it for

this product and collect terms

(92) Mg = B e (BFtac) P v Tptan /)
Cr+1 %

The period counterpart of the foregoing follows

Ci—1 _a+5at)eXp< [VH—l pfat— D
Vi1

(93) m = B

42Rudebusch and Swanson (2012) adopt, in their companioneviegttica codes, a very similar procedure to im-
prove numerical stability.
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A.5 Proof of Proposition 6.1

Rearrange the definition of the second order increment toegghe second order approximation
as the sum of the first order approximation, the second ordgement, and the second order

constant risk adjustment

(94 YERCRRYCRES

Applying the expectations operator to the foregoing yi¢ldsmean of the second order approxi-
mation

(95) Ey® = EyY + Edy? + %ycz

Centering the second order approximati®d)(around its mean by subtracting5) from (94)

yields
(96) 1 -y = (W —EfY) + (af? — Eayf?)

Noting that the mean of the first order approximation is theeinistic steady state of, i.e.,

Eyt(l) =Y, the foregoing can be rewritten as

(97) yt(z) B Eyt(z) _ <yt(1) —37) n (dyt<2) B Ed;@)
Using the definition of the first order incrememé1> = yt(1> —Y, the foregoing is
(98) W B =y + (dy” ~Edy?)

Multiplying the foregoing with its transposition &t j and noting thaEM(Z) = Ey@j andEd;{z) =
Edy, yields
(99) (W2 ) (%%, —Es?)
:d%l)dyt(i); n (dyf”d%f); _ Ed;{”dxﬁ)})
+ (oyPay?] — afVEdy?) + (axf? — Edy?) (dy?, - Ed;@)’
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Applying the expectations operator to the foregoing detive
(100) E {(y@ ~Ex?) (% - Ef?) }
_E (dyf”dy@}) +E (d%z)dyt@;) ~EdyEdy”;
+E (dyPay?)) - EdyVEdY? +E [(dy@ —Edy?) (ay?, - Ed){z)ﬂ

To simplify the foregoing, apply the expectations oper&bahe definition of the first order incre-

ment, yielding its mean
(101) EdyY =EyY —y
As Eyt(l) =Y, the foregoing implies that the mean of the first order in@etis zero
(102) Edy? =0
Using the this result and noting trﬁﬂ)f1> = Ed)ﬁ)j, (100 reduces to
o e[ o)
— (dyM oy ) +E (P o)) + E (o))
VE {(dﬂ _ Ed;@) (dy@j - Ed;{z))']
It then remains to show that
(104) E (dy§2>dy§f>;) —0, E (dyt“)dyff);) —0

One way is to use the moving average representation of trer axdrements. l.e., inserting the
moving average representation of the first and second opgeoximations in the definition of the

order increments yields

(105) dy? = iyi & i

1 [ee] 00
(106) dy? = 5 Z}_z)yj,i(at_ | ®&)
j=0i=
Therefore the product of the two order increments, whenrsexpectation, takes the form of the

third moments of the shocks, which is equal to zero under abityn
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A.6 Proof of Proposition 6.2

First note thaEy°>) = Ey? under normalit§®. Given this result, applying the expectations opera-

tor to the definition of the third order incrememf?’) = yt(s) —yt(z) immediately impliefdf’) =0.
Next, rearranging the definition of the third order incremaslivers

(107) i =y +dy?

Applying the expectations operator to the foregoing yields

(108) EvY — Ey?
Centering £07) around its mean by subtracting(d8 from (107) gives
(109) By =y? _Ey? 1 ay®

Multiplying the foregoing with its transposition &t j and notingEyt(S) = Eyt@j andEyt(Z) = Eyt(i)j
delivers
(47— o) (4%~ Et”) =% (o - &%) (%) - %)
+ay Iy - dy Y ERY i dy) - EvPay?)

Applying the expectations operator to the foregoing, rg)Emi)f) =0, gives
(110)

e[ -0) (-0 ] e [P [ o) (67,4 |
+E (af¥y?)) +E (o))
Rewrite the definition of the second order incremdeyﬁ?) = yt(z) —yt(l) — %yoz as
(112) W = dy? o+ yoe = a4 oy 7 Sy
Given the foregoing expression and notiﬁgf’) =0,E <yt(2)dyt(§);> on the right hand side of
(110 can be rewritten as

112) E (yt(z)dy@}) —E Kd%z) +dyY + v+ %yoz) dfﬂ =E (d%”dyﬁ)} )

43To see this, applying the expectations operator to the sboater approximatior80) and comparing the resulting
expression with the mean of the third order approximatis) (
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Noting thatE (dyfz)dyt(f);) is zero under normalit§# Analogously,E (d%s)yt(i)o on the right
hand side of110) can be written as
(114) E [d%g’)yﬁﬂ —E (dyfs)dyt(f)j/)
Inserting the last two equations ihX0) yields
€6 -£8) () -=) | = o] 2 8 -547) 42,5
+E (o My ) + E (o Vo))

A.7 Mean of dy\?

The second order incrememy(z) can be expressed recursively as

(115) d%z d%z )state [B d%l )states(2] 20 (dyt(l state, 8t> + Book. [2]]

Taking expectation of the foregoing yields the followingpexssion of the mean

(116) Ed){z —ch(dyfz state> 4z B E(dyt(l stat@[Z]) 4z B E( ®[2]>

The two remaining unknown terms in the last equat‘tér(pl){2 sme) andE (d%(i)ftat@m), can
be computed as follows. First, note the state variable bid¢k15) takes the form

(117) d%Z)state statedyt(z state stated%1 )staten[2 + Bstate <dyt(1 state® 5t> 4z Bstat ®[2]

Taking expectation of the foregoing and rearranging yiéhgsfollowing expression for the mean
of state variable block, noting throughout we (sse) to denote the number of state variables
(118) Ed%Z)State: (Ins_astate)* [ Bsate (d)/t<1 )staten |2 ) +%BgtoateE (8§[2]>]

The problem now reduces to ComplEteédyt(1 Stat@[z]) . Once it is known,118) gives the value of

Ed){z)State. Inserting these two values back i) yields the mean of the second order increment.

44Again consider the moving average representation of the thider increment

0 0 00

(113) dy® = Eoyoz i€t .+62[)Zozjyk1. & kD E_ | DE)

When multiplying with the moving average representatiothefsecond order increment, the result, in expectation, is
a sum of the third and fifth moments of shocks, and equal toweder normality.
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To computeE (dyfl)Stat@[z}), we take the state variable block of the first order increment

dy{ V'€ and raise it to the second Kronecker power,

(119) dyt(l)stat®[ gstates|2 dyt(l )statex[2] + (Knsns+ 1) ( gstate Bstate) (d)/t<1 state Et)

4 Bstat@ 2] ®[ ]

whereKnsns is a ns® x n$ commutation matrix (See Magnus and Neudecker (1979)). ngaki

expectation of the foregoing and rearranging the resuétkpyession yields

(120) E <d%1)Stat@[2}> _ <|n32 _ astat@[q) —188tat@[2]E <8t®[2}>
Inserting (20) and (L18) back in (L16) yields the mean of the second order increment
2) _ 1— ostat state
(121) Edy? = 2{ (Ins 91t
-1
+ <(X ( state) Bstate+ BZZ) <|n82 _ astat@[Z]) B(s)tat@[z]
+ Boo} E (5t® [2}>

which is an linear function of the second moments of the emoge shocks. The coefficients
onE (q@z}) in the previous equation corresponds to the infinite @moyj’j, notingyj,j =
ay$e 1+l322(y8tate® ¥

-1
(122) Z o JtaieJ 1= —qa (lns— O(state) Bgtoate
=1

< -1
(123) Z [322 tate® yst e> ( ( Cxstate)—l Bgtzate+ I322> <|n82 _ astat@[Z]) Stat@[z}
=1

(124)  yo0=1Boo

A.8 Second Moments oﬁyt(z)

If (115 can be cast as a linear recursion, then standard lineaoaetan be applied to the com-
putation of the second moments. Ncom(z), besides being linearly autoregressive in the state
variable block of itseltlyl2*® is a linear function of all the second order permutationgrofi-
ucts of the first order incremeds{ ”**®*®and the shocks. This relationship guides the calculations,

State

and we therefore compute the second momenmbylgf first, then recover the second moments
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of variables of interet

Combing 17) and (119 yields the following linear recursion containing the lameecursion
of dM(Z)state

1nstate
i _
(125) Xt(Z) :e(Z)XX[(E)]_‘i‘ B%ta?%)m E (8?9[2]) +¢(2)X:t(2)
0
where
5 dM(Z)state
(126) Xt( = [d)é(l)stat@[Z}
cxstate lnstate
(127) 0% _ [ ) agﬁggg[z@
(S)tat®[2] (Knsns+ Ing) (%8¢ B5)
®[2 ®[2]
—(2 &  —Eg
129 = =
( ) t [dyt()lstate® &

While the second term on the right hand sideI##5) vanishes after centerind25 around its
mean, it ensures, by compensating the subtractitﬁw(czf@[z]> in Et(z), thatEt(Z) is orthogondi® to
X
(130) E(x2=) =0

With the linear recursion OKI(Z), the second order incremedtl5) can be recast as the follow-
ing linear recursion
(131) dy? = 0@x? + %BooE () + 0@=

where ©? = [a 3Bz, D@ =[3Boo Bao]

Noting E (E@) = 0 by construction.

45This procedure is widely adopted to minimize the dimensiwhianprove the speed of the computation. See, e.g.,
Uhlig’s (1999) toolkit, Schmitt-Grohé and Uribe’s (2008Hftware package and Dynare.
46This orthogonality condition significantly simplifies thalculation of the autocovariances that followed.
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A.8.1 Contemporaneous Covariance

Centering 131) around its mean—»by subtractin@?) from (131)—yields the following centered
linear recursion of the second order increment
(132) <d)4<2) _ Ed;@) —o@ (xf)1 . E)Q(Z)> +p@=P

Multiplying the foregoing with its transposition and apiplg the expectations operator to the

resulting expression yields the contemporaneous variafites second order increment

(133) ry =e@r*e® + oe (=) 0@
where
(134) r2x _g {(x@ —EX?) (X2 - E>§<2)>/]

(135) r¥ =g {(dy@ . Ed;{z)) (dy@ . Edﬁ)']

This requires the contemporaneous varianc&%)f, i.e.,l‘éz)x, as well aE (Et(z)Et(z)l). Start-

ing with réz)x, we can proceed by applying the expectations operatdr29 (o yield

1nstate

1gs
B%ta?gzo[z] E (€t® [2}>
0

Centering the foregoing around its mean yields

2)

(136) Ex? = 0@XEx? +

(137) XI(Z) _E >§<2) — 02X (Xt(f)l _E >§(2)> i dJ(z)XEt(Z)

Multiplying the foregoing with its transposition and apjplg the expectations operator, it fol-
lows the unknown contemporaneous varianck(t(g% solves the following Lyapunov equatidh
(138) r@X — g@xr@Xg@X | p@Xg (Et(Z)Et(Z)/) DX’

Thus,r(()2>X can be calculated givela (Et(z)Et(z)/) and, thereforel,'(()z)x in (133 too. We re-

quires this variance, which is given by

=(2)=(2 (Ine + Knene) [E (&t&f) @ E (&r€f)] 0
1 E = = =
(139) < t =t ) 0 rg)l)x SE (8€))

4'Note I‘((f)X is of dimension(ns+ ng’) x (ns+ ns?). For models with a large number of state variables, spijttin

(1398 into four Sylvester equations of smaller size by explajtthe triangularity 0©@* and solving them one by
one is computationally a lot less expensive than solvit88( as a whole. This division also enables exploitation of

the symmetry of” éz)x and therefore can avoid redundant computations.
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In the right hand side of1(39), Fél)x is the state variable block of the contemporaneous variance
of the first order approximation (or of the first order increm)eand therefore already known from
calculations at the first order.

The upper left entry of the right hand side 4f39) contains the fourth moment of the shocks
and has been simplified using Tracy and Sultan’s (1993, p) f4rhula. The two zero entries
in (139 are due to the fact that the third moments of the shocks acewsler normality, and

dyU¥*®is uncorrelated with current shocks.

A.8.2 Autocovariances

Now we turn to the autocovariances cdﬂ{2>. To start, note that under normalifﬁt(z) is serially
uncorrelated
(140) E(z2P22)=0v j>0

Given the contemporaneous variarfcg)@X, multiplying (137) with the transposition of1(32)

and taking expectation yields the contemporaneous vaibetween the(t(z) anddyt(2>

(141) reXY = 02X rPXe? t oXE (z7=) 0l
(142) where r2% % — g {(Xt@) _ EXt(Z)) (dyl(Z) B Ed){z))/}

With all the three contemporaneous variances in hand, tiegonality (30 and (40 en-

. 2 . . .
sures the autocovarlancecd)jzf ) can be computed with the following recursive formulae

(143) r? =e@r?iw

(144) I—EZ)x,dy _ @(2)xr§3)i<,dy

where

(145) re g {(dw —Eay?) (2 - Edﬁ)'}
(146) raxey _ g {(x@ - E)Q(Z)) (dyﬁ)j - Ed){z)ﬂ
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A.9 Second Moments oﬂyt(?’)

The third order increment can be expressed recursively as
(47)

dyt<3 dyt(3 )state__ [33331 d yt(l Jstates[3] Boo 08{®[3]]
+ By <dyt(2 state®dyt(l state) <dyt(2 state . €t>
[[330 (d){l state® & > n [333Q1 (d){l )staten[2 ® 8t> i [3020& i Bczldyt(l state]
Its state variable block takes the form
(148) dyt(3)state Statedyt<3 state [ it:e,aé‘idyfl )statex|[3 (S)to%%t 3]]
Bstate < dyt(z )state o, d){l state) Bate ( d){z )state ., )
[ gt()%e(d%(l jstate oo ) st ( gystates(2 >
B+ BT
From the terms on the left hand side of the foregoing, we nedautld up two additional
recursions, the first in the Kronecker product of the first aadond order increments and the
second in the triple Kronecker product of the first orderémeent, to construct the linear recursion

containingdy>*"®®that can be used for calculating moments

(149)
dyt(z)state® dM(l)state g states 2] (dyt<2 state® dyt(l state) [(; state) ® C(state} dyt(l )statex|[3]
1
+ (O(state® Bstate) <dy(2 state o, 5t> n {(2 (sjtate) ® Bstate} 8stat@[3]

1
+ Bstate state) Knsinens + (2 state) ® Bstate} <dyt(1 )staten|[2] ®5t>

+ ( {( state) Q Cxstate] Kne2 ot Bstate state) <dyt(1 state® & )

(150) d yt(1)statez<>[3] :astat@[:S]dyt(i 1statez<>[3] +Bgtat@[3} €t®[3}
+ [(Knsns® Ins + |n§>Kn82,ns+ Ins?] (GStat@[z] ® B(s)tate) (dyt(i)lstat@[Z] & 8t>

+ [Knsz,ns‘f' (Knsns® Ins+ )] (GState stat@ ) (dyt(l state® 6! >
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Given the foregoing two equations, along with the statealde block of the first order incre-

ment
(151) dM(l)state statedyt<l )state B(s)tateat

we construct the following linear recursion

(152) X% = 0% 1 p@*x=¥
where®
_ 3 -
d 3)state %1 « (i[@]
gybsta
2)state 1)state t
3 d ®d —(3
wsy X | WU 0 ey 2 )
dM(l )state dyt(z state® &
i & 1

Note there is no need to cenvq@ before computing its contemporaneous variance as its mean
is zero under normality, i.eE)Q(S) = 0. In the third entry oEt(S), s?m is adjusted using its mean,
such thaEt(3) is orthogonal @(t(—3>1
(154) E (xt(f’)lzt“)’) ~0
and it is can be shown th§f3) is serially uncorrelated

(155) E <:§3>_§3)]> 0V j>0
A.9.1 Contemporaneous Covariance

With linear recursion152), the third order incremeniLé7) can be cast in a linear recursfSn
(156) dy? = 0@x) + 0@=
Multiplying the foregoing with its transposition and apiplg the expectations operator to the

resulting expression yields the contemporaneous variaftte third order increment

(157) rg) =eri e + oPe (V=) ol
(158) where ) = (o|y<3 dy® )

489(3X andd(®X are specified in sectioA.12.
4993 andd(® are specified in sectiof.12.
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To compute the yet known contemporaneous variandé}@t ie., r((f)X, we multiply 152

with its transposition and apply the expectations operatdhe resulting expression. It follows

thatré,?’)>< solves the following Lyapunov equati¢h

(159) F(()S)X — o)X r(()3)X@(3)X’ L pBXE (Et(S)Et(S)’) PBX'
(160) where r((f’)x —E <Xt(3)xt(3)/>

with E (Et(s)Et@)/) as specified in sectiof.12.

Given Fég)x, multiplying (152 with the transposition of1(56) and applying the expectations

operator yields the contemporaneous variance betwé%mndd)és)

(161) r*a — g@Xr3Xg@ 4+ oBXE (zt(?’) z@’) »®
(162) where F% % _ g ()Q(s)d)ég)/)

A.9.2 Autocovariances

For the autocovariance of the third order increment, theogronality 154) andEt(3) being serially

uncorrelated, i.e.165), ensure that it can be computed with the following rec@w$ormulae

(163) rg3) _ @(3)rgsl)i<,dy
(164) rg3)x7dy _ @(3)xr§3;)i<,dy
where

(165) r = (ay¥ay”)
(166) rIxd _ g (Xt(s)dyff)})

A.10 Second Moments betweedyt<1) and dyt(?’)

First rewrite the linear recursion of the first order increm@6) usingxt(s)

(167) dy? =0 0 0 a]x¥+[0 0 0 0 Bo=?

*ONote that (59 is a Lyapunov equation of dimensigns-+ ns*+ ns’+ ns) x (ns+ns*+ns’-+ ns). By exploiting

the triangularity of@®X and the symmetry olfff)x, that large Lyapunov equation can be split and reduced to 10
Sylvester equations of dimension upns x ns’.
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Multiplying the foregoing with the transposition of thedar recursion of the third order incre-
ment (L56), and applying the expectations operator to the resultipgession yields the contem-

poraneous covariance betwecda;ﬁl) anddyfs)
(e8)  rg"@=[0 0 0 aJrfe®+[o 0 0 0 BE(ZIZY )
(169)  wherer{"® —E (dyt(l)d)ég)/>
The autocovariancé’,gl)’(g), can be computed using the following recursive formula

1).,(3 3)X,d
(170) r?®¥=jo 0 0 of e

A.11 Variance Decomposition

The decomposition the variance of the third order approsiondollows directly from the decom-
position of the third order increment. Defining
(171) d)4<3) _ dM(?,)amp_'_dM(?,)risk

Multiplying the foregoing with its transposition and apjply the expectations operator, a vari-

ance decomposition immediately follows

(172) rés) _ I-g)s)amij Fés)ri3k+ réS)amprisk+ (rég)amprisk)/
where

(173) ré3)amp: E (d%s)ampdyt@am‘j)

(174) rés)risk —E ( dyt(S)risk q yt(S)risk’>

(175) réS)amnrisk _E (dM(S)ampdyt(S)risk’>

Proposition 6.2) in the text implies the contemporaneous variance of thiabbas of interest

takes the form
/
(176) P =y r® re (rg”v@)

Inserting the decomposeﬁf), l.e., 172, in the previous equation yields the decomposition of
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the contemporaneous variance of the variables of interest
3 ) i i isk)/
(177) I_)é :r% i réS)amp+ r((JS)HSk—}- I_E)S)almprlsk_f_ (réS)amprlsk>
!/
+ [—81),(3) i (Fél)’(3)>
Note the decompositionl{7) is not yet complete as the cross-contemporaneous variance

r(()l)’(S) can be further broken down into two pats

(178) ro® =€ (ayVay® )
E {d%l) <d%3)amp+ dyt(3)risk> ’}
E (dyt(l)dM(S)am[5> LE (d>4(1)d>/t(3)risk’>

_rél)am p(3)am p+ rE)l)amp(S)risk

Inserting the foregoing inl(77) yields the complete variance decomposition

. . . /
(179) I_)é(S) :r%(Z) n rés)amp+ I_(():-})rlsk_}_ I_g):-})amprlsk_f_ <ré3)ampr|sk>
+ I_g)l)almp,(S)amp_i_ rE)l)amp(S)risk

I (rgl)amp,(S)amp_i_ rél)amp,(S)risk)’

: (3)am - D
Letting Y " collect the contribution from all amplification channels aif three orders,

3)risk,am

ry " collects all interaction between amplification and timeywuag risk adjustment channels

and I"é(s)ris'( collects the contribution from the time-varying risk adent channel
(180) r%@*)amp _ r%<2> n réS)amp+ r(()l)amp(S)amp+ (r(()l)amp,(S)amp>'
(181) r%@)risk,amp _ rés)amprisk i <r(()3)amprisk>' n r(()l)amp(s)risk n (r(()l)amp(:B)risk)’
(182) Y7 = rrisk
Inserting the foregoing inl(79) yields @4) in the text. Note the first order amplification effect

reported in Tablé is included in (80. In particular, it is included iri'{,(z). As implied by

51in (179), (VA ™P(3AMPis ysed to denote (d){‘wd)«@)am‘j) as there is only amplification effects in the first order

incremen'd){l).
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proposition6.1, the contemporaneous variance of the second order appatgimiakes the form
2 (1) 2
(183) " =ry +ry
(1) , L
wherel)) " captures the first order amplification effect.
To compute the individual terms ir179), first notedyfs’)almlo collects all amplification effects

anddyt@"s" collects the time-varying risk adjustment effect in thedhlorder increment
(184) dy(s amp _ dyt(s ampstate [[33331d)’t<1 )staten|[3 + BOOOEED[S}}
+ B (dyt(z state® dyfl state) +Bao (dyt(z state )
[Bsoo (d)/t<l T ) +Bs301 (d)/t<l stateld] o Stﬂ
(185) dy(3 rlsk dyt<3 )risk, state+ [3020&"‘ Bozj-dyt(l )state

We start with constructing an auxiliary vect)qf for this decomposition

B d%s ampstate
dM(S)risk,state
(186) XI(SD) — dM(Z)State® dyt(l)state
dyt(l)stat@[S]
] dyt(l)state |
With the foregoing auxiliary vectody>2™P anddy>"* can be cast as linear recursions
(187) dy 2P — @@)ampy (30) | p(3)amp=(3)
(188) dM(?,)risk:@(S)rist[( D) | p(3risk= (3)
where
(189) O™ = la 0 By iBasar IBFE(InswEe?)]
(190) OP¥sk—10 o 0 0 3Bg2]
(191) ®¥2MP— [1Boo0 3B3zar 3Baoo Bzo O]
(192) o3k =0 0 0 0 3By

Multiplying (187) with its transposition and applying the expectations afmeryields the con-

3)amp

temporaneous variande , Which collects the contribution of amplification channtsthe
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total variance of the third order increment

(193)  riamP_ g@ampg ()g(f?xffi’)') o3)amp | p@)ampe (Et(S)Et(S)/) p(damp

whereE (Xt(f"f)xt(f'f)/) can be computed using the following relationship
(194) x® — ADx%P)
where
I 1 000
p 001 0O
. A=loool o
0 00O
therefore
3D)., (3D)’ 3) (3 / 3)X /
(196) E (XBDXD) = APvE (XEX) A+ = AP T XA

) (3)amp

whereAP+ denotes the Moore-Penrose inverseABfand > is already known. Thef

can be computed using

(297) r((f)amp: <@(3)ampAD+> r(()3)x <@(3)ampAD+>, 1 p(dampe <Et(3)zt(3)’> p(@amp

risk

Likewise, the contemporaneous variam'c(@ collects the contribution of the time-varying

risk adjustment channel to the total variance of the thildeoincrement, and can be computed

using
(198) r((f)ris" = (@(S)riskAD+> ré3)>< (@(S)risk AD+>/ 1 p(3riskg (Et(s)zt(s)'> D3risk
F83>ammi5k and its transposition collects the contribution of the iatéion between the ampli-

fication and time-vary risk adjustment channels to the teaalance of the third order increment,

and can be computed using

. . / .
(199) ré3)ampr|sk+ (r(()3)ampr|sk> _ r(()3) _ rg%)amp_ r(()C-’,)rlsk
To computa (V2™P32MP myitiply (167) with the transposition ofli87) and apply the expec-

tations operator to the resulting expression to yield
(200)

reem®amP_ o 0 0 a] X (@9amea) 1[0 0 0 0 poE (V=) oI

AsT P was already computed in sectignl0, 72?3 can pe obtained by subtracting
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the foregoing frorrr(()l)’(3>.
A.12 Coefficient Matrices

This section contains explicit expressions for severaffmpent matrices left implicit above.

IO [O( B2z 3Bssa1 3Ps0o <|ns® Ee [2}> +%|3021]

d® — [%Booo %ngql %[3300 B20 %[3020]
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99

0 gstates(2 (% state)  grstate ([( BElate) @ ostate K ns+B§Bate® Batate) < s Ee” ®| ])

[ state state
a B35

(3B

1nstate 1 | nstate ®([2) state
6P3331 ?[ 300 ('ns® Ee,’ ) 021}

astat@[S] [Kn827n3+ (Knsns® Ins+ InS?‘)} (astate® BSI&I@M) (|n5® ES?[Z})

0 astate

e s
Bstate)  pstate (Bgtoate(g> Cxstate) Knsmnens+ ( Bstate) ® pgtate
gtat@[3] [(Knsns® Ins—+ lns3)Kn§7ns+ ] (O(stat@[Z] ® BState)
0 0
e e
[(% state) ® O(state} Kne.ns+ Bstate pstate astateg pstate @
[Knsz,ns+ (Knsns® Ins+ 1] (astate® BStat@[ﬂ) 0 0

O O Bgtate |




JEESE
[ e (s¥) [ o (o stat®2]®s>/}
E [(dyt(ilstat@ 2 ®5t> } l(dyta )staten|[2 ®8t) <dyt(1 )state|[2 ®8t) }

0 0

[(dyfz 1state® e ) 3}’} E {(dyfz lstate®E ) <dyt(i)1stat@[2] ®€t>/}
E (atst [ y) [& (dyff f‘at@[Z] ® st)/]

e [ (a0 (5 ) (5 (57 -£50)) ] .

oo — oo

{ £8[3 (dyt(zlstate®8> ] < 3]£{>
[(dyfl )states[2 t) (d tletate®€> } [(dyt(l )state[2] ®€t> 8{]

0 0

E {(dyt(zlstate@w) <dyt(zlstate®€t> } E [(dyt(zlstate(g)eo ]
[& (ayy o) } E (e€])
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A.13 Computing Elements inE (Et(?’)Et(g),)

For every nonzero entry & (Et(g) Et(3>/> in sectionA.12, the terms inside the expectations operator
are either i) second, fourth, or sixth moments of the shamkig),the product of these moments with

Vstate The fourth and sixth

the state variable block of the order increments, dgi>: > anddy;
moments of the shocks can be computed using Tracy and Su({tE®03, p. 344-345) formulae.
E.g., for sixth moments in the forr <€§[3}8§[3]’>’ applying the mixed Kronecker product rule
yields

(201) E (sf@[?’]s{@[?‘y) =E (s8] @ &8 @ &€])

then Tracy and Sultan’s (1993) Theorem 3 (repeated herd)eapplied directly
(202)

E (2i6f 0 eef 0 eig)) = [E (868) ] “Y [K + (Kne® Knene) + (Knene ® Kne) + Knene (Knene® Kne)]
+K ([vec(E (&g7) ) ved (E (s1gr) )| @ E (&) ) K

where

(203) K =lhe +Knene +Kne ne

is a sum of commutation matrices (See Magnus and Neudeche@))L

For the fourth moment in the forr&g (a{@[g‘}ao, Jinadasa and Tracy’s (1986, p. 404) formula

(repeated here) can likewise be applied directly
(204)

E (a{@[g‘}ao = E(eig;) @ vec(E(&g;)) + vec(E(eig;)) @ E(&rgf) + (Ine®@ Knene) [Vec(E(gg;)) @ E(ggy)]
For the entries in the form of a product between the momentstla@ state variable block

of order increments, use the property of the Kronecker prbdticolumn vectors and the mixed

Kronecker product rule to rearrange until they are in thenfaf a (Kronecker) product of two

clusters: one cluster contains the state variable block@btder increments only, and the other

contains (the product of) shocks only. As all the order ineats of the last period are uncorrelated
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with the current shocks, the expected value of the two dlsisi@n be computed separately. E.g.
(205)

[(d){l )staten|2 ) ®[3]’] [(Ml )staten|2 ®s Q& ®| ]} —E [dyt(l stat@[z] <€t®8{®[3]/>}
—E [dyt(l Jstates(2] o (&8 [3]’)} _E (dyt(l )states| 2]) QE (Etc‘l?[s]/)

whereE (dyt<1 states (2 ) was computed in sectioh.8 andE (sts{®[ ]/> can be computed using the
transposed version 0204).

In fact, many nonzero entries E1<_t( )_t( 3 ) can be recycled from the calculations in section
A.8 and therefore need not to be computed again. E.g., the bluick & the second row and

second column o (_t(S)_t( 3 ) can be written as

(206) E [(dyt(l)lstat@[Z] ®€t> (dyt(i)lstat@[Z] ®€t> ] _E (dyt(l )state| 2]dy(1 )statex|2 ) = (Stﬁt)

The first term on the right hand side of the foregoing can bgaled from F(()Z)X as the lower

right entry (the block entry in the second row and secondm(m,lofréz)>< takes the form

(207) r82%>2< _E { (dyt(i)lstat®[2] _ Edﬁ)lstate@m) (dyt(i)lstat@[Z} _Ed %1)?&@[2})/]
(208) —E (d)/t<l )staten[2 dyt(i)lstate@[211> e <dyt<f)15tat@ ) (d)/t<l )staten|2 )
therefore

(209) (dyt(l )state|[2 dy(l )state| 2]/) B rg )2 LE (dyt(l )state] 2]) (dyt(l )staten|[2 >

li
Some entries oE (E@E@) are zero as they contain one or some of terms equal to zero

under normality: the odd moments of the exogenous shcﬁ:gdyfl)smte), E (dyt(l)Stat@[S]) and

E (dyt(l)stateg[s])_

69



Table 1: Parameter Values: Common to All Three Calibrations

Parameter 3

X a

)

a Po

Value 0.9926 2.9869 100 0.339 0.021 0.004 0.9 0.15

See Tallarini (2000) and the main text.

Table 2: Parameter Values: Calibrating HomoskedastictNitya

Baseline

Constant Volatility Expected Utility Extended tb

0, 0.009824769 0.011588754

0.0115

0.0225

0, calibrated to keep the standard deviatiod\drfi(c) = 0.0055

Table 3: Mean Comparison

Variable Det.S.S*

Baseline Calibration Constant Volatility Calibration [Ealni (2000)

log(k) 2.0841

[ 0.2002

log(c) -0.5672

log(y) -0.2649
N

log(N)  -1.4675
Rf 1.1493
R 1.1493

2.1373
0.2106
-0.5542
-0.2417
-1.4597
1.0470
1.0532

2.1581
0.2146
-0.5491
-0.2326
-1.4566
1.0070
1.0156

2.1584
0.2160
-0.5499
-0.2319
-1.4563
1.011
1.022

* The deterministic steady state value

See Table 5 and 8, Tallarini (2000).

Table 4: Standard Deviation Comparison

Variable Baseline Calibration Constant Volatility Cahlion Tallarini (2000) Data

Alog(c) 0.0055 0.0055 0.0055 0.0055
Alog(y) 0.0096 0.0100 0.0095 0.0104
Alog(i) 0.0240 0.0223 0.0224 0.0279
log(c) —log(y) 0.0154 0.0150 0.0147 0.0377
log(i) — log(y) 0.0425 0.0404 0.0403 0.0649

See Table 7, Tallarini (2000).
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Table 5: Variance Decomposition in Percentage

Constant Volatility Calibration Baseline Calibration
1st order amp. risk adjustment 1st order amp. risk adjustmen
cmpr | O 100 0 100
erp 0 100 0 100
rp 109.03 0.60 80.68 8.51
log(k) | 96.35 0.02 75.08 1.37
[ 95.28 0.02 57.19 30.25
log(c) | 96.65 0.01 75.88 2.62
log(y) | 95.03 0.04 44.54 36.99
log(N) | 97.82 0.01 66.25 18.61

For each calibration, the columns may not add up to 100 dueetornission of 2nd
and 3rd order amplification and cross effects.

Table 6: Standard Deviation Comparison

Variable Baseline Calibration Extended Model Data
Alog(c) 0.0055 0.0055 0.0055
Alog(y) 0.0096 0.0058 0.0104
Alog(i) 0.0240 0.0068 0.0279
log(i) — log(K) 0.0707 0.0368 -

log(c) —log(y) 0.0154 0.0018 0.0377
log(i) — log(y) 0.0425 0.0052 0.0649

Table 7: Variance Decomposition in Percentage

Constant Volatility Calibration Baseline Calibration Ertded Model

1st order amp. risk ad;. 1storder amp. riskadj. 1storder.amigk ad).
cmpr |0 100 0 100 0 100
erp 0 100 0 100 0 100
rp 109.03 0.60 80.68 8.51 79.45 0.95
rf 105.56 0.14 80.35 0.86 14.83 81.54
log(k) | 96.35 0.02 75.08 1.37 80.03 0.21
[ 95.28 0.02 57.19 30.25 78.39 1.03
log(c) | 96.65 0.01 75.88 2.62 80.02 0.23
log(y) | 95.03 0.04 44.54 36.99 80.09 0.21
log(N) | 97.82 0.01 66.25 18.61 78.76 1.44

For each calibration, the columns may not add up to 100 dubeminission of 2nd and 3rd order
amplification and cross effects.
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3rd Order NLMA: Density of Simulated Variance

10000

Length of Simulation

Figure 1. Monte Carlo Consistency of Moment Calculationsariaple ofm, Baseline Model of
Section3
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