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Abstract

We analyze the theoretical moments of a nonlinear approximation to real business cycle model with

stochastic volatility and recursive preferences. We find that the conditional heteroskedasticity of

stochastic volatility operationalizes a time-varying risk adjustment channel that induces variability

in conditional asset pricing measures and assigns a substantial portion of the variance of macroeco-

nomic variables to variations in precautionary behavior, both while leaving its ability to match key

macroeconomic and asset pricing facts untouched. We calculate the theoretical moments directly

and decomposes these moments into contributions from shifts in the distribution of future shocks

(i.e., risk) and from realized shocks and differing orders of approximation, enabling us to identify

the common channel through which stochastic volatility in isolation operates and through which

conditional asset pricing measures vary over time. Under frictional investment and varying capital

utilization, output drops in response to an increase in risk, but the contributions to the variance of

macroeconomic variables from risk becomes negligible.
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1 Introduction

Assessing the statistical and structural implications of nonlinear DSGE models with recursive pref-

erences and stochastic volatility for asset pricing and business cycle dynamics is an unfinished task

in macroeconomics. We derive the theoretical moments of nonlinear moving average approxima-

tions to the model and decompose these moments into contributions from the individual orders of

nonlinearity in realized shocks (amplification effects) and from the moments of future shocks (risk

adjustment effects). With this decomposition, we find that stochastic volatility activates a time-

varying risk adjustment channel in macroeconomic variables accounting for a substantial amount

of total variation. We identify this conditional heteroskedastic mechanism as the sole driving force

of the conditional asset pricing measures under study. Thisenables us to tell the story of a varying

pattern of risk in the economy eliciting changes in households’ precautionary responses as priced

by measures such as the conditional market price of risk. We find, however, that stochastic volatil-

ity contributes to the model’s ability to match asset pricing facts only by increasing the overall

volatility of macro variables—taken as given exogenously in endowment settings1 that reach the

opposite conclusion—and that frictional investment and variable capital utilization allow the model

to predict a drop in output in response to an increase in risk (positive volatility shock) at the cost

of making the importance of this risk channel to the variability of macro variables moot.

While there is growing interest in stochastic volatility and Epstein and Zin’s (1989) recursive

preferences2 in recent literature, there is little work that studies the joint effect of these two el-

ements for both asset pricing and business cycle dynamics.3 Andreasen (2012), focusing on the

1See, e.g., Bansal and Yaron (2004)
2See also Kreps and Porteus (1978) and Weil (1990). Backus et al. (2005) offers a recent review of these and

related preferences.
3Bloom (2009) studies the impact of stochastic volatility atthe firm level and documents a short drop followed

by an overshooting in aggregate economic activity following a volatility shock. Justiniano and Primiceri (2008) add
stochastic volatility to a linearized New Keyensian model to study the documented reduction in volatility of U.S.
economy since the early 1980’s (See Blanchard and Simon (2001) and Stock and Watson (2003), as well as Sims and
Zha (2006) for a review.). Fernández-Villaverde et al. (2011a) and Born and Pfeifer (2013) use New Keynesian models
to study the effect of changes in the volatility of policy variables on the aggregate economy. Tallarini (2000) among
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different specifications of the conditional heteroskedasticity and the consequential difference in

the quantitative performance of a New Keynesian model, takes a brief look at the implications

of the model on both sides. Bidder and Smith (2012), taking a model uncertainty perspective à la

Hansen and Sargent (2007), study fluctuations in the worst-case distribution as sources for business

cycles in a model with stochastic volatility and recursive preferences. We differ from both their

works in our aim to analyze the propagation mechanism of stochastic volatility implemented as a

volatility shock in a production model, and we examine the role of stochastic volatility in attaining

the Hansen-Jagannathan bounds (See Hansen and Jagannathan(1991)) without compromising the

fit vis-à-vis the macroeconomy to complement the empiricalevaluation of the model regarding

replicating asset pricing regularities.

We solve the model using the nonlinear moving average perturbation derived in Lan and Meyer-

Gohde (Forthcoming), which takes the infinite sequence of realized shocks, past to present, as its

state variable basis and adjusts the deterministic policy function for the effect of future shocks by

scaling their distribution with the perturbation parameter. Following Caldara et al.’s (2012) assess-

ment of the accuracy of third order perturbations in a business cycle model with recursive prefer-

ences and stochastic volatility and as it is the minimum order needed to capture the time-varying

shifts in risk premium as noted in Andreasen (2012, p. 300) and van Binsbergen et al. (2012,

p. 638), we approximate the policy function to third order. The nonlinear moving average policy

function and its third order approximation can be decomposed straightforwardly into the order of

the amplification effects (the impact of the realized shocks) and risk adjustment (the anticipation

effect of future shocks). We find, in the analysis of the impulse responses of both macroeconomic

and asset pricing variables, a volatility shock by itself propagates solely through the time-varying

risk adjustment channel. For conditional asset pricing measures such as the expected risk premium,

others, note recursive preferences can contribute to resolving the longstanding asset pricing puzzles (equity premium
and risk free rate) documented in Mehra and Prescott (1985) and Weil (1989) without compromising the model’s
ability of replicating macroeconomic dynamics; and Rudebusch and Swanson (2012) and van Binsbergen et al. (2012)
use a model with recursive preferences to study the dynamicsof the yield curve.
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volatility shocks and productivity growth shocks propagate individually through the time-varying

risk adjustment channel only. Moreover, the effect of stochastic volatility shocks on the expected

risk premium is several orders of magnitude larger than thatof productivity growth shocks, high-

lighting again the importance of this time variation in the dispersion of probability measures used

to form expectations for conditional asset pricing.

Using the third order nonlinear moving approximation, we derive theoretical moments that are

in general not available in the nonlinear DSGE models.4 In a similar vein to our nonlinear moving

average, Andreasen et al. (2013) compute theoretical moments using a pruned state space pertur-

bation,6 since after pruning, the unknown higher moments are nonlinear functions of the known

moments of lower order approximations. However, we are ableto further derive a decomposition

of the theoretical variance that neatly dissects the individual contributions of amplification and risk

adjustment effects to the total variance of the model. With this variance decomposition, we find that

adding stochastic volatility changes the composition of the variance of the macroeconomic vari-

ables. In the presence of stochastic volatility, more variation is generated in the time-varying risk

adjustment channel. As for macroeconomic variables, movements in the risk adjustment channel

can be explained by the household’s precautionary motive. This finding implies households aware

of shifts in the distributions of future shocks will adjust their precautionary behavior commensu-

rately.

The paper is organized as follows. The competitive real business cycle model with recursive

preferences and stochastic volatility is derived in section 3. In section4, we present the nonlinear

moving average perturbation solution to the model. The calibrations are introduced in section5.

We then derive the theoretical moments in section6 and apply our method to analyze the model in

4The nonlinear moving average approximation, as its policy function directly maps exogenous shocks into the
endogenous variables, only needs the moments of the exogenous shocks when computing the theoretical moments.
We implement our approach numerically by providing an add-on for the popular Dynare package.5 A state space
perturbation policy function, by contrast, maps the endogenous variables into themselves and resulting in an infinite
regression in theoretical moments requiring higher moments than moments being computed.

6See Lan and Meyer-Gohde (2013a) for an overview of pruning and its relation to our nonlinear moving average.
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section7. In section8, we extend the baseline model to frictional investment and variable capital

utilization. Section9 concludes.

2 Stochastic Volatility

2.1 Related Literature

As documented in Blanchard and Simon (2001), Stock and Watson (2003), Sims and Zha (2006),

Fernández-Villaverde and Rubio-Ramı́rez (2010) and manyothers, the volatility of employment

growth, consumption growth and output of the U.S. economy from 1984 to 2007 has evidently

declined by one third comparing to their values during the 1970s and early 1980s. Nominal volatil-

ities also have declined by more than half. This period of volatility reduction in aggregate time

series, often labeled as the Great Moderation, motivates the study of its causes. The literature thus

far offers three main ways of modeling, and therefore analyzing this volatility shift: i) stochastic

volatility, i.e., model the volatility of the exogenous processes under investigation as an autore-

gressive process, or ii) a GARCH process, or iii) the volatility switches between two (or more)

states, i.e., Markov regime switching models. As pointed out by Fernández-Villaverde and Rubio-

Ramı́rez (2010, p. 10), stochastic volatility can capture many important features of the empirical

volatility shift and differentiates the special effect of volatility from others, this approach has been

adopted in many studies.

By incorporating stochastic volatility, Fernández-Villaverde and Rubio-Ramı́rez (2007) show

variations in the volatility of investment-specific technological shock and preferences shock ex-

plain most of variations in the volatility of in output and hours worked. Justiniano and Primiceri

(2008) estimate a DSGE model with stochastic volatility andconclude the decline in the volatil-

ity of output, hours worked and consumption is largely owingto a change in the variance of the

investment-specific technological shock, e.g., a change inthe variance of the investment shock ex-

plains on average 30% of variability in output growth since mid-1980s. On the other hand, Bidder
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and Smith (2013) investigate the implication of stochasticvolatility on asset pricing and find that,

their endowment model economy generates a much higher unconditional market price of risk with

stochastic volatility in the exogenous consumption growthprocess than without. Meanwhile, the

presence of stochastic volatility does not lead to a noticeable change in risk free rate, and thus

improves the model’s ability in attaining the Hansen-Jagannathan bound. Bansal and Yaron (2004)

also find, in the presence of stochastic volatility in the exogenous consumption growth, the maxi-

mal Sharpe ratio, i.e., the lower bound of the market price ofrisk, is about three times larger than

its value in the absence of stochastic volatility.

All these findings motivates the study of whether stochasticvolatility is a driver of business

cycle fluctuations. As noted in Born and Pfeifer (2013), changes in aggregate uncertainty can

potentially induce changes in economic activities throughi) the precautionary motive as household

tends to save more to ensure itself against the increased future risk, ii) the (inverse) Hartman-Abel

effect which is, in essence, firm’s precautionary reaction in response to the increased future risk,

and iii) real option effect at work. These three transmission mechanisms of volatility change are

however, partial equilibrium effects. In a general equilibrium model where prices can adjust to

accommodate changes in uncertainty, the effect of volatility change on economic activities could

differ from that in a partial equilibrium model, both qualitatively and quantitatively.

Using a partial equilibrium model, Bloom (2009) show a positive volatility shock causes a

drop in output and employment, both by about 1%. Bloom et al. (2012) report a drop in output

by just over 3% when general equilibrium effects are shut off. On the other hand, the effect of

stochastic volatility appears, but not without exception,smaller in size when general equilibrium

effects are taken into account. Fernández-Villaverde et al. (2011b) show a volatility shock to the

real interest rate leads to a drop in output, consumption, investment and hours by 0.2%, 0.5%, 2%

and 0.001% respectively.7 Fernández-Villaverde et al. (2011a) find the previous fouraggregates

7This is the case for Argentina, see Fernández-Villaverde et al. (2011b, p. 2550).
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fall by about 0.15%, 0.02%, 0.6% and 0.15% respectively in response to an increase in the uncer-

tainty of fiscal policy. Born and Pfeifer (2013) also study the uncertainty of fiscal policy and its

effect. They also find, with the baseline parameterization of their model, an increase in uncertainty

causes a contraction on economic activities—the four aggregates fall by 0.045%, 0.03%, 0.1%

and 0.04% respectively. Basu and Bundick (2012) investigate the effect of stochastic volatility in

both technology and preference shock process. A volatilityshock to either of the two processes

leads to a drop in output, consumption, investment and hours, but at different quantitative level.

The four aggregates fall by about 0.04%, 0.06%, 0.01% and 0.06% respectively in response to

a volatility shock to technology, and by about 0.17%, 0.16%, 0.2% and 0.21% in response to a

volatility shock to preference. While the first order impacteffect of aggregate uncertainty is not

pictured and explicitly reported, Bachmann and Bayer (Forthcoming) show the contribution from

aggregate uncertainty to the volatility of output, consumption, investment and hours is negligible.

Still in a general equilibrium framework, Bloom et al. (2012) and Bidder and Smith (2013) both

find however, stochastic volatility can have large effect oneconomic activities. A volatility shock

causes a fall in output, consumption, invest and hours by about 3%, 1%, 20% and 7% in Bloom

et al. (2012), and by about 2%, 1.5%, 2.5% and 1% in the worse case model of Bidder and Smith

(2013).

To summarize, the studies cited above tend to agree an increase in volatility leads to a recession,

yet differ in their views on the size of such a recession. Moreover, Bloom (2009) and Bloom

et al. (2012) find the recession due to the increase in uncertainty lasts for only 6 and 12 months

respectively, as opposed to a more prolonged recession reported by the other studies. Additionally,

there is few studies investigating the potential effect of stochastic volatility on the market price of

risk in a production economy. It worth noting that the contribution from stochastic volatility to

asset pricing in an endowment economy does not necessarily carry over to a production economy,

as such contribution is not entirely independent from the reduced form, empirical specification of
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consumption growth.

2.2 General Operation within DSGE Models

One general way8 to introduce stochastic volatility is to replace a homoskedastic shockωt with

eςt ωt , whereςt is a mean zero stochastic variable. The exponential function ensure thateςt is always

positive, enabling the interpretation of the product ofeςt and homoskedastic standard deviation of

ωt as the shock’s conditional standard deviation. As we will beconcerned with local approxima-

tions in this study, it will be useful to have a Taylor series of a conditionally heteroskedastic shock

eςt ωt as we approximate our equilibrium system to a given order.

Lemma 2.1. The Taylor expansion of

eςt ωt(1)

around the pointςt = ωt = 0 is given by

eςt ωt =

(
∞

∑
i=0

1
i!

ςi
t

)
ωt(2)

Proof. See the appendices.

To assess the general equilibrium effects of stochastic volatility, consider the following general

model

0= Et [ f (yt+1,yt ,yt−1,εt)+Heςt ωt ](3)

whereyt is the vector of the endogenous variables, andεt the vector of normally distributed ex-

ogenous shocks apart from the stochastic volatility shock under consideration,H a constant vector,

ωt is a normally distributed exogenous shock subjected to a stochastic volatility processςt ,9 itself

given by

ςt = ρςt−1+ τηt(4)

8See, e.g., Fernández-Villaverde et al. (2011b)
9Our shock subject to stochastic volatility enters the modellinearly throughHeςt ωt . The vectorH could, for

example, contain zeros everywhere but for the row associated with, say, an autoregressive process for technology; in
this row, the entry would be the homoskedastic standard deviation of technology shocks.
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where|ρ| < 1 is the autocorrelation of the process,ηt its standard normal innovation withτ > 0

scaling these innovations to enable non-unity standard deviations.

The solution to (3) is a time-invariant functiony, taking as its state variable basis, the shocks

and states induced by stochastic volatilityzω
t ≡

[
ςt−1 εω′

t

]′
, whereεω

t ≡
[
ωt ηt

]′
, as well as the

remaining shocks and states,zt ≡
[
y′t−1 ε′t

]′
. Solutions are indexed by the perturbation parameter

σ ∈ [0,1] scaling the distribution of future shocks

yt = g(σ,zt,z
ω
t )(5)

yt+1 = g(σ,
[
y′t σε′t+1

]′
,
[
ςt σεω′

t+1

]′
)(6)

The role of the parameterσ∈ [0,1] can be seen in the policy function att+1, where it premultiplies

shocks datedt +1. That is, from the timet perspective of the conditional expectations operator in

(3), shocks datedt +1 are unknown and are the source of risk in the model which is scaled byσ.

Whenσ = 0, the model is deterministic and the the deterministic steady state is a fix point of the

mappings in (5) when all shock realizations are equal to their mean (i.e., zero) values.

We are now in a position to provide the third order Taylor approximation of (5) about the

deterministic steady state.

Proposition 2.2. The recursive solution of (3) expanded out to third order at the deterministic

steady state is given by

yt ≈
1
2

gσ2 +
1
2

gσ2zzt +
1
2

gσ2zwzw
t

+
(
gςωςt−1+gηωηt

)
ωt

+
1
2

(
gςωzςt−1+gηωzηt

)
ωtzt

+
1
2

(
gς2ως2

t−1+2gςηωςt−1ηt +gη2ωη2
t

)
ωt

+Terms independent of stochastic volatility(7)

Proof. See the appendices.

Notice, importantly, that only derivatives with respect tothe risk scaling parameterσ provide a
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channel for stochastic volatility to interact with variables outside of the stochastic volatility and the

shock it impacts. The remaining terms, i.e., those that do not involve derivatives with respect to the

risk scaling parameterσ, capture the direct effect of a change in volatility on shocks drawn from

the distribution subjected to the change. We split the thirdorder approximation of the recursive

solution of (3) in proposition2.2 into these two components.

First, the component that captures the effect of changes in the dispersion of the distribution of

shocks on the magnitude of shocks realized from this distribution.

Definition 2.3. At third order, the amplification component of yt is

yampli f ication
t =

(
gςωςt−1+gηωηt

)
ωt

+
1
2

(
gςωzςt−1+gηωzηt

)
ωtzt

+
1
2

(
gς2ως2

t−1+2gςηωςt−1ηt +gη2ωη2
t

)
ωt(8)

In essence, an increase in the dispersion of this distribution serves to magnify the realizations

of shocks from the undispersed distribution, hence our label, “amplification.”

Second, the component that captures the effect of changes inthe dispersion of the distribution

of shocks on the evaluation of expectations

Definition 2.4. At third order, the risk component of yt is

yrisk
t =

1
2

gσ2 +
1
2

gσ2zzt +
1
2

gσ2zwzw
t(9)

In essence, an increase in the dispersion of this distribution increase the risk or measurable

uncertainty regarding future stochastic variables, henceour label, “risk.”

The volatility shockηt can only affect the conditional distribution of future shocks only if the

stochastic processςt is persistent, as we summarize in the following

Corollary 2.5. At third order, the risk component of yt , (9), is nonzero if and only ifςt is persistent,

that is if ρ 6= 0.
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Proof. See the appendices.

We have defined the volatility process in (1) such that changes in the volatility occur simultane-

ous with realizations of shocks, that is bothςt andωt enter (1) with a subscriptt. Volatility shocks

will only affect risk or measurable uncertainty regarding future shocks ifςt is serially correlated,

such that and innovation to the volatility process also affects future volatility.

3 The Model

In this section, we derive a stochastic neoclassical growthmodel with the recursive preferences

and stochastic volatility. We will follow Tallarini (2000)closely so that our model coincides with

his in the special case of constant (i.e., non stochastic) volatility. Preferences are recursive in an

exponential certainty equivalent with the period utility function logarithmic in consumption and

leisure. Production is neoclassic using time-to-build capital and labor, whose productivity grows

as a random walk with drift and innovations subject to stochastically varying volatility.

The economy is populated by an infinitely lived household seeking to maximize its expected

discounted lifetime utility given by the recursive preferences

Vt = lnCt +ψ ln(1−Nt)+β
2
γ

ln
(

Et

[
exp
( γ

2
Vt+1

)])
(10)

whereCt is consumption,Nt labor,β ∈ (0,1) the discount factor and

γ ≡ 2
(1−β)(1−χ)

1+ψ
(11)

indexes the deviation with respect to the expected utility.χ denotes the coefficient of relative risk

aversion (CRRA) for atemporal wealth gambles10 andψ > 0 controls labor supply. Withχ equal

to the elasticity of intertemporal substitution (EIS) which is equal to one here, (10) collapses to the

expected utility. The household optimizes over consumption and labor supply subject to

Ct +Kt =WtNt + rK
t Kt−1+(1−δ)Kt−1(12)

10See also Swanson (2013).
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whereKt is capital stock accumulated today for productive purpose tomorrow,Wt real wage,rK
t

the capital rental rate andδ ∈ [0,1] the depreciation rate. Investment is the difference between the

current capital stock and the capital stock in the previous period after depreciation

It = Kt − (1−δ)Kt−1(13)

We assume a perfectly competitive production side of the economy, where output is produced

using the labor augmented Cobb-Douglas technologyYt = Kα
t−1

(
eZt Nt

)1−α
. Zt is a stochastic

productivity process andα ∈ [0,1] the capital share. Productivity is assumed to be a random walk

with drift, incorporating long-run risk into the model11

at ≡ Zt −Zt−1 = a+σze
σz,t εz,t, εz,t ∼ N (0,1)(14)

with εz,t the innovation toZt . σzeσz,t can be interpreted as the standard deviation of the productivity

growth withσz the homoskedastic component. Following, e.g., Fernández-Villaverde et al. (2011b)

and Caldara et al. (2012), we specify the heteroskedastic component,σz,t , as

σz,t = ρσσz,t−1+ τεσz,t , εσz,t ∼ N (0,1)(15)

where|ρσ|< 1 andτ is the standard deviation ofεσz,t . The model is closed by the market clearing

condition

Yt =Ct + It(16)

setting consumption and investment equal to output in each period.

The solution is characterized by the intratemporal labor supply/productivity condition equal-

izing the utility cost of marginally increasing labor supply to the utility value of the additional

consumption obtained therewith

ψ
1−Nt

=
1
Ct

(1−α)
Yt

Nt
(17)

11As noted by Bansal and Yaron (2004, p. 1502), in an endowment economy with recursive preferences and stochas-
tic volatility, better long-run growth prospects leads to arise in the wealth-consumption and the price-dividend ratios.
Rudebusch and Swanson (2012, p. 108) incorporate both real and nominal long-run risk in a production economy with
recursive preference, and find long-run nominal risk improves the model’s ability to fit the data.
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and the intertemporal Euler equation

Et [mt+1(1+ rt+1)] = 1(18)

where the real risky ratert comes from combining firms’ profit and households’ utility maximiza-

tion

1+ rt = αKα−1
t−1 (ezt Nt)

1−α +1−δ = rK
t +1−δ(19)

and wheremt+1 the stochastic discount factor or pricing kernel is given by

mt+1 ≡
∂Vt/∂Ct+1

∂Vt/∂Ct
= β

Ct

Ct+1

exp
( γ

2Vt+1
)

Et
[
exp
( γ

2Vt+1
)](20)

with Vt implicitly evaluated at the maximum.

As the economy is nonstationary, growing at the rateat , we detrend output, consumption, in-

vestment, capital stock and value function to stationarizethe model. This is achieved by dividing

all nonstationary variables but the value function, which must detrended differently, by the con-

temporaneous level of productivityeZt .12 Labor supplyNt and leisure 1−Nt as well as the returns

rt andrK
t are stationary and therefore do not need to be transformed. Stationary variables will be

denoted by lower case letters.

Reexpressing the pricing kernel in terms of stationary variables, the stochastic trend or long-run

risk can be seen directly in the pricing kernel

mt+1 = β
ct

ct+1
e−(a+σze

σz,t+1εz,t+1)
exp
(

γ
2

[
vt+1+

1
1−β (a+σzeσz,t+1εz,t+1)

])

Et

[
exp
(

γ
2

[
vt+1+

1
1−β (a+σzeσz,t+1εz,t+1)

])](21)

where the stochastic trend,σzeσz,t+1εz,t+1, enters the kernel through the twisted continuation utility

as well as through the stochastic discount factor that wouldobtain under expected utility,β Ct
Ct+1

,

and thereby explicitly relates the volatility processσz,t+1 to the pricing kernel as in, e.g., Bansal

et al. (Forthcoming).

To analyze asset prices, we append the model with the following additional asset pricing vari-

ables: the real risk-free rate 1+ r f
t ≡ Et(mt+1)

−1, the squared conditional market price of risk—

12See the appendix for details.
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the ratio of the conditional variance of the pricing kernel to square of its conditional mean13—

cmprt ≡
(Et[(mt+1−Etmt+1)

2])
1
2

Etmt+1
that measures the excess return the household demands for bearing

an additional unit of risk, the expected (ex ante) risk premium erpt ≡ Et

(
rt+1− r f

t

)
, and the (ex

post) risk premiumrpt = rt − r f
t−1 as the difference between the risky and risk-free rate.

4 Perturbation Solution and Risk Adjustment Channel

We solve the model in the foregoing section with a third orderperturbation. As shown by Caldara

et al. (2012), low order local approximations via perturbation methods can solve models such as

ours quickly with a degree of accuracy comparable to global methods. Moreover, as at least a third

order approximation is necessary for the analysis of time-varying shifts in risk premia and related

measures at the heart of our analysis, we solve the model to third order. We use the nonlinear

moving average perturbation derived in Lan and Meyer-Gohde(Forthcoming) as it delivers stable

impulse responses and simulations and, as we shall show, enables analytical calculation and risk

decomposition of moments.

For the implementation of the nonlinear moving average perturbation, we collect the (station-

arized) equilibrium conditions into a vector of functions

0= Et [ f (yt+1,yt ,yt−1,εt)](22)

whereyt is the vector of the endogenous variables, andεt the vector of the exogenous shocks,

assuming the functionf in (22) is sufficiently smooth and all the moments ofεt exist and finite14.

The solution to (22) is a time-invariant functiony, taking as its state variable basis the infinite

sequence of realized shocks, past and present, and indexed by the perturbation parameterσ ∈ [0,1]

13We square the market price of risk to bestow it with the differentiability at the deterministic steady state necessary
for our perturbation approach

14See for example, Judd (1998, ch. 13) and Jin and Judd (2002) for a complete characterization of these assumptions.
While the normal distribution for shocks we choose is at oddswith Jin and Judd’s (2002) assumption of bounded
support, Kim et al. (2008) dispute the essentiality of this assumption, lending support to our distribution choice
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scaling the distribution of future shocks

yt = y(σ,εt ,εt−1, . . .)(23)

Assuming normality of all the shocks and settingσ = 1 as we are interested in the stochastic

model, the third order approximation—a Volterra expansion, see Lan and Meyer-Gohde (Forthcoming)—

of (23), takes the form

y(3)t =y+
1
2

yσ2 +
1
2

∞

∑
i=0

(
yi +yσ2,i

)
εt−i +

1
2

∞

∑
j=0

∞

∑
i=0

y j ,i(εt− j ⊗ εt−i)(24)

+
1
6

∞

∑
k=0

∞

∑
j=0

∞

∑
i=0

yk, j ,i(εt−k⊗ εt− j ⊗ εt−i)

wherey denotes the deterministic steady state of the model, at which all the partial derivatives

yσ2,yσ2,i,yi ,y j ,i and yk, j ,i are evaluated. (24) is naturally decomposed into order of nonlinear-

ity and risk adjustment—yi, y j ,i andyk, j ,i capture the amplification effects of the realized shocks

(εt ,εt−1, . . .) in the policy function (23) at first, second and third order respectively. The two partial

derivatives with respect toσ, yσ2 andyσ2,i adjust the approximation for future risk.15 While yσ2 is

a constant adjustment for risk and a linear function of the variance of future shocks16, yσ2,i varies

over time, interacting the linear response to realized shocks with the variance of future shocks

essentially adjusting the model for time variation in the conditional volatility of future risk.

5 Calibration

We select three calibrations for the numerical analysis of the model. For the baseline calibration,

most of the parameter values are taken from Tallarini (2000)and are listed below.

[Table 1 about here.]

The discount factorβ = 0.9926 generates an annual interest rate of about 3 percent. The

capital shareα = 0.339 matches the ratio of labor share to national income. The depreciation

15More generally, a constant term,yσ3, at third order adjusts (24) for the skewness of the shocks. See Andreasen
(2012). As we assume all the shocks are normally distributed, yσ3 is zero and not included in (24) and the rest of our
analysis.

16See, Lan and Meyer-Gohde (Forthcoming, p. 13) for the derivation of this term.
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rateδ = 0.021 matches the ratio of investment to output. The parameterχ is set to 100, translating

to a relative risk aversion parameter with respect to consumption of about 25 following Tallarini

(2000).17 The labor supply parameterψ is chosen such that labor in the deterministic steady state,

N, is 0.2305 to align with the mean level of hours in data following Tallarini (2000). Withβ, χ,

andψ as above,γ =−0.3676 in line with Tallarini (2000).

For the parameters of the volatility shock, the literature varies in the range of the persistence—

ρσ, from 0.9, Caldara et al. (2012) and Bidder and Smith (2012), to 0.95, Fernández-Villaverde and

Rubio-Ramı́rez (2010), and to 0.99 or 1, Andreasen (2012) and Justiniano and Primiceri (2008)—

and in the range of its instantaneous standard deviation—τ, from 0.01, Andreasen (2012) and Jus-

tiniano and Primiceri (2008), to 0.1, Fernández-Villaverde and Rubio-Ramı́rez (2010), and to 0.15,

Bidder and Smith (2012). We follow the parameterization of Bidder and Smith (2012), implying a

cumulative variance comparable to the value in Fernández-Villaverde and Rubio-Ramı́rez (2010,

p. 20), that “generates changes in volatility similar to theones observed in the [post-war] U.S.”

Following Tallarini (2000), we adjust the homoskedastic component of the standard deviation of

productivity growth to match the standard deviation of (log) consumption growth.

[Table 2 about here.]

While still allowing preferences to be recursive, the constant volatility calibration shuts down

stochastic volatility by settingρσ = τ = 0, this enables direct comparison with Tallarini’s (2000)

results. In addition, by comparing with the results from thebaseline calibration, this exercise helps

identify the contribution of the stochastic volatility, byitself and/or in interaction with recursive

preferences, to the model. The expected utility calibration shuts stochastic volatility down and is

implemented by settingχ = 1 (equivalently,γ = 0).

17Tallarini (2000) givesψ+χ
1+ψ for this measure of risk aversion. Swanson (2013) incorporating the active labor margin

as in Swanson (2012), givesχ1+ψ for this same measure of risk aversion. At our calibration, these measures correspond
to 25.831 and 25.08 respectively.
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We will use all the three calibrations to analyze the contributions of recursive preferences and

stochastic volatility to the model’s performance in matching empirical macroeconomic and asset

pricing statistics. !!!Explain with macro moments and why!!! !!!Explain Hansen-Jagnannathan

bounds!!!

6 Theoretical Moments

In this section, we derive the theoretical moments of the third order approximation (24). The

nonlinear moving average policy function (23) and its third order approximation (24) both map

exogenous shocks directly into endogenous variables. The moments of endogenous variables can

therefore be computed directly as they are functions of the known moments of exogenous shocks.

We further decompose the theoretical variance, disentangling the individual contributions of the

risk adjustment and amplification channels to the total variance. Note that throughout the derivation

of theoretical moments, we assume normality of the exogenous shocks and all the approximated

variables are covariance stationary.18

By contrast, the state space perturbation policy function and its nonlinear approximations map

the endogenous variables into themselves. Computing them-th theoretical moment of such a non-

linear approximations ofn-th order, for example, requires the knowledge of higher (than m-th)

moments of endogenous variables that are in general nonlinear functions of the approximations

up to and includingn-th order. To this end, the calculation results in an infiniteregression in the

moments of endogenous variables. While theoretical moments of nonlinear state space perturba-

tion approximations are in general not available, there areattempts in recent literature. Andreasen

et al. (2013) calculate theoretical moments by pruning the nonlinear approximations, such that

the higher (thanm-th) moments are functions of approximations lower than thecurrent order of

18While removing normality does not disable the calculation of theoretical moments, the derivation will be more
complicated as additional terms involving skewness and higher (up to fifth) moments of the shocks emerge. See Lan
and Meyer-Gohde (Forthcoming) for proof of the covariance stationarity.
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approximation, and therefore computable given the resultsfrom all lower orders.19

6.1 Mean

The mean (first moment) of the third order approximation (24) is straightforward to calculate.

Applying the expectations operator to (24) yields

E
[
y(3)t

]
= y+

1
2

yσ2 +
1
2

∞

∑
j=0

y j , jE [εt ⊗ εt ](25)

The last term in (24) vanishes as the triple Kronecker product in expectation isthe columnwise

vectorization of the third moment of the exogenous shocks, equal to zero under normality. Like-

wise, the Kronecker product in expectation is the columnwise vectorization of the second moment

of the exogenous shocks. Only the contemporaneous varianceappears because the shock vector

is assumed serially uncorrelated. The other two terms containing εt−i in (24) also disappear as

the shock is mean zero. From a different perspective, the deterministic steady state is the mean of

the zeroth order approximation where all shocks, past, present and future are zero. It remains the

mean in a first order approximation, as the exogenous shocks are mean zero (first moment is zero).

At second order, the second moments of the shocks are included—both past and present (in the

term∑∞
j=0y j , jE [εt ⊗ εt ]) as well as future shocks (in the termyσ2)—which are assumed nonzero,

generating an adjustment from the deterministic steady state. When the approximation moves to

the third order, the calculation of the mean of (24) would be accordingly adjusted for the first three

moments of all the realized and future shocks, but the mean zero and normality assumptions render

the first and third moments of the shocks zero, thus leaving the first moment at third order identical

to its value from a second order approximation.

19 As shown in Lan and Meyer-Gohde (2013a), nonlinear moving average perturbations at the third order differ
from their pruned state space counterparts in that they are centered around and correct the first derivative of the policy
function for the stochastic steady state implied by the order of approximation, leading to accuracy gains in a mean
squared sense.
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6.2 Variance and Autocovariances

While we could conceivably compute the second moments (variance and autocovariances) of (24)

using the Volterra expansion directly, it would be a rather complicated operation on the products of

multi-layered infinite summation of coefficients. As an alternative, we use the recursive expression

of (24) derived in Lan and Meyer-Gohde (2013a) to compute the second moments.

Computing the second moments using the recursive expression of (24), we need to proceed

sequentially through the orders of approximation and exploit the linearly recursive (in order) struc-

ture of the solution. That is, the second moments of the approximation at any order can always be

expressed as the sum of the second moments of the approximation of the previous order and the

second moments of all the previous order increments (the difference between two approximations

of adjacent order, subtracting the constant risk adjustment of the higher order). In other words,

the embedded decomposition into order of approximation in the nonlinear approximations of the

policy function (23) is preserved in its second moments.

The first order approximation of (23) takes the form of a linear moving average,y(1)t = y+

∑∞
i=0yiεt−i, and can be expressed recursively as20

y(1)t −y= α
(

y(1)state
t −ystate

)
+β0εt(26)

where the differencey(1)t − y is the deviation of the first order approximation with respect to the

deterministic steady state, and identical to the first orderincrement

dy(1)t ≡ y(1)t −y(27)

which captures the addition to the approximation contributed by the time varying terms of the

current, here first, order of approximation, asy is the zeroth order approximation21 and the constant

20See Lan and Meyer-Gohde (2013a). This is, of course, an standard result for linear models. Compare, e.g., the
state space representations of Uhlig (1999) with the infinite moving average representations of Taylor (1986).

21This is the terminology in Anderson et al. (2006, p. 17) and Borovicka and Hansen (2012, p. 22).
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risk adjustment of first order,yσ, is zero. In addition

E
[
dy(1)t−1ε′t

]
= 0(28)

as the current shock is not correlated with the endogenous variables in the past. Under the or-

thogonality condition (28), the sequence of autocovariances of endogenous variablesor, at this

order equivalently, of the first order incrementΓy(1)

j = Γ(1)
j = E

[
dy(1)t dy(1)

′

t− j

]
, solves the following

Lyapunov equation

Γy(1)

j = αΓy(1)

j α′+β0E[εtεt− j ]β′
0(29)

The second order approximation of the policy function (23) captures the amplification effects

of the realized shocks up to second order, and the constant risk adjustment for future shocks

y(2)t = y+
1
2

yσ2 +
∞

∑
i=0

yiεt−i +
1
2

∞

∑
j=0

∞

∑
i=0

y j ,i(εt− j ⊗ εt−i)(30)

Defining the second order increment

dy(2)t ≡ y(2)t −y(1)t −
1
2

yσ2(31)

which more clearly illustrates the notion of increment we use here: the addition the approximation

contributed by time varying components of current order (orthe difference between the current

and previous order of approximation, herey(2)t − y(1)t , less the additional constant contributed by

the current order, here12yσ2). With this notion, the second order approximation (30) can be con-

sidered as the sum of first order approximation, the constantrisk correction term and second order

increment

y(2)t = y(1)t +
1
2

yσ2 +dy(2)t(32)

The above decomposition of second order approximation naturally passes on to its moments —

Starting with the mean, taking expectation of (32) yields

Ey(2)t = Ey(1)t +
1
2

yσ2 +Edy(2)t(33)

Therefore the mean of second order approximation is a sum of the mean of first order approxi-

mation, i.e., the deterministic steady state, the constantrisk correction term, and the mean of the
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second order increment. Likewise, the second moments of thesecond order approximation can

be expressed as the sum of the second moments of the first orderapproximation and those of the

order increment. We summarize the results for a second orderapproximation in the following

proposition

Proposition 6.1.Assuming the exogenous shocks are normally distributed, the j’th autocovariance

of the second order approximation (30) is of the form

Γy(2)

j = Γy(1)

j +Γ(2)
j(34)

where

Γy(2)

j = E

[(
y(2)t −Ey(2)t

)(
y(2)t− j −Ey(2)t

)′]
(35)

Γy(1)

j = Γ(1)
j = E

(
dy(1)t dy(1)

′

t− j

)
(36)

Γ(2)
j = E

[(
dy(2)t −Edy(2)t

)(
dy(2)t− j −Edy(2)t

)′]
(37)

Proof. See the appendices.

The second order incrementdy(2)t can also be expressed recursively.22 With that recursive

expression in hand, the unknownEdy(2)t in (33) andΓ(2)
j in (34) can be obtained by solving some

standard linear matrix equations and an appropriate Lyapunov equation. The details are relegated

to the appendices.

Similarly, to compute the second moments of endogenous variables using the third order ap-

proximation (24), we define the third order increment

dy(3)t ≡ y(3)t −y(2)t(38)

which is merely the difference between the third and second order approximations, as the third or-

der approximation adds no additional constant terms under normality. We summarize the resulting

second moment calculations at third order in the following proposition

22See, again, Lan and Meyer-Gohde (2013a).
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Proposition 6.2.Assuming the exogenous shocks are normally distributed, the j’th autocovariance

of the third order approximation (24) takes the form

Γy(3)

j = Γy(2)

j +Γ(3)
j +Γ(1),(3)

j +
(

Γ(1),(3)
j

)′
(39)

where

Γy(3)

j = E

[(
y(3)t −Ey(3)t

)(
y(3)t− j −Ey(3)t

)′]
(40)

Γ(3)
j = E

(
dy(3)t dy(3)

′

t− j

)
(41)

Γ(1),(3)
j = E

(
dy(1)t dy(3)

′

t− j

)
(42)

andΓy(2)

j is as defined in Proposition6.1.

Proof. See the appendices.

Γy(3)

j is the j ’th autocovariance of endogenous variables computed usingthe third order approx-

imation (24), Γ(3)
j the j ’th autocovariance of the third order incrementdy(3)t , andΓ(1),(3)

j the j ’th

autocovariance between the first and the third order incrementsdy(1)t anddy(3)t . Analogous to (34)

in Proposition6.1, (39) decomposes the second moments into order of approximation: When the

approximation moves to the third order, the second moments of endogenous variables are those

computed using second order approximation (30), adjusted by the second moments ofdy(3)t itself

and the interaction with the first order incrementdy(1)t .

With the recursive form of the third order incrementdy(3)t ,23 the two unknown quantities,Γ(3)
j

andΓ(1),(3)
j , in (39) for calculating the covariance matrices of the third orderapproximation can be

computed by formulating appropriate Lyapunov equations. The details are in the appendices.

6.3 A Variance Decomposition

The third order approximation, (24), decomposes naturally into orders of nonlinearity and risk

adjustment. This dissects the individual contributions ofthe sequence of realized shocks and future

23See, again, Lan and Meyer-Gohde (2013a).
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shocks and a variance decomposition can be accordingly derived to analyze the composition of the

volatility of endogenous variables.

Let y(3)risk
t ≡ 1

2yσ2+ 1
2 ∑∞

i=0yσ2,iεt−i denote the risk adjustment channel, with a constant risk ad-

justment at second order (1
2yσ2) and a time-varying risk adjustment channel at third order (1

2 ∑∞
i=0yσ2,iεt−i)

andy(3)amp
t collect all the other terms in the third order approximation(24) capturing the amplifi-

cation effects, we can rewrite (24) as

y(3)t ≡ y(3)risk
t +y(3)amp

t(43)

Centering the previous equation around its mean,24 multiplying the resulting expression with its

transposition and applying the expectations operator yields the following variance decomposition

Proposition 6.3. Assuming the exogenous shocks are normally distributed, the covariance of the

third order approximation (24) takes the form

Γy(3)

0 = Γy(3)risk

0 +Γy(3)risk,amp

0 +Γy(3)amp

0(44)

where

Γy(3)risk

0 = E

[(
y(3)risk

t −Ey(3)risk
t

)(
y(3)risk

t −Ey(3)risk
t

)′]
(45)

Γy(3)amp

0 = E

[(
y(3)amp

t −Ey(3)amp
t

)(
y(3)amp

t −Ey(3)amp
t

)′]
(46)

Γy(3)risk,amp

0 = E
[(

y(3)amp
t −Ey(3)amp

t

)
y(3)risk′

t

]
+
(

E
[(

y(3)amp
t −Ey(3)amp

t

)
y(3)risk′

t

])′
(47)

Proof. See the appendices.

The variance of the endogenous variables,Γy(3)

0 , can thus be expressed as the sum ofΓy(3)risk

0

that stores the variations come from the time-varying risk adjustment channel alone,Γy(3)amp

0 that

stores the variations come from the amplification channels of all three orders andΓy(3)risk,amp

0 that

stores the variations come from the interaction between thetwo types of channels.

Bothy(3)risk
t andy(3)amp

t can be expressed recursively. With those recursive expressions,Γy(3)risk

0

andΓy(3)amp

0 can be computed by formulating appropriate Lyapunov equations (See the appendices

24NoteEy(3)risk
t = 1

2yσ2 andEy(3)amp
t = y+ 1

2 ∑∞
j=0y j , jE [εt ⊗ εt ].
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for details). AsΓy(3)

0 is already known from Proposition6.2, Γy(3)risk,amp

0 can be computed by sub-

tractingΓy(3)risk

0 andΓy(3)amp

0 from Γy(3)

0 .

6.4 Simulated Moments

As an alternative to the theoretical moments, we can simulate the third order approximation (24)

and compute the moments of the simulated series to analyze the statistical implications of the

model. Lan and Meyer-Gohde (Forthcoming) show that nonlinear approximation of the policy

function (23) preserve the stability of the linear approximation or firstorder approximation and,

hence, does not generate explosive time paths in simulations.

Simulation methods for moment calculations are, however, not always feasible for state space

perturbations. Aruoba et al. (2006), Fernández-Villaverde and Rubio-Ramı́rez (2006) and Kim

et al. (2008) note that higher order Taylor approximations to state space perturbation policy func-

tion can be potentially explosive in simulations. Truncation of the distribution from which exoge-

nous shocks are drawn or the application of pruning schemes,like proposed by Kim et al. (2008)

for a second order approximation,25 can prevent such behavior. While this imposes stability on

simulations of higher order approximations, pruning is an ad hoc procedure as noted by Lom-

bardo (2010) and potentially distortive even when the simulation is not on an explosive path (See,

Den Haan and De Wind (2012)). Though this might give rise to reasonable doubts regarding the

accuracy and validity of moments calculated using perturbations, we will show that this is not the

case with our nonlinear moving average.

As (24) generates stable time paths, moments computed by simulating (24) should asymptoti-

cally converge to their theoretical counterparts.

[Figure 1 about here.]

25See Lan and Meyer-Gohde (2013a) for an overview and comparison of pruning algorithms at second and third
order and their relation to our nonlinear moving average.
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Figure1 is an example of this check. It depicts the evolution path of the density of the simulated

variance of the pricing kernel in the model described in Section 3 under the baseline calibration.

Densities of the simulated variance of the pricing kernel are calculated using a kernel density

estimation and 100 simulations at the indicated length. Thetheoretical variance, denoted by the red

dashed line, is 0.0666 and all densities are in general centered around this value. The distributions

of simulated variance are more dispersed in short-run simulations, tightening up to the theoretical

value as the length increases consistent with asymptotic convergence of the simulated moments to

their theoretical counterparts we calculated above.

7 Analysis of the Baseline Model

In this section, we report the performance under different calibrations of the model approximated

to third order. We present impulse responses using the method of Lan and Meyer-Gohde (Forth-

coming) to shocks in productivity growth and its volatilityfor both macroeconomic and asset

pricing variables. We then proceed to the moments and the results of the variance decomposition

introduced in section6.3to identify and quantify the individual contribution from the time-varying

risk adjustment channel to the total variation. Finally, wecast doubt on the efficacy of stochastic

volatility in aiding the model ability in attaining the Hansen-Jagnanthan bounds.

7.1 Impulse Responses and Simulations

We analyze the impulse responses to shocks in productivity growth and shock in its volatility for

macroeconomic and asset pricing variables. We also simulate the conditional market price of risk

under stochastic volatility and with growth shocks of constant variance to observe the change in

the variations of this variable under conditional heteroskedasticity.

[Figure 2 about here.]
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Figure2 depicts the impulse response and its contributing components for capital to a positive,

one standard deviation shock in volatility, i.e., inεσz,t . The upper panel displays the impulse

responses at first, second and third order as deviations fromtheir respective (non)stochastic steady

states (themselves in the middle right panel). In the the middle left panel and the middle column

of panels in the lower half of the figure, the contributions tothe total impulse responses from

the first, second and third order amplification channels, that is, yi , yi,i andyi,i,i in the third order

approximation (24), are displayed. Notice that there is no response in these amplification channels.

All responses to this volatility shock come from the lower left panel of the figure where the time-

varying risk adjustment channelyσ2,i is displayed. In other words, for capital, a volatility shock by

itself propagates solely through the time-varying risk adjustment channel.

Capital responds positively to a positive volatility shock. This captures the household’s precau-

tionary reaction to the widening of the distribution of future shocks.26 Our risk-averse household

accumulates a buffer stock in capital to insure itself against the increased future risk of productivity

growth shocks from a more dispersed distribution.

[Figure 3 about here.]

Figure3 displays the responses of macroeconomic variables as deviations from their risk cor-

rected steady states to a positive, one standard deviation volatility shock. The household accu-

mulates a buffer stock of capital by increasing current investment on impact of the shock. As the

allocation has not changed, the household finances this investment through a decrease in current

consumption, resulting in an increase in the marginal utility of consumption. The intratemporal la-

bor supply equation (17) implies this increased marginal utility of consumption leads to an increase

in the marginal utility of leisure, and therefore a decreasein time spend on leisure. The increased

labor effort, with the capital stock being fixed on impact as it is a state variable and with the pro-

26See also Fernández-Villaverde and Rubio-Ramı́rez (2010)and van Binsbergen et al. (2012) for precautionary
savings behavior in DSGE perturbation.
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ductivity having not changed,27 translates into an increase in current output partially offsetting the

costs borne by consumption of the increased investment for the buffer stock of capital. Thus, this

model predicts a boom in economic activity following an increase in risk, as firms produce and

households work to accumulate the necessary buffer stock. Aricher model of frictional investment

that, for example, includes variable capacity utilization, capital adjustment cost and consumption

habit formation can overturn this result, as discussed in section 8. While the impulse responses

for the macroeconomic variables are not pictured with theircontributing components, responses

of these variables to a volatility shock come solely from thetime-varying risk adjustment channel.

The volatility shock is persistent but not permanent. As theshock dies out and productivity shocks

fail to materialize from their widened distribution, the household winds down its buffer stock of

capital by increasing consumption and leisure, leading to afall in output and investment.

[Figure 4 about here.]

Figure4 depicts the impulse responses and their contributing components for the expected risk

premium to positive, one standard deviation shocks in productivity and its volatility, i.e., inεz,t and

εσz,t (Figure4aand4b respectively). Firstly, note that both the volatility and productivity growth

shock propagate solely throughyσ2,i , the time-varying risk adjustment channel of this variableand

there are no responses in the amplification channels of any ofthe three orders. Second, the response

of the expected risk premium to the volatility shock is almost two orders magnitude larger than

that to the productivity growth shock, implying the overallmajority of variations in this variable

is driven solely by volatility shocks with the contributionfrom the productivity growth shock to

the total variation negligible. Moreover, the positive response of the expected risk premium to an

increase in volatility highlights the role of long run risk in asset pricing as noted by Bansal and

Yaron (2004), Bansal (2008) and Bansal et al.’s (Forthcoming) — risks and volatility in asset prices

27Note that, it is the distribution governing future productivity shocks that is being shocked here, not the level of
productivity itself.
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are driven by those in economic fundamentals. An increase ofvolatility in long run productivity

growth therefore drives up risks in asset prices and makes holding asset riskier. Household thereby

demands a higher compensation for doing so. I.e., an increase in volatility of long run risk carries

a positive risk premium.

[Figure 5 about here.]

Figure5 depicts the simulated time paths of the squared conditionalmarket price of risk28 un-

der the constant volatility and the baseline calibration ofthe model (Figure5aand5brespectively).

When there is no volatility shock, the conditional market price exhibits minimal fluctuations along

the simulation path. Adding stochastic volatility, however, induces a substantial amount of varia-

tions in this variable. This is consistent with the interpretation that volatility shocks are a source

of conditional heteroskedasticity. The displayed time variation in the conditional market price of

risk is roughly consistent with the empirical variations inthe (lower bound of) market price of risk

as measured over different periods of time the past 130 odd years (See, Cogley and Sargent (2008,

p. 466)).

7.2 Moments Comparison

We compare the mean and standard deviations of the third order approximation (24) to those re-

ported in Tallarini (2000) for his model and post-war U.S. data. The results of the variance decom-

position in Section6.3are reported, allowing us to pin down the contribution from the time-varying

risk adjustment channel to the total variance of the endogenous variables.

[Table 3 about here.]

The third and fourth column of Table3 report the theoretical means under the baseline and

constant volatility calibration of the model. The last column displays the means of the constant

28We square this variable to eliminate the kink at the deterministic steady state and make perturbation applicable.
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volatility calibration as reported by Tallarini (2000) with his iterative modified linear quadratic

approximation based on Hansen and Sargent (1995). By comparing the last two columns we

observe, for both macroeconomic and asset pricing variables, our theoretical means are in line

with those of Tallarini (2000).

In the presence of risks induced by the long run productivitygrowth shocks (with or without

stochastic volatility), the means of macroeconomic quantities (reported in the first five rows of

the third and fourth column) are uniformly larger than theircorresponding deterministic steady

state value (reported in the first five rows of the first column), reinforcing the interpretation of

household’s precautionary reaction to future shocks.29 In contrast, the mean of risky and risk free

rates (reported in the last two rows of the third and fourth column) are uniformly lower than their

deterministic counterparts (reported in the last two rows of the first column). This follows directly

from the increase in the mean of capital which reduces the average return on equity (risky rate) and

consequentially the risk free rate as noted by Tallarini (2000).

[Table 4 about here.]

The second and third column of Table4 report the theoretical standard deviations of the third

order approximation (24) under the baseline and constant volatility calibration ofthe model. Com-

paring to the standard deviations reported in the last two columns, our theoretical standard devia-

tions are in line with those reported in Tallarini (2000), both model based and empirical.

[Table 5 about here.]

Table5 reports the results of the variance decomposition under thebaseline (stochastic volatil-

ity) and the constant volatility calibration. For each calibration, the table reports the percentage

contributions of the first order amplification channely(1)t and the time-varying risk adjustment

29That the mean of higher order approximation of macroeconomic quantities captures precautionary reactions and
hence are different from their deterministic steady state counterparts are also noted by Tallarini (2000), Michel (2011)
and Coeurdacier et al. (2011) in state space context.
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channely(3)risk
t to the total variance of the endogenous variables as the overall majority of vari-

ations come from these two channels. The second and third column report the decomposition

results in absence of volatility shock and the last two columns in presence of volatility shock. For

the conditional market price of risk and the expected risk premium, all variation comes from the

time-varying risk adjustment channel regardless of whether there is volatility shock. This is con-

sistent with the impulse responses for the expected risk premium (Figure4), where we observed

that both the productivity growth and volatility shock propagate solely through the time-varying

risk adjustment channel.

For the risk premium and macroeconomic variables, adding the volatility shock alters the com-

position of variance. In the absence of the volatility shock, the contribution of the time-varying

risk adjustment channel is negligible and almost all variation comes from the first order amplifica-

tion channel. Adding stochastic volatility, however, operationalizes the time-varying risk channel,

as a large portion of variance now comes through changes in risk as measured by conditional

heteroskedasticity. Since, for macroeconomic variables,actions in the time-varying risk adjust-

ment channel can be explained by the risk-averse household’s precautionary motives, this variance

decomposition result implies that such motives account fora larger portion of variance in the pres-

ence of stochastic volatility than in the absence thereof. An presence of changing risk induces the

pattern of precautionary behavior here—with investment, output, and labor driven substantially by

risk adjustments—as the capital margin cannot be freely adjusted contemporaneously in response

to shifts in the distribution of technology shocks, pushingthe adjustment onto production, the

other factor of production, labor, and the component of expenditure, investment, over which the

household does not have a direct smoothing motive.

From a methodological point of view, in the absence of volatility shock, a first order linear ap-

proximation would thus appear sufficient for computing the theoretical variance of macroeconomic

variables. However, theoretical variances need to be computed using a third order approximation in
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the presence of stochastic volatility and for conditional asset pricing measures, as otherwise a large

portion or all of the variance will be missed through the neglect of time varying risk adjustment

and higher order amplification effects.30

7.3 Stochastic Volatility and Hansen-Jagannathan Bounds

We evaluate the model’s ability in attaining the Hansen-Jagannathan bounds under the three dif-

ferent calibrations. The bounds present an important empirical measure that depend on the first

two moments of the pricing kernel for a model’s ability of replicating asset pricing regularities.

Contrary to studies in endowments models where the varianceof the log consumption growth pro-

cess is fixed exogenously, the variance of log consumption growth here is endogenous, deriving

eventually from the productivity process. While adding stochastic volatility doesceteris paribus

move the model closer to the Hansen-Jagannathan bounds, it does so at the cost of increasing the

variance of the consumption process. Adjusting the homoskedastic component of productivity to

hold the varaice of log consumption growth constant, the move towards the Hansen-Jagannathan

bounds is negated.

[Figure 6 about here.]

Figure6 depicts the unconditional mean standard deviation pairs ofthe pricing kernel generated

by the model under the three different calibrations. Under the baseline (stochastic volatility) and

the constant volatility calibrations, the preferences arein recursive form. While the volatility of the

kernel increases with the coefficient of relative risk aversion for atemporal wealth gambles (here

from χ equals one to five, ten, twenty, thirty, forty, fifty, and one hundred), the unconditional mean

of the kernel is left (essentially) unchanged as the elasticity of intertemporal substitution (EIS)

is parameterized independent of risk aversion in recursivepreferences, and the model approaches

30This provides insight, and a proviso in the presence of stochastic volatility, into the practice of computing macro
variables using first and conditional asset pricing measures with third order approximations as in Rudebusch and
Swanson (2012).
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the Hansen-Jagannathan Bounds from below. The expected utility calibration generates a volatile

pricing kernel at the cost of reducing its unconditional mean, as the EIS and risk aversion are

inversely correlated in the expected utility, generating Weil’s (1989) risk free rate puzzle. Figure6a

shows that given the same value of risk aversion, the calibration with stochastic volatility (baseline

calibration) generates a more volatile pricing kernel thanthe constant volatility calibration. In

other words, to generate certain amount of volatility in thepricing kernel, the model with volatility

shock appears to need less risk aversion than the model without. This is achieved, however, at

the cost of increasing the variance of the log consumption growth. As figure6b shows, if we hold

that variance constant at its empirical counterpart by reducing the homoskedastic component of the

productivity growth shock—as Tallarini (2000) does throughout his study, the effect of volatility

shock in terms of further increasing the volatility in the pricing kernel vanishes, reiterating the

conditional heteroskedastic interpretation of volatility shocks.

This casts doubt on the portability of the results of Bansal and Yaron (2004) and others that

identify stochastic volatility as a potential contributorto the resolution of asset pricing puzzles

summarized in the pricing kernel’s ability to reach the Hansen-Jagannathan bounds. When an

endowment setting is abandoned in favor of a production model, the variance of log consumption

growth can no longer be held exogenously. Increasing the variance of the volatility process leads to

an increase in the variance of the log consumption process. Holding the overall volatility constant

by adjusting the homoskedastic component of the productivity process downward counteracts the

increased variance of the volatility process nearly completely, leaving the model as well off with

regards to the Hansen-Jagannathan bounds as without stochastic volatility.

8 An Extension to Frictional Investment

In this section, we extend the model in section3 to demonstrate that when the model is no

longer frictionless an increase in risk may lead to a fall in output as argued for in Bloom (2009),

31



Fernández-Villaverde et al. (2011b), Basu and Bundick (2012), Bloom et al. (2012) and Bidder and

Smith (2012). To accomplish this, we extend the model in two dimensions. First, we add variable

capital utilization with endogenous depreciation to enable households to accumulate their precau-

tionary buffer stock of capital in response to a volatility shock by reducing capital utilization and

thereby decreasing depreciation as an alternative to increasing investment.31 Second, we impose

capital adjustment costs to increase the relative attractiveness of this alternate channel of capital

accumulation with respect to increasing investment.32 A numerical analysis of this extended model

suggests, when capital adjustment cost is sufficiently highand thus household primarily chooses

to decrease utilization rate to build up buffer stock of capital in response to a volatility shock, the

resulting decrease in capital for production and the consequential fall in current output outweighs

the simultaneous increase in output induced by increased labor input.

The infinitely lived household still seeks to maximize its expected discounted lifetime utility

given by the recursive preferences (10) over consumption and labor supply subject to the budget

constraint (12). The representative firm now maximizes profitsYt −WtNt − It in each period by

choosing labor input, investment and the capital utilization rate, subject to the following capital

accumulation law and production technology33

Yt = (utKt−1)
α (eZt Nt

)1−α
(48)

Kt = (1−δt)Kt−1+φtKt−1(49)

The capital adjustment cost function,φt in (49) penalizes investment, in units of current capital,

31Variable capital utilization allows household to adjust capital in service immediately, as opposed to a time-to-build
fashion, in response to shocks that alters the marginal productivity of capital, see Greenwood et al. (1988), Burnside
and Eichenbaum (1996) and King and Rebelo (1999) for detailed analysis of models’ propagation mechanism in
presence of variable capital utilization.

32See Hayashi (1982) for the theoretical foundation of capital adjustment cost, Jermann (1998) for its application in
asset pricing and Baxter and Crucini (1993), Baxter and Crucini (1995) and Baxter and Farr (2005) for its contribution
to explaining international trade and business cycles.

33We follow Uzawa (1969) and introduce adjustment costs associated with investment. See, e.g., Lucas (1967) for
an alternative.
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for deviating from its frictionless level, and follows Jermann’s (1998) specification

φt = φ
(

It
Kt−1

)
=

bk

1−1/ξk

(
It

Kt−1

)1−1/ξk

+ck(50)

wherebk andck are constants that will be set to ensure that adjustment costs are neutral in the

deterministic steady state andξk the elasticity of the investment capital ratio with respectto Tobin’s

q.34 With variable capital utilization,ut in (49) and (48), firms can adjust the capital input in

production contemporaneously. However, increasingut leads to faster capital depreciation and the

depreciation function follows Baxter and Farr’s (2005) specification

δt = δ(ut) =
bu

1+ξu
u1+ξu

t +cu(51)

wherebu andcu are constants that will be chosen such that capital is fully utilized in the determin-

istic steady state andξu the elasticity of marginal depreciation with respect to theutilization rate.35

The model is closed by the market clearing condition (16) as before.

The firm’s optimal utilization plan in presence of capital adjustment cost, equating the marginal

benefit in terms of additional output produced to the marginal cost in terms of additional units of,

is capital being worn out

α
Yt

ut
=

δ′t
φ′t

Kt−1(52)

The risky rate of return on capital in the presence of both capital adjustment cost and variable

utilization is now

rt =

(
α

Yt

Kt−1
+

1−δt +φt

φ′t
−

It
Kt−1

)
φ′t−1−1(53)

We keep the parameters of the baseline model in section3 at their values stated there (see Table

1), except for the homoskedastic component of the standard deviation of productivity growth,σz ,

which we adjust to match the standard deviation of (log) consumption growth. As do Christiano

et al. (2005) and Rı́os-Rull et al. (2012), we impose full capital utilization in the deterministic

34I.e.,ξk ≡−(φ′′t /φ′t)/(It/Kt−1) whereφ′t = ∂φt/∂(It/Kt−1) the marginal capital adjustment cost and the inverse of
Tobin’s q, andφ′′t = ∂φ′t/∂(It/Kt−1), see Baxter and Crucini (1995) for example.

35I.e.,ξu ≡ utδ′′t /δ′t whereδ′t = ∂δt/∂ut the marginal capital utilization andδ′′t = ∂φ′t/∂ut , see Baxter and Farr (2005)
for example.

33



steady state by lettingu = 1, and ensure the adjustment cost does not affect the deterministic

steady state by settingφ = I/K andφ′ = 1 as also noted in van Binsbergen et al. (2012).

For ξk, the literature varies in the range from 0.101 from van Binsbergen et al. (2012), to 0.23

from Jermann (1998),36 to 13.3 from Baxter and Jermann (1999) and to 15 from Baxter and Crucini

(1995) with changes in investment becoming less costly asξk increases (See Baxter and Crucini

(1993)). We setξk = 1.5, making utilization rate a preferred channel of adjustingcapital in service

in response to a volatility shock as changes in investment isfairly costly with this value. Note

that, as the value ofξk increases and adjusting capital through investment becomes less costly, the

extended model might again predict a boom in response to an increase in risk.

For the elasticity of utilization,ξu, Baxter and Farr (2005) examine three values:ξu = 1, taken

from Basu and Kimball (1997),37 0.1 taken from King and Rebelo (1999), along with a highly

elastic case under the value 0.05. We setξu = 0.1 and note that the primary concern of the analysis

of this extended model, the response of variables to a volatility shock, is qualitatively robust to this

highly elastic case as well.

[Figure 7 about here.]

Figure7 depicts the impulse responses of macroeconomic variables,expressed as deviations

from their risk corrected steady states, under a third orderapproximation to a positive, one standard

deviation volatility shock. As in the baseline model (See Figure3), the household accumulates a

buffer stock of capital in response to the increased volatility of future productivity shocks. To ac-

cumulate this stock, however, the household decreases the utilization rate, thereby slowing down

depreciation. With this additional margin available to thehousehold to accumulate capital, the in-

crease in investment relative to capital, financed by decreasing consumption, is noticeably smaller

than that in the model with baseline calibration.In addition, the labor supply equation (17) still

360.23 is near the lower bound of the empirical range as noted by Christiano et al. (2001)
37Baxter and Farr (2005) note the imprecision of Basu and Kimball’s (1997) estimation of this value.
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implies an increase in the marginal utility of consumption following the decrease in consumption

to finance increased investment and leads to an increase in the marginal utility of leisure, and

therefore a decrease in time spend on leisure. Unlike in the model under baseline calibration, the

increased labor effort, with productivity having not changed (again, it is only the volatility of the

distribution of future productivity shocks that is being shocked), fails to increase current output as

the effect on output from the decrease in utilization rate and the consequential under-deployment

of capital is stronger. Thus, this model predicts a fall in economic activity following an increase in

risk as opposed to a boom predicted by the model with baselinecalibration. The volatility shock is

persistent but not permanent and as the shock dies out and productivity shocks fail to materialize

from their widened distribution, the household winds down its buffer stock of capital by increasing

consumption, leisure and the utilization rate, leading to afall in investment but a rise in output

as the effect of the increase in the utilization rate again dominates. Both the duration of the drop

in output and its subsequent overshooting are consistent with the results documented by Bloom

(2009).

Though, labor and investment still rise in response to a volatility shock here. Additions to

the model, such as in Bidder and Smith (2012), with Jaimovichand Rebelo’s (2009) preferences

and Constantinides’s (1990) consumption habit formation,show that a positive volatility shock

leads to a simultaneous drop in output, investment, utilization, consumption and labor. Owing

to Jaimovich and Rebelo’s (2009) preferences, labor supplyin their model is largely independent

of wealth effects, and thus declines with other macroeconomic quantities. The habit formation

slows down consumption adjustment, increasing the persistence and magnitude of a recession.

By taking the demand side into account, Basu and Bundick (2012) show this uniform drop in

macroeconomic aggregates in response to an increase in riskusing a New Keynesian model with a

countercyclical markup through sticky prices. On impact ofa volatility shock, the increased labor

supply as a precautionary reaction reduces firms marginal cost of production and thereby increases
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the markup since price is sticky. A higher markup winds down the demand for both consumption

and investment goods, leading to a fall in output and employment. Nonetheless, it is noteworthy

that adjustment costs and variable capital utilization alone are sufficient to generate the drop in

output that Bloom (2009) identified empirically.

[Table 6 about here.]

The third column of Table6 reports the theoretical standard deviation of the extendedmodel.

Comparing to the model with baseline calibration, the standard deviation of the logarithmic in-

vestment capital ratio is noticeably smaller, consistent with the interpretation that adjusting capital

through investment is very costly in the presence of adjustment cost, leaving investment relatively

less volatile. The substantial drop in the standard deviation of the logarithmic investment output ra-

tio reinforces this interpretation as the volatility of investment now contributes much less, through

capital, to that of output when the utilization margin is activated.

[Table 7 about here.]

The last two columns of Table7 report the variance decomposition result of the extended

model. Comparing to the results of the model with baseline calibration reported in the fourth

and fifth columns, the contribution from the time varying risk adjustment channel to the total

variation of all the listed variables, except conditional market price of risk and conditional risk

premium, drops dramatically. This is not surprising, as theproduction side of the extended model

is less risky than that of the model with baseline calibration — the presence of variable utilization

and adjustment cost highlights the intratemporal substitution effects in response to shocks, i.e.,

household can adjust capital and thereby output immediately on the impact of shocks, as noted

by Greenwood et al. (1988), Burnside and Eichenbaum (1996) and King and Rebelo (1999), and

need not wait till next period. This is in contrast to the baseline model, where the capital input
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could not be adjusted in response to shifts in risk (fixed utilization rate and time to build capital).

Variable utilization and adjustment cost tend to increase the volatility of the pricing kernel as noted

in Cochrane (2005),38 by stretching out its time varying risk adjustment channel and thus shifting

risk adjustments to risk free rate.

9 Conclusion

We have studied a business cycle model with recursive preferences and stochastic volatility with

a third order perturbation approximation to the nonlinear moving average policy function. We

use the impulse responses generated by this third order approximation to analyze the propagation

mechanism of a volatility shock, and find that for macroeconomic variables, a volatility shock

by itself propagates solely through a time-varying risk adjustment channel. For conditional asset

pricing variables, this time-varying risk adjustment channel is the only working channel for the

transmission of shocks, both to productivity growth and itsvolatility.

We have derived a closed-form calculation of the theoretical moments of the endogenous vari-

ables using a third order approximation. Our calculation ofmoments lends itself to a decomposi-

tion that disentangles the individual contributions of time-varying risk adjustment and amplifica-

tion channels to the total variance. In our baseline model, we find that adding stochastic volatility

alters the composition of variance, making a time-varying risk channel a substantial contributor

of variance. For macroeconomic variables, variations thatcome from the time-varying risk ad-

justment channel can be explained by the household’s precautionary savings desires and, in the

presence of stochastic volatility, we find a large portion ofvariations in macroeconomic variables

is driven by precautionary behavior.

Our extended model with frictional investment predicts a drop and subsequent overshooting

of output in response to a volatility shock, consistent withempirical findings. Yet, with variable

38The standard deviation of risk free rate of the extend model is smaller than that of the model with baseline
calibration, as variable utilization reduces the overall volatility of the extend model, see footnote??.
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capital utilization, the capital input in production can beadjusted contemporaneously in response

to shocks, eliminating the importance of the time-varying risk adjustment channel for macroeco-

nomic variables. This finding, skeptical of the importance of stochastic volatility for precautionary

behavior in production models, is corroborated by our finding that stochastic volatility contributes

to the baseline model’s ability to reach the Hansen-Jagannathan bounds only inasmuch as it in-

creases the overall volatility of the model.

In linear approximations, variance decompositions can be applied to study the individual con-

tribution of each shock to the total variance. The channels of risk adjustment and amplification we

have derived here are a first step towards a shock-specific decomposition of nonlinear perturbation

approximations. This would enable the identification of theindividual contributions of each shock,

not only to total volatility, but also to individual orders of nonlinearity and risk adjustments.
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A Appendices

A.1 Proof of Lemma 2.1

As (1) is linear inωt , only the zeroth and first derivatives with respect toωt can be nonzero. As

we approximate around the pointωt = 0, all derivatives of zeroth order with respect toωt are zero.

Hence, the Taylor expansion of (1) is the product ofωt—
∂eςt ωt

∂ωt

∣∣∣∣∣
ωt=ςt=0

ωt—and the Taylor series

of eςt around the pointςt = 0 , which is given by∑∞
i=0

1
i! ς

i
t .

A.2 Proof of Proposition 2.2

zω
t enters into the model (3) through the termHeςt ωt , which itself enters the model linearly. Hence

and following lemma2.1, terms throughgzω, gzzω, andgz2zω are independent of stochastic volatility.

Additionally, thatzω
t enters into the model only through the termHeςt ωt , which enters linearly,

means that terms of the formgzω 2 are given by
(
gςωςt−1+gηωηt

)
ωt following lemma2.1and the

first order autoregressive definition of the volatility processςt in (4). These terms dependent on

stochastic volatility interact with all the states,zt , at the next order—accordingly terms of the form

gz,zω 2 are given by1
2

(
gςωzςt−1+gηωzηt

)
ωtzt—and with the states of the volatility process,ςt−1

andηt ,39—hence, terms of the formgzω 3 are given by1
2

(
gς2ως2

t−1+2gςηωςt−1ηt +gη2ωη2
t

)
ωt .

Finally, turning to terms involving the perturbation parameter,σ, terms throughgσzjzω,k, i.e.,

first order inσ, are zero following Jin and Judd (2002), Schmitt-Grohé andUribe (2004), and oth-

ers. Likewise,gσ3 will be zero following our assumption of normality of all exogenous processes,

see Andreasen (2012) for an investigation of the consequences of nonnormality. This leaves terms

through,gσ2, gσ2z, andgσ2zω as claimed in the proposition. That these terms are in general depen-

dent on stochastic volatility will be addressed in the proofof corollary2.5as there we will exam-

ines a condition under which these terms can explicitly be shown to be independent of stochastic

39But not the shockωt , as it enters the model (3) linearly through the termHeςt ωt and, as such, only terms first
order in it are nonzero, see Lemma2.1.
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volatility.

A.3 Proof of Corollary 2.5

First, the derivatives with respect toςt−1. Recall from (4) thatςt = ρςt−1+ τηt .

0=Dςt−1 { f (yt+1,yt ,yt−1,εt)+Heςt ωt}

= fy+y+y yς + fy+y+ς ρ+ fyyς +Heςt ωtρ(54)

at the deterministic steady state,y+ = y andωt = 0 which gives

0=
(

fy+yy+ fy+yςρ+ fy
)

yς ⇒ yς = 0(55)

where the invertibility of
(

fy+yy+ fy+yςρ+ fy
)

follows from the stability ofyy andρ, see Lan and

Meyer-Gohde (2013b).

Now differentiate (54) twice with respect toσ, the perturbation parameter,

0=Dσ2ςt−1
{ f (yt+1,yt ,yt−1,εt)+Heςt ωt}

=Dσ2

{(
fy+y+y + fy

)
yς + fy+y+ς ρ+Heςt ωtρ

}

=Dσ2

{(
fy+y+y + fy

)}
yς +2Dσ

{(
fy+y+y + fy

)}
yσς +

(
fy+y+y + fy

)
yσ2ς

+Dσ2

{
fy+
}

y+ς ρ+2Dσ
{

fy+
}

Dσ

{
y+ς
}

ρ+ fy+Dσ2

{
y+ς
}

ρ(56)

From (55), yς = y+ς = 0 in a steady state; following Jin and Judd (2002) and Schmitt-Grohé and

Uribe (2004), first order derivatives with respect toσ are likewise zero—yσς = 0. Thus, ifρ = 0,

the foregoing is40

(
fy+y+y + fy

)
yσ2ς = 0⇒ yσ2ς = 0(58)

Turning finally to the derivatives with respect toηt . Recall again from (4) thatςt = ρςt−1+τηt

0=Dηt { f (yt+1,yt ,yt−1,εt)+Heςt ωt}

40This begs the question, whetheryσ2ς can ever be different from zero; i.e. whether stochastic volatility can ever
have an effect through the risk channel. Ifρ 6= 0, the conditional expectation of (56) at the deterministic steady state is

yσ2ς =−
(

fy+yy+ fy+ρ+ fy
)−1
(

fy+yεω2ςEt

[
εω⊗[2]
t+1

]
+2 fy+2

(
yω ⊗ yως

)
Et

[
ω⊗[2]

t+1

])
ρ(57)
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= fy+y+y yη + fy+y+ς τ+ fyyη +Heςt ωtτ(59)

at the deterministic steady state,y+ = y, ωt = 0, andyς = 0 which gives

0=
(

fy+yy+ fy
)

yη ⇒ yς = 0(60)

where the invertibility of
(

fy+yy+ fy
)

follows from the stability ofyy, see Lan and Meyer-Gohde

(2013b).

Now differentiate (59) twice with respect toσ, the perturbation parameter,

0=Dσ2ηt
{ f (yt+1,yt ,yt−1,εt)+Heςt ωt}

=Dσ2

{(
fy+y+y + fy

)
yη + fy+y+ς τ+Heςt ωtτ

}

=Dσ2

{(
fy+y+y + fy

)}
yη +2Dσ

{(
fy+y+y + fy

)}
yση +

(
fy+y+y + fy

)
yσ2η

+Dσ2

{
fy+
}

y+ς τ+2Dσ
{

fy+
}

Dσ

{
y+ς
}

τ+ fy+Dσ2

{
y+ς
}

τ(61)

From (60), yη = 0 in a steady state, likewiseyς = y+ς = 0 from (55); following Jin and Judd

(2002) and Schmitt-Grohé and Uribe (2004), first order derivatives with respect toσ are likewise

zero—yσς =0 andyσς =0. If ρ= 0,σt−1 vanishes from the systems of equations and all derivatives

with respect to it are equal to zero:Dσ2

{
y+ς
}
= Dσ

{
y+ς
}
= 0; accordingly the foregoing is41

(
fy+y+y + fy

)
yσ2η = 0⇒ yσ2η = 0(63)

A.4 Detrending the Model

Stationary consumption, investment, capital stock and output, denoted by the lower case letters,

are defined as follows

ct ≡
Ct

eZt
, it ≡

It
eZt

, kt ≡
Kt

eZt
, yt ≡

Yt

eZt
,(64)

For notational ease in detrending the model, we define a combined shockεa,t , containing both

41This begs the question, whetheryσ2ς can ever be different from zero; i.e. whether stochastic volatility can ever
have an effect through the risk channel. Ifρ 6= 0, the conditional expectation of (56) at the deterministic steady state is

yσ2η =−
(

fy+yy+ fy
)−1
(

fy+yσ2ςρ+ fy+yεω2ςEt

[
εω⊗[2]
t+1

]
+2 fy+2

(
yω ⊗ yως

)
Et

[
ω⊗[2]

t+1

])
τ(62)
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the homoskedastic and heteroskedastic components of the productivity growth shock

εa,t ≡ σze
σz,t εz,t(65)

The productivity growth process can therefore be written as

at ≡ Zt −Zt−1 = a+ εa,t(66)

While detrending, the exponential form of the foregoing will be frequently used

eat =
eZt

eZt−1
= ea+εa,t(67)

The goal is essentially to substituteCt , It , Kt andYt for their stationary counterparts in the

relevant model equations. We start with the production function

(
yte

Zt
)
=
(
kt−1eZt−1

)α (
eZt Nt

)1−α
(68)

⇒yt =

(
eZt

eZt−1

)−α

kα
t−1N1−α

t(69)

⇒yt = e−α(a+εa,t)kα
t−1N1−α

t(70)

Detrending the capital accumulation law

(
kte

Zt
)
= (1−δ)

(
kt−1eZt−1

)
+
(
ite

Zt
)

(71)

⇒kt = (1−δ)
eZt−1

eZt
kt−1+ it(72)

⇒kt = (1−δ)e−a−εa,t kt−1+ it(73)

Detrending the market clearing condition is straightforward as it is a contemporaneous rela-

tionship

(
yte

Zt
)
=
(
cte

Zt
)
+
(
ite

Zt
)

(74)

⇒yt = ct + it(75)

Combing (70), (73) and (75) yields the detrended resource constraint

ct +kt = e−α(a+εa,t)kα
t−1N1−α

t +(1−δ)e−a−εa,t kt−1(76)

Detrending the labor supply equation

ψ
1−Nt

=
1

cteZt
(1−α)

(
kt−1eZt−1

)α
eZt(1−α)N−α

t(77)
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⇒
ψ

1−Nt
= (1−α)e−α(a+εa,t) 1

ct
kα

t−1N−α
t(78)

The risky ratert is stationary and we reexpress it in terms of the stationary variables

1+ rt = (1−δ)+α
(
kt−1eZt−1

)α−1(
eZt Nt

)1−α
(79)

⇒1+ rt = (1−δ)+αkα−1
t−1 e(a+εa,t)(1−α)N1−α

t(80)

We now move to the value function. As the felicity function islogarithmic in nonstationary

consumption, removing the trend in consumption will leave aterm linear in the level of productivity

that when subtracted fromVt gives the stationary value functionvt

vt =Vt −blneZt =Vt −bZt(81)

Substituting the relevant variables for their stationary counterparts yields

vt +bZt = ln
(
cte

Zt
)
+ψ ln(1−Nt)+β

2
γ

ln
(

Et

[
exp
( γ

2
[vt+1+bZt+1]

)])
(82)

⇒vt = lnct +ψ ln(1−Nt)+β
2
γ

ln

(
Et

[
exp

(
γ
2

[
vt+1+b

(
Zt+1−

b−1
bβ

Zt

)])])
(83)

It follows that the remaining nonstationarities can be offset if

b−1
bβ

= 1(84)

which pins downb as

b=
1

1−β
(85)

Inserting (85) in (83) yields the stationary value function

vt = lnct +ψ ln(1−Nt)+β
2
γ

ln

(
Et

[
exp

(
γ
2

[
vt+1+

1
1−β

(a+ εa,t+1)

])])
(86)

While stationary, the foregoing value function does not fit in the problem statement (22) in the

text, thus can not be implemented directly in perturbation software packages like Dynare. This

problem is caused by nonlinear twisting of the expected continuation value, and can be fixed by

redefining this conditional expectation as a new variable known in periodt. Besides, the twisted

expected continuation value is numerically unstable, due to the logarithmic transformation, when
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γ approaches zero or becomes very large. To counteract this, we define42

ṽt ≡ Et

[
exp

(
γ
2

[
vt+1+

1
1−β

ε̃t+1−v

])]
(87)

wherev denotes the deterministic steady state value of the stationary value function (86) and can

be computed as follows

v=
1

1−β

[
lnc+ψ ln(1−N)+

β
1−β

a

]
(88)

Substitutingvt+1 in (86) for ṽt yields the normalized, stationary value function

vt = lnct +ψ ln(1−Nt)+β
2
γ

[
ln ṽt +

γ
2

(
1

1−β
a+v

)]
(89)

With the stationary value function in hand, we reexpress thepricing kernel in terms of station-

ary variables

mt+1 = β
cteZt

ct+1eZt+1

exp
(

γ
2

[
vt+1+

1
1−βZt+1

])

Et

[
exp
(

γ
2

[
vt+1+

1
1−βZt+1

])](90)

Multiplying both the denominator and numerator of the foregoing with exp
(
− γ

2
1

1−βZt

)
, and

rearranging yields

mt+1 = β
ct

ct+1
e−(a+εa,t+1)

exp
(

γ
2

[
vt+1+

1
1−β (a+ εa,t+1)

])

Et

[
exp
(

γ
2

[
vt+1+

1
1−β (a+ εa,t+1)

])](91)

Writing out the definition ofεa,t+1 yields (21) in the text. Recognizing the expectational term in

the previous equation can be replaced by the productṽt exp
(

γ
2

[
v+ 1

1−βa
])

, we substitute it for

this product and collect terms

mt+1 = β
ct

ct+1
e−(a+εa,t+1)

exp
(

γ
2

[
vt+1+

1
1−βεa,t+1−v

])

ṽt
(92)

The periodt counterpart of the foregoing follows

mt = β
ct−1

ct
e−(a+εa,t)

exp
(

γ
2

[
vt +

1
1−β εa,t −v

])

ṽt−1
(93)

42Rudebusch and Swanson (2012) adopt, in their companion Mathematica codes, a very similar procedure to im-
prove numerical stability.
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A.5 Proof of Proposition 6.1

Rearrange the definition of the second order increment to express the second order approximation

as the sum of the first order approximation, the second order increment, and the second order

constant risk adjustment

y(2)t = y(1)t +dy(2)t +
1
2

yσ2(94)

Applying the expectations operator to the foregoing yieldsthe mean of the second order approxi-

mation

Ey(2)t = Ey(1)t +Edy(2)t +
1
2

yσ2(95)

Centering the second order approximation (94) around its mean by subtracting (95) from (94)

yields

y(2)t −Ey(2)t =
(

y(1)t −Ey(1)t

)
+
(

dy(2)t −Edy(2)t

)
(96)

Noting that the mean of the first order approximation is the deterministic steady state ofyt , i.e.,

Ey(1)t = y, the foregoing can be rewritten as

y(2)t −Ey(2)t =
(

y(1)t −y
)
+
(

dy(2)t −Edy(2)t

)
(97)

Using the definition of the first order incrementdy(1)t ≡ y(1)t −y, the foregoing is

y(2)t −Ey(2)t = dy(1)t +
(

dy(2)t −Edy(2)t

)
(98)

Multiplying the foregoing with its transposition att− j and noting thatEy(2)t =Ey(2)t− j andEdy(2)t =

Edy(2)t− j yields
(

y(2)t −Ey(2)t

)(
y(2)t− j −Ey(2)t

)′
(99)

=
[
dy(1)t +

(
dy(2)t −Edy(2)t

)][
dy(1)t− j +

(
dy(2)t− j −Edy(2)t

)]′

=dy(1)t dy(1)
′

t− j +
(

dy(2)t dy(1)
′

t− j −Edy(2)t dy(1)
′

t− j

)

+
(

dy(1)t dy(2)
′

t− j −dy(1)t Edy(2)
′

t

)
+
(

dy(2)t −Edy(2)t

)(
dy(2)t− j −Edy(2)t

)′
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Applying the expectations operator to the foregoing delivers

E

[(
y(2)t −Ey(2)t

)(
y(2)t− j −Ey(2)t

)′]
(100)

=E
(

dy(1)t dy(1)
′

t− j

)
+E

(
dy(2)t dy(1)

′

t− j

)
−Edy(2)t Edy(1)

′

t− j

+E
(

dy(1)t dy(2)
′

t− j

)
−Edy(1)t Edy(2)

′

t +E

[(
dy(2)t −Edy(2)t

)(
dy(2)t− j −Edy(2)t

)′]

To simplify the foregoing, apply the expectations operatorto the definition of the first order incre-

ment, yielding its mean

Edy(1)t = Ey(1)t −y(101)

As Ey(1)t = y, the foregoing implies that the mean of the first order increment is zero

Edy(1)t = 0(102)

Using the this result and noting thatEdy(1)t = Edy(1)t− j , (100) reduces to

E

[(
y(2)t −Ey(2)t

)(
y(2)t− j −Ey(2)t

)′]
(103)

=E
(

dy(1)t dy(1)
′

t− j

)
+E

(
dy(2)t dy(1)

′

t− j

)
+E

(
dy(1)t dy(2)

′

t− j

)

+E

[(
dy(2)t −Edy(2)t

)(
dy(2)t− j −Edy(2)t

)′]

It then remains to show that

E
(

dy(2)t dy(1)
′

t− j

)
= 0, E

(
dy(1)t dy(2)

′

t− j

)
= 0(104)

One way is to use the moving average representation of the order increments. I.e., inserting the

moving average representation of the first and second order approximations in the definition of the

order increments yields

dy(1)t =
∞

∑
i=0

yiεt−i(105)

dy(2)t =
1
2

∞

∑
j=0

∞

∑
i=0

y j ,i(εt− j ⊗ εt−i)(106)

Therefore the product of the two order increments, when set in expectation, takes the form of the

third moments of the shocks, which is equal to zero under normality.
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A.6 Proof of Proposition 6.2

First note thatEy(3)t = Ey(2)t under normality43. Given this result, applying the expectations opera-

tor to the definition of the third order incrementdy(3)t ≡ y(3)t −y(2)t immediately impliesEdy(3)t = 0.

Next, rearranging the definition of the third order increment delivers

y(3)t = y(2)t +dy(3)t(107)

Applying the expectations operator to the foregoing yields

Ey(3)t = Ey(2)t(108)

Centering (107) around its mean by subtracting (108) from (107) gives

y(3)t −Ey(3)t = y(2)t −Ey(2)t +dy(3)t(109)

Multiplying the foregoing with its transposition att− j and notingEy(3)t =Ey(3)t− j andEy(2)t =Ey(2)t− j

delivers
(

y(3)t −Ey(3)t

)(
y(3)t− j −Ey(3)t

)′
=dy(3)t dy(3)

′

t− j +
(

y(2)t −Ey(2)t

)(
y(2)t− j −Ey(2)t

)′

+dy(3)t y(2)
′

t− j −dy(3)t Ey(2)
′

t +y(2)t dy(3)
′

t− j −Ey(2)t dy(3)
′

t− j

Applying the expectations operator to the foregoing, noting Edy(3)t = 0, gives

E

[(
y(3)t −Ey(3)t

)(
y(3)t− j −Ey(3)t

)′]
=Et

[
dy(3)t dy(3)

′

t− j

]
+E

[(
y(2)t −Ey(2)t

)(
y(2)t− j −Ey(2)t

)′]
(110)

+E
(

dy(3)t y(2)
′

t− j

)
+E

(
y(2)t dy(3)

′

t− j

)

Rewrite the definition of the second order incrementdy(2)t ≡ y(2)t −y(1)t − 1
2yσ2 as

y(2)t = dy(2)t +y(1)t +
1
2

yσ2 = dy(2)t +dy(1)t + ȳ+
1
2

yσ2(111)

Given the foregoing expression and notingEdy(3)t = 0, E
(

y(2)t dy(3)
′

t− j

)
on the right hand side of

(110) can be rewritten as

E
(

y(2)t dy(3)
′

t− j

)
= E

[(
dy(2)t +dy(1)t + ȳ+

1
2

yσ2

)
dy(3)

′

t− j

]
= E

(
dy(1)t dy(3)

′

t− j

)
(112)

43To see this, applying the expectations operator to the second order approximation (30) and comparing the resulting
expression with the mean of the third order approximation (25)
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Noting thatE
(

dy(2)t dy(3)
′

t− j

)
is zero under normality.44 Analogously,E

(
dy(3)t y(2)

′

t− j

)
on the right

hand side of (110) can be written as

E
[
dy(3)t y(2)

′

t− j

]
= E

(
dy(3)t dy(1)

′

t− j

)
(114)

Inserting the last two equations in (110) yields

E

[(
y(3)t −Ey(3)t

)(
y(3)t− j −Ey(3)t

)′]
=Et

[
dy(3)t dy(3)

′

t− j

]
+E

[(
y(2)t −Ey(2)t

)(
y(2)t− j −Ey(2)t

)′]

+E
(

dy(1)t dy(3)
′

t− j

)
+E

(
dy(3)t dy(1)

′

t− j

)

A.7 Mean of dy(2)t

The second order incrementdy(2)t can be expressed recursively as

dy(2)t = αdy(2)state
t−1 +

1
2

[
β22dy(1)state⊗[2]

t−1 +2β20

(
dy(1)state

t−1 ⊗ εt

)
+β00ε⊗[2]

t

]
(115)

Taking expectation of the foregoing yields the following expression of the mean

Edy(2)t = αE
(

dy(2)state
t−1

)
+

1
2

β22E
(

dy(1)state⊗[2]
t−1

)
+

1
2

β00E
(

ε⊗[2]
t

)
(116)

The two remaining unknown terms in the last equation,E
(

dy(2)state
t−1

)
andE

(
dy(1)state⊗[2]

t−1

)
, can

be computed as follows. First, note the state variable blockof (115) takes the form

dy(2)state
t = αstatedy(2)state

t−1 +
1
2

βstate
22 dy(1)state⊗[2]

t−1 +βstate
20

(
dy(1)state

t−1 ⊗ εt

)
+

1
2

βstate
00 ε⊗[2]

t(117)

Taking expectation of the foregoing and rearranging yieldsthe following expression for the mean

of state variable block, noting throughout we use(ns) to denote the number of state variables

Edy(2)state
t =

(
Ins−αstate)−1

[
1
2

βstate
22 E

(
dy(1)state⊗[2]

t−1

)
+

1
2

βstate
00 E

(
ε⊗[2]

t

)]
(118)

The problem now reduces to computeE
(

dy(1)state⊗[2]
t

)
. Once it is known, (118) gives the value of

Edy(2)state
t . Inserting these two values back in (116) yields the mean of the second order increment.

44Again consider the moving average representation of the third order increment

dy(3)t =
1
2

∞

∑
i=0

yσ2,iεt−i +
1
6

∞

∑
k=0

∞

∑
j=0

∞

∑
i=0

yk, j ,i(εt−k⊗ εt− j ⊗ εt−i)(113)

When multiplying with the moving average representation ofthe second order increment, the result, in expectation, is
a sum of the third and fifth moments of shocks, and equal to zerounder normality.
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To computeE
(

dy(1)state⊗[2]
t

)
, we take the state variable block of the first order increment

dy(1)state
t and raise it to the second Kronecker power,

dy(1)state⊗[2]
t =αstate⊗[2]dy(1)state⊗[2]

t−1 +(Kns,ns+ Ins2)
(
αstate⊗βstate

0

)(
dy(1)state

t−1 ⊗ εt

)
(119)

+βstate⊗[2]
0 ε⊗[2]

t

whereKns,ns is a ns2 × ns2 commutation matrix (See Magnus and Neudecker (1979)). Taking

expectation of the foregoing and rearranging the resultingexpression yields

E
(

dy(1)state⊗[2]
t

)
=
(

Ins2 −αstate⊗[2]
)−1

βstate⊗[2]
0 E

(
ε⊗[2]

t

)
(120)

Inserting (120) and (118) back in (116) yields the mean of the second order increment

Edy(2)t =
1
2

[
α
(
Ins−αstate)−1 βstate

00(121)

+
(

α
(
Ins−αstate)−1βstate

22 +β22

)(
Ins2 −αstate⊗[2]

)−1
βstate⊗[2]

0

+β00

]
E
(

ε⊗[2]
t

)

which is an linear function of the second moments of the exogenous shocks. The coefficients

on E
(

ε⊗[2]
t

)
in the previous equation corresponds to the infinite sum∑∞

j=0y j , j , noting y j , j =

αystate
j−1, j−1+β22(ystate

j−1 ⊗ystate
j−1 )

∞

∑
j=1

αystate
j−1, j−1 = α

(
Ins−αstate)−1 βstate

00(122)

∞

∑
j=1

β22(y
state
j−1 ⊗ystate

j−1 ) =
(

α
(
Ins−αstate)−1 βstate

22 +β22

)(
Ins2 −αstate⊗[2]

)−1
βstate⊗[2]

0(123)

y0,0 = β00(124)

A.8 Second Moments ofdy(2)t

If (115) can be cast as a linear recursion, then standard linear methods can be applied to the com-

putation of the second moments. Notedy(2)t , besides being linearly autoregressive in the state

variable block of itselfdy(2)state
t−1 , is a linear function of all the second order permutations ofprod-

ucts of the first order incrementdy(1)state
t−1 and the shocks. This relationship guides the calculations,

and we therefore compute the second moments ofdy(2)state
t first, then recover the second moments
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of variables of interest.45

Combing (117) and (119) yields the following linear recursion containing the linear recursion

of dy(2)state
t

X(2)
t = Θ(2)XX(2)

t−1+

[
1
2βstate

00

βstate⊗[2]
0

]
E
(

ε⊗[2]
t

)
+Φ(2)XΞ(2)

t(125)

where

X(2)
t =

[
dy(2)state

t

dy(1)state⊗[2]
t

]
(126)

Θ(2)X =

[
αstate 1

2βstate
22

0 αstate⊗[2]

]
(127)

Φ(2)X =

[
1
2βstate

00 βstate
20

βstate⊗[2]
0 (Kns,ns+ Ins2)

(
αstate⊗βstate

0

)
]

(128)

Ξ(2)
t =

[
ε⊗[2]

t −Eε⊗[2]
t

dy(1)state
t−1 ⊗ εt

]
(129)

While the second term on the right hand side of (125) vanishes after centering (125) around its

mean, it ensures, by compensating the subtraction ofE
(

ε⊗[2]
t

)
in Ξ(2)

t , thatΞ(2)
t is orthogonal46 to

X(2)
t−1

E
(

X(2)
t−1Ξ(2)′

t

)
= 0(130)

With the linear recursion ofX(2)
t , the second order increment (115) can be recast as the follow-

ing linear recursion

dy(2)t = Θ(2)X(2)
t−1+

1
2

β00E
(

ε⊗[2]
t

)
+Φ(2)Ξ(2)

t(131)

where Θ(2) =
[
α 1

2β22
]
, Φ(2) =

[
1
2β00 β20

]

NotingE
(

Ξ(2)
t

)
= 0 by construction.

45This procedure is widely adopted to minimize the dimension and improve the speed of the computation. See, e.g.,
Uhlig’s (1999) toolkit, Schmitt-Grohé and Uribe’s (2004)software package and Dynare.

46This orthogonality condition significantly simplifies the calculation of the autocovariances that followed.
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A.8.1 Contemporaneous Covariance

Centering (131) around its mean—by subtracting (??) from (131)—yields the following centered

linear recursion of the second order increment
(

dy(2)t −Edy(2)t

)
= Θ(2)

(
X(2)

t−1−EX(2)
t

)
+Φ(2)Ξ(2)

t(132)

Multiplying the foregoing with its transposition and applying the expectations operator to the

resulting expression yields the contemporaneous varianceof the second order increment

Γ(2)
0 = Θ(2)Γ(2)X

0 Θ(2)′ +Φ(2)E
(

Ξ(2)
t Ξ(2)′

t

)
Φ(2)′(133)

where

Γ(2)X
0 = E

[(
X(2)

t −EX(2)
t

)(
X(2)

t −EX(2)
t

)′]
(134)

Γ(2)
0 = E

[(
dy(2)t −Edy(2)t

)(
dy(2)t −Edy(2)t

)′]
(135)

This requires the contemporaneous variance ofX(2)
t , i.e.,Γ(2)X

0 , as well asE
(

Ξ(2)
t Ξ(2)′

t

)
. Start-

ing with Γ(2)X
0 , we can proceed by applying the expectations operator to (125) to yield

EX(2)
t = Θ(2)XEX(2)

t +

[
1
2βstate

00

βstate⊗[2]
0

]
E
(

ε⊗[2]
t

)
(136)

Centering the foregoing around its mean yields

X(2)
t −EX(2)

t = Θ(2)X
(

X(2)
t−1−EX(2)

t

)
+Φ(2)XΞ(2)

t(137)

Multiplying the foregoing with its transposition and applying the expectations operator, it fol-

lows the unknown contemporaneous variance ofX(2)
t solves the following Lyapunov equation47

Γ(2)X
0 = Θ(2)XΓ(2)X

0 Θ(2)X′
+Φ(2)XE

(
Ξ(2)

t Ξ(2)′
t

)
Φ(2)X′

(138)

Thus,Γ(2)X
0 can be calculated givenE

(
Ξ(2)

t Ξ(2)′
t

)
and, therefore,Γ(2)X

0 in (133) too. We re-

quires this variance, which is given by

E
(

Ξ(2)
t Ξ(2)′

t

)
=

[
(Ine2 +Kne,ne) [E (εtε′t)⊗E (εtε′t)] 0

0 Γ(1)X
0 ⊗E (εtε′t)

]
(139)

47Note Γ(2)X
0 is of dimension(ns+ns2)× (ns+ns2). For models with a large number of state variables, splitting

(138) into four Sylvester equations of smaller size by exploiting the triangularity ofΘ(2)X and solving them one by
one is computationally a lot less expensive than solving (138) as a whole. This division also enables exploitation of

the symmetry ofΓ(2)X
0 and therefore can avoid redundant computations.
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In the right hand side of (139), Γ(1)X
0 is the state variable block of the contemporaneous variance

of the first order approximation (or of the first order increment), and therefore already known from

calculations at the first order.

The upper left entry of the right hand side of (139) contains the fourth moment of the shocks

and has been simplified using Tracy and Sultan’s (1993, p. 344) formula. The two zero entries

in (139) are due to the fact that the third moments of the shocks are zero under normality, and

dy(1)state
t−1 is uncorrelated with current shocks.

A.8.2 Autocovariances

Now we turn to the autocovariances ofdy(2)t . To start, note that under normality,Ξ(2)
t is serially

uncorrelated

E
(

Ξ(2)
t Ξ(2)′

t− j

)
= 0 ∀ j > 0(140)

Given the contemporaneous varianceΓ(2)X
0 , multiplying (137) with the transposition of (132)

and taking expectation yields the contemporaneous variance between theX(2)
t anddy(2)t

Γ(2)X,dy
0 = Θ(2)XΓ(2)X

0 Θ(2)′ +Φ(2)XE
(

Ξ(2)
t Ξ(2)′

t

)
Φ(2)′(141)

where Γ(2)X,dy
0 = E

[(
X(2)

t −EX(2)
t

)(
dy(2)t −Edy(2)t

)′]
(142)

With all the three contemporaneous variances in hand, the orthogonality (130) and (140) en-

sures the autocovariance ofdy(2)t can be computed with the following recursive formulae

Γ(2)
j = Θ(2)Γ(2)X,dy

j−1(143)

Γ(2)X,dy
j = Θ(2)XΓ(2)X,dy

j−1(144)

where

Γ(2)
j = E

[(
dy(2)t −Edy(2)t

)(
dy(2)t− j −Edy(2)t

)′]
(145)

Γ(2)X,dy
j = E

[(
X(2)

t −EX(2)
t

)(
dy(2)t− j −Edy(2)t

)′]
(146)
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A.9 Second Moments ofdy(3)t

The third order increment can be expressed recursively as

dy(3)t =αdy(3)state
t−1 +

1
6

[
β333,1dy(1)state⊗[3]

t−1 +β000ε
⊗[3]
t

](147)

+β22

(
dy(2)state

t−1 ⊗dy(1)state
t−1

)
+β20

(
dy(2)state

t−1 ⊗ εt

)

+
1
2

[
β300

(
dy(1)state

t−1 ⊗ ε⊗[2]
t

)
+β330,1

(
dy(1)state⊗[2]

t−1 ⊗ εt

)
+βσ20εt +βσ21dy(1)state

t−1

]

Its state variable block takes the form

dy(3)state
t =αstatedy(3)state

t−1 +
1
6

[
βstate

333,1dy(1)state⊗[3]
t−1 +βstate

000 ε⊗[3]
t

]
(148)

+βstate
22

(
dy(2)state

t−1 ⊗dy(1)state
t−1

)
+βstate

20

(
dy(2)state

t−1 ⊗ εt

)

+
1
2

[
βstate

300

(
dy(1)state

t−1 ⊗ ε⊗[2]
t

)
+βstate

330,1

(
dy(1)state⊗[2]

t−1 ⊗ εt

)

+βstate
σ20 εt +βstate

σ21 dy(1)state
t−1

]

From the terms on the left hand side of the foregoing, we need to build up two additional

recursions, the first in the Kronecker product of the first andsecond order increments and the

second in the triple Kronecker product of the first order increment, to construct the linear recursion

containingdy(3)state
t that can be used for calculating moments

dy(2)state
t ⊗dy(1)state

t =αstate⊗[2]
(

dy(2)state
t−1 ⊗dy(1)state

t−1

)
+

[(
1
2

βstate
22

)
⊗αstate

]
dy(1)state⊗[3]

t−1

(149)

+
(
αstate⊗βstate

0

)(
dy(2)state

t−1 ⊗ εt

)
+

[(
1
2

βstate
00

)
⊗βstate

0

]
εstate⊗[3]

t

+

[(
βstate

20 ⊗αstate)Kns∗ne,ns+

(
1
2

βstate
22

)
⊗βstate

0

](
dy(1)state⊗[2]

t−1 ⊗ εt

)

+

([(
1
2

βstate
00

)
⊗αstate

]
Kne2,ns+βstate

20 ⊗βstate
0

)(
dy(1)state

t−1 ⊗ ε⊗[2]
t

)

dy(1)state⊗[3]
t =αstate⊗[3]dy(1)state⊗[3]

t−1 +βstate⊗[3]
0 ε⊗[3]

t(150)

+[(Kns,ns⊗ Ins+ Ins3)Kns2,ns+ Ins3]
(

αstate⊗[2]⊗βstate
0

)(
dy(1)state⊗[2]

t−1 ⊗ εt

)

+[Kns2,ns+(Kns,ns⊗ Ins+ Ins3)]
(

αstate⊗βstate⊗[2]
0

)(
dy(1)state

t−1 ⊗ ε⊗[2]
t

)
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Given the foregoing two equations, along with the state variable block of the first order incre-

ment

dy(1)state
t = αstatedy(1)state

t−1 +βstate
0 εt(151)

we construct the following linear recursion

X(3)
t = Θ(3)XX(3)

t−1+Φ(3)XΞ(3)
t(152)

where48

X(3)
t =




dy(3)state
t

dy(2)state
t ⊗dy(1)state

t

dy(1)state⊗[3]
t

dy(1)state
t



, Ξ(3)

t =




ε⊗[3]
t

dy(1)state⊗[2]
t−1 ⊗ εt

dy(1)state
t−1 ⊗

(
ε⊗[2]

t −Eε⊗[2]
t

)

dy(2)state
t−1 ⊗ εt

εt




(153)

Note there is no need to centerX(3)
t before computing its contemporaneous variance as its mean

is zero under normality, i.e.,EX(3)
t = 0. In the third entry ofΞ(3)

t , ε⊗[2]
t is adjusted using its mean,

such thatΞ(3)
t is orthogonal toX(3)

t−1

E
(

X(3)
t−1Ξ(3)′

t

)
= 0(154)

and it is can be shown thatΞ(3)
t is serially uncorrelated

E
(

Ξ(3)
t Ξ(3)′

t− j

)
= 0 ∀ j > 0(155)

A.9.1 Contemporaneous Covariance

With linear recursion (152), the third order increment (147) can be cast in a linear recursion49

dy(3)t = Θ(3)X(3)
t−1+Φ(3)Ξ(3)

t(156)

Multiplying the foregoing with its transposition and applying the expectations operator to the

resulting expression yields the contemporaneous varianceof the third order increment

Γ(3)
0 = Θ(3)Γ(3)X

0 Θ(3)′ +Φ(3)E
(

Ξ(3)
t Ξ(3)′

t

)
Φ(3)′(157)

where Γ(3)
0 = E

(
dy(3)t dy(3)

′

t

)
(158)

48Θ(3)X andΦ(3)X are specified in sectionA.12.
49Θ(3) andΦ(3) are specified in sectionA.12.
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To compute the yet known contemporaneous variance ofX(3)
t , i.e., Γ(3)X

0 , we multiply (152)

with its transposition and apply the expectations operatorto the resulting expression. It follows

thatΓ(3)X
0 solves the following Lyapunov equation50

Γ(3)X
0 = Θ(3)XΓ(3)X

0 Θ(3)X′
+Φ(3)XE

(
Ξ(3)

t Ξ(3)′
t

)
Φ(3)X′

(159)

where Γ(3)X
0 = E

(
X(3)

t X(3)′
t

)
(160)

with E
(

Ξ(3)
t Ξ(3)′

t

)
as specified in sectionA.12.

Given Γ(3)X
0 , multiplying (152) with the transposition of (156) and applying the expectations

operator yields the contemporaneous variance betweenX(3)
t anddy(3)t

Γ(3)X,dy
0 = Θ(3)XΓ(3)X

0 Θ(3)′ +Φ(3)XE
(

Ξ(3)
t Ξ(3)′

t

)
Φ(3)′(161)

where Γ(3)X,dy
0 = E

(
X(3)

t dy(3)
′

t

)
(162)

A.9.2 Autocovariances

For the autocovariance of the third order increment, the orthogonality (154) andΞ(3)
t being serially

uncorrelated, i.e., (155), ensure that it can be computed with the following recursive formulae

Γ(3)
j = Θ(3)Γ(3)X,dy

j−1(163)

Γ(3)X,dy
j = Θ(3)XΓ(3)X,dy

j−1(164)

where

Γ(3)
j = E

(
dy(3)t dy(3)

′

t− j

)
(165)

Γ(3)X,dy
j = E

(
X(3)

t dy(3)
′

t− j

)
(166)

A.10 Second Moments betweendy(1)t and dy(3)t

First rewrite the linear recursion of the first order increment (26) usingX(3)
t

dy(1)t =
[
0 0 0 α

]
X(3)

t−1+
[
0 0 0 0 β0

]
Ξ(3)

t(167)

50Note that (159) is a Lyapunov equation of dimension
(
ns+ns2+ns3+ns

)
×
(
ns+ns2+ns3+ns

)
. By exploiting

the triangularity ofΘ(3)X and the symmetry ofΓ(3)X
0 , that large Lyapunov equation can be split and reduced to 10

Sylvester equations of dimension up tons3×ns3.
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Multiplying the foregoing with the transposition of the linear recursion of the third order incre-

ment (156), and applying the expectations operator to the resulting expression yields the contem-

poraneous covariance betweendy(1)t anddy(3)t

Γ(1),(3)
0 =

[
0 0 0 α

]
Γ(3)X

0 Θ(3)′ +
[
0 0 0 0 β0

]
E
(

Ξ(3)
t Ξ(3)′

t

)
Φ(3)′(168)

where Γ(1),(3)
0 = E

(
dy(1)t dy(3)

′

t

)
(169)

The autocovariance,Γ(1),(3)
j , can be computed using the following recursive formula

Γ(1),(3)
j =

[
0 0 0 α

]
Γ(3)X,dy

j−1(170)

A.11 Variance Decomposition

The decomposition the variance of the third order approximation follows directly from the decom-

position of the third order increment. Defining

dy(3)t ≡ dy(3)amp
t +dy(3)risk

t(171)

Multiplying the foregoing with its transposition and applying the expectations operator, a vari-

ance decomposition immediately follows

Γ(3)
0 = Γ(3)amp

0 +Γ(3)risk
0 +Γ(3)amp,risk

0 +
(

Γ(3)amp,risk
0

)′
(172)

where

Γ(3)amp
0 = E

(
dy(3)amp

t dy(3)amp′
t

)
(173)

Γ(3)risk
0 = E

(
dy(3)risk

t dy(3)risk′

t

)
(174)

Γ(3)amp,risk
0 = E

(
dy(3)amp

t dy(3)risk′
t

)
(175)

Proposition (6.2) in the text implies the contemporaneous variance of the variables of interest

takes the form

Γy(3)

0 = Γy(2)

0 +Γ(3)
0 +Γ(1),(3)

0 +
(

Γ(1),(3)
0

)′
(176)

Inserting the decomposedΓ(3)
0 , i.e., (172), in the previous equation yields the decomposition of
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the contemporaneous variance of the variables of interest

Γy(3)

0 =Γy(2)

0 +Γ(3)amp
0 +Γ(3)risk

0 +Γ(3)amp,risk
0 +

(
Γ(3)amp,risk

0

)′
(177)

+Γ(1),(3)
0 +

(
Γ(1),(3)

0

)′

Note the decomposition (177) is not yet complete as the cross-contemporaneous variance

Γ(1),(3)
0 can be further broken down into two parts51

Γ(1),(3)
0 =E

(
dy(1)t dy(3)

′

t

)
(178)

=E

[
dy(1)t

(
dy(3)amp

t +dy(3)risk
t

)′]

=E
(

dy(1)t dy(3)amp′

t

)
+E

(
dy(1)t dy(3)risk′

t

)

=Γ(1)amp,(3)amp
0 +Γ(1)amp,(3)risk

0

Inserting the foregoing in (177) yields the complete variance decomposition

Γy(3)

0 =Γy(2)

0 +Γ(3)amp
0 +Γ(3)risk

0 +Γ(3)amp,risk
0 +

(
Γ(3)amp,risk

0

)′
(179)

+Γ(1)amp,(3)amp
0 +Γ(1)amp,(3)risk

0

+
(

Γ(1)amp,(3)amp
0 +Γ(1)amp,(3)risk

0

)′

Letting Γy(3)amp

0 collect the contribution from all amplification channels ofall three orders,

Γy(3)risk,amp

0 collects all interaction between amplification and time-varying risk adjustment channels

andΓy(3)risk

0 collects the contribution from the time-varying risk adjustment channel

Γy(3)amp

0 = Γy(2)

0 +Γ(3)amp
0 +Γ(1)amp,(3)amp

0 +
(

Γ(1)amp,(3)amp
0

)′
(180)

Γy(3)risk,amp

0 = Γ(3)amp,risk
0 +

(
Γ(3)amp,risk

0

)′
+Γ(1)amp,(3)risk

0 +
(

Γ(1)amp,(3)risk
0

)′
(181)

Γy(3)risk

0 = Γ(3)risk
0(182)

Inserting the foregoing in (179) yields (44) in the text. Note the first order amplification effect

reported in Table5 is included in (180). In particular, it is included inΓy(2)

0 . As implied by

51In (178), Γ(1)amp,(3)amp
0 is used to denoteE

(
dy(1)t dy(3)amp′

t

)
as there is only amplification effects in the first order

incrementdy(1)t .
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proposition6.1, the contemporaneous variance of the second order approximation takes the form

Γy(2)

0 = Γy(1)

0 +Γ(2)
0(183)

whereΓy(1)

0 captures the first order amplification effect.

To compute the individual terms in (179), first notedy(3)amp
t collects all amplification effects

anddy(3)risk
t collects the time-varying risk adjustment effect in the third order increment

dy(3)amp
t =αdy(3)amp,state

t−1 +
1
6

[
β333,1dy(1)state⊗[3]

t−1 +β000ε
⊗[3]
t

]
(184)

+β22

(
dy(2)state

t−1 ⊗dy(1)state
t−1

)
+β20

(
dy(2)state

t−1 ⊗ εt

)

+
1
2

[
β300

(
dy(1)state

t−1 ⊗ ε⊗[2]
t

)
+β330,1

(
dy(1)state⊗[2]

t−1 ⊗ εt

)]

dy(3)risk
t = αdy(3)risk,state

t−1 +
1
2

βσ20εt +
1
2

βσ21dy(1)state
t−1(185)

We start with constructing an auxiliary vectorX(3D)
t−1 for this decomposition

X(3D)
t =




dy(3)amp,state
t

dy(3)risk,state
t

dy(2)state
t ⊗dy(1)state

t

dy(1)state⊗[3]
t

dy(1)state
t




(186)

With the foregoing auxiliary vector,dy(3)amp
t anddy(3)risk

t can be cast as linear recursions

dy(3)amp
t = Θ(3)ampX(3D)

t−1 +Φ(3)ampΞ(3)
t(187)

dy(3)risk
t = Θ(3)riskX(3D)

t−1 +Φ(3)riskΞ(3)
t(188)

where

Θ(3)amp=
[
α 0 β22

1
6β333,1

1
2βstate

300

(
Ins⊗Eε⊗[2]

t

)]
(189)

Θ(3)risk =
[
0 α 0 0 1

2βσ21

]
(190)

Φ(3)amp=
[

1
6β000

1
2β330,1

1
2β300 β20 0

]
(191)

Φ(3)risk =
[
0 0 0 0 1

2βσ20

]
(192)

Multiplying (187) with its transposition and applying the expectations operator yields the con-

temporaneous varianceΓ(3)amp
0 , which collects the contribution of amplification channelsto the
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total variance of the third order increment

Γ(3)amp
0 = Θ(3)ampE

(
X(3D)

t−1 X(3D)′

t−1

)
Θ(3)amp′ +Φ(3)ampE

(
Ξ(3)

t Ξ(3)′
t

)
Φ(3)amp′(193)

whereE
(

X(3D)
t−1 X(3D)′

t−1

)
can be computed using the following relationship

X(3)
t = ADX(3D)

t(194)

where

AD =




I I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I


(195)

therefore

E
(

X(3D)
t−1 X(3D)′

t−1

)
= AD+E

(
X(3)

t−1X(3)′

t−1

)
AD+′

= AD+Γ(3)X
0 AD+′

(196)

whereAD+ denotes the Moore-Penrose inverse ofAD andΓ(3)X
0 is already known. ThenΓ(3)amp

0

can be computed using

Γ(3)amp
0 =

(
Θ(3)ampAD+

)
Γ(3)X

0

(
Θ(3)ampAD+

)′
+Φ(3)ampE

(
Ξ(3)

t Ξ(3)′
t

)
Φ(3)amp′(197)

Likewise, the contemporaneous varianceΓ(3)risk
0 collects the contribution of the time-varying

risk adjustment channel to the total variance of the third order increment, and can be computed

using

Γ(3)risk
0 =

(
Θ(3)riskAD+

)
Γ(3)X

0

(
Θ(3)riskAD+

)′
+Φ(3)riskE

(
Ξ(3)

t Ξ(3)′
t

)
Φ(3)risk′(198)

Γ(3)amp,risk
0 and its transposition collects the contribution of the interaction between the ampli-

fication and time-vary risk adjustment channels to the totalvariance of the third order increment,

and can be computed using

Γ(3)amp,risk
0 +

(
Γ(3)amp,risk

0

)′
= Γ(3)

0 −Γ(3)amp
0 −Γ(3)risk

0(199)

To computeΓ(1)amp,(3)amp
0 , multiply (167) with the transposition of (187) and apply the expec-

tations operator to the resulting expression to yield

Γ(1)amp,(3)amp
0 =

[
0 0 0 α

]
Γ(3)X

0

(
Θ(3)ampAD+

)′
+
[
0 0 0 0 β0

]
E
(

Ξ(3)
t Ξ(3)′

t

)
Φ(3)amp′

(200)

As Γ(1),(3)
0 was already computed in sectionA.10, Γ(1)amp,(3)risk

0 can be obtained by subtracting
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the foregoing fromΓ(1),(3)
0 .

A.12 Coefficient Matrices

This section contains explicit expressions for several coefficient matrices left implicit above.

Θ(3) =
[
α β22

1
6β333,1

1
2β300

(
Ins⊗Eε⊗[2]

t

)
+ 1

2βσ21

]

Φ(3) =
[

1
6β000

1
2β330,1

1
2β300 β20

1
2βσ20

]
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Θ(3)X =




αstate βstate
22

1
6βstate

333,1
1
2

[
βstate

300

(
Ins⊗Eε⊗[2]

t

)
+βstate

σ21

]

0 αstate⊗[2]
(1

2βstate
22

)
⊗αstate

([(1
2βstate

00

)
⊗αstate

]
Kne2,ns+βstate

20 ⊗βstate
0

)(
Ins⊗Eε⊗[2]

t

)

0 0 αstate⊗[3]
[
Kns2,ns+(Kns,ns⊗ Ins+ Ins3)

](
αstate⊗βstate⊗[2]

0

)(
Ins⊗Eε⊗[2]

t

)

0 0 0 αstate




Φ(3)X =




1
6βstate

000
1
2βstate

330,1 . . .

(1
2βstate

00 )⊗βstate
0

(
βstate

20 ⊗αstate
)

Kns∗ne,ns+
(

1
2βstate

22

)
⊗βstate

0 . . .

βstate⊗[3]
0 [(Kns,ns⊗ Ins+ Ins3)Kns2,ns+ Ins3]

(
αstate⊗[2]⊗βstate

0

)
. . .

0 0 . . .

. . . 1
2βstate

300 βstate
20

1
2βstate

σ20

. . .
[(1

2βstate
00

)
⊗αstate

]
Kne2,ns+βstate

20 ⊗βstate
0 αstate⊗βstate

0 0

. . . [Kns2,ns+(Kns,ns⊗ Ins+ Ins3)]
(

αstate⊗βstate⊗[2]
0

)
0 0

. . . 0 0 βstate
0




6
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E
(

Ξ(3)
t Ξ(3)′

t

)
=



E
(

ε⊗[3]
t ε⊗[3]′

t

)
E

[
ε⊗[3]

t

(
dy(1)state⊗[2]

t−1 ⊗ εt

)′]
. . .

E
[(

dy(1)state⊗[2]
t−1 ⊗ εt

)
ε⊗[3]′

t

]
E

[(
dy(1)state⊗[2]

t−1 ⊗ εt

)(
dy(1)state⊗[2]

t−1 ⊗ εt

)′]
. . .

0 0 . . .

E
[(

dy(2)state
t−1 ⊗ εt

)
ε⊗[3]′

t

]
E

[(
dy(2)state

t−1 ⊗ εt

)(
dy(1)state⊗[2]

t−1 ⊗ εt

)′]
. . .

E
(

εtε
⊗[3]′
t

)
E

[
εt

(
dy(1)state⊗[2]

t−1 ⊗ εt

)′]
. . .

. . . 0 . . .

. . . 0 . . .

. . . E

[(
dy(1)state

t−1 ⊗
(

ε⊗[2]
t −Eε⊗[2]

t

))(
dy(1)state

t−1 ⊗
(

ε⊗[2]
t −Eε⊗[2]

t

))′]
. . .

. . . 0 . . .

. . . 0 . . .

. . . E

[
ε⊗[3]

t

(
dy(2)state

t−1 ⊗ εt

)′]
E
(

ε⊗[3]
t ε′t

)

. . . E

[(
dy(1)state⊗[2]

t−1 ⊗ εt

)(
dy(2)state

t−1 ⊗ εt

)′]
E
[(

dy(1)state⊗[2]
t−1 ⊗ εt

)
ε′t
]

. . . 0 0

. . . E

[(
dy(2)state

t−1 ⊗ εt

)(
dy(2)state

t−1 ⊗ εt

)′]
E
[(

dy(2)state
t−1 ⊗ εt

)
ε′t
]

. . . E

[
εt

(
dy(2)state

t−1 ⊗ εt

)′]
E (εtε′t)
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A.13 Computing Elements inE
(

Ξ(3)
t Ξ(3)′

t

)

For every nonzero entry ofE
(

Ξ(3)
t Ξ(3)′

t

)
in sectionA.12, the terms inside the expectations operator

are either i) second, fourth, or sixth moments of the shocks,or ii) the product of these moments with

the state variable block of the order increments, i.e.,dy(2)state
t−1 anddy(1)state

t−1 . The fourth and sixth

moments of the shocks can be computed using Tracy and Sultan’s (1993, p. 344-345) formulae.

E.g., for sixth moments in the formE
(

ε⊗[3]
t ε⊗[3]′

t

)
, applying the mixed Kronecker product rule

yields

E
(

ε⊗[3]
t ε⊗[3]′

t

)
= E

(
εtε′t ⊗ εtε′t ⊗ εtε′t

)
(201)

then Tracy and Sultan’s (1993) Theorem 3 (repeated here) canbe applied directly

E
(
εtε′t ⊗ εtε′t ⊗ εtε′t

)
=
[
E
(
εtε′t
)]⊗[3] [

K +(Kne⊗Kne,ne)+(Kne,ne⊗Kne)+Kne,ne2(Kne,ne⊗Kne)
]

(202)

+K
([

vec
(
E
(
εtε′t
))

vec′
(
E
(
εtε′t
))]

⊗E
(
εtε′t
))

K

where

K = Ine3 +Kne,ne2 +Kne2,ne(203)

is a sum of commutation matrices (See Magnus and Neudecker (1979)).

For the fourth moment in the formE
(

ε⊗[3]
t ε′t

)
, Jinadasa and Tracy’s (1986, p. 404) formula

(repeated here) can likewise be applied directly

E
(

ε⊗[3]
t ε′t

)
= E(εtε′t)⊗vec

(
E(εtε′t)

)
+vec

(
E(εtε′t)

)
⊗E(εtε′t)+(Ine⊗Kne,ne)

[
vec
(
E(εtε′t)

)
⊗E(εtε′t)

]
(204)

For the entries in the form of a product between the moments and the state variable block

of order increments, use the property of the Kronecker product of column vectors and the mixed

Kronecker product rule to rearrange until they are in the form of a (Kronecker) product of two

clusters: one cluster contains the state variable block of the order increments only, and the other

contains (the product of) shocks only. As all the order increments of the last period are uncorrelated
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with the current shocks, the expected value of the two clusters can be computed separately. E.g.

E
[(

dy(1)state⊗[2]
t−1 ⊗ εt

)
ε⊗[3]′

t

]
=E
[
dy(1)state⊗[2]

t−1 ⊗ εt ⊗ ε⊗[3]′
t

]
= E

[
dy(1)state⊗[2]

t−1 ⊗
(

εt ⊗ ε⊗[3]′
t

)](205)

=E
[
dy(1)state⊗[2]

t−1 ⊗
(

εtε
⊗[3]′
t

)]
= E

(
dy(1)state⊗[2]

t−1

)
⊗E

(
εtε

⊗[3]′
t

)

whereE
(

dy(1)state⊗[2]
t−1

)
was computed in sectionA.8 andE

(
εtε

⊗[3]′
t

)
can be computed using the

transposed version of (204).

In fact, many nonzero entries inE
(

Ξ(3)
t Ξ(3)′

t

)
can be recycled from the calculations in section

A.8 and therefore need not to be computed again. E.g., the block entry in the second row and

second column ofE
(

Ξ(3)
t Ξ(3)′

t

)
can be written as

E

[(
dy(1)state⊗[2]

t−1 ⊗ εt

)(
dy(1)state⊗[2]

t−1 ⊗ εt

)′]
= E

(
dy(1)state⊗[2]

t−1 dy(1)state⊗[2]′

t−1

)
⊗E

(
εtε′t
)

(206)

The first term on the right hand side of the foregoing can be recycled fromΓ(2)X
0 as the lower

right entry (the block entry in the second row and second column) of Γ(2)X
0 takes the form

Γ(2)X
0,22 =E

[(
dy(1)state⊗[2]

t−1 −Edy(1)state⊗[2]
t−1

)(
dy(1)state⊗[2]

t−1 −Edy(1)state⊗[2]
t−1

)′]
(207)

=E
(

dy(1)state⊗[2]
t−1 dy(1)state⊗[2]′

t−1

)
−E

(
dy(1)state⊗[2]

t−1

)
E
(

dy(1)state⊗[2]
t−1

)′
(208)

therefore

E
(

dy(1)state⊗[2]
t−1 dy(1)state⊗[2]′

t−1

)
= Γ(2)X

0,22 +E
(

dy(1)state⊗[2]
t−1

)
E
(

dy(1)state⊗[2]
t−1

)′
(209)

Some entries ofE
(

Ξ(3)
t Ξ(3)′

t

)
are zero as they contain one or some of terms equal to zero

under normality: the odd moments of the exogenous shocks,E
(

dy(1)state
t

)
, E
(

dy(1)state⊗[3]
t

)
and

E
(

dy(1)state⊗[5]
t

)
.
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Table 1: Parameter Values: Common to All Three Calibrations

Parameter β ψ χ α δ a ρσ τ
Value 0.9926 2.9869 100 0.339 0.021 0.004 0.9 0.15

See Tallarini (2000) and the main text.

Table 2: Parameter Values: Calibrating Homoskedastic Volatility

Baseline Constant Volatility Expected Utility Extended Model
σa 0.009824769 0.011588754 0.0115 0.0225

σa calibrated to keep the standard deviation of∆ ln(c) = 0.0055

Table 3: Mean Comparison

Variable Det.S.S.∗ Baseline Calibration Constant Volatility Calibration Tallarini (2000)
log(k) 2.0841 2.1373 2.1581 2.1584
i 0.2002 0.2106 0.2146 0.2160
log(c) -0.5672 -0.5542 -0.5491 -0.5499
log(y) -0.2649 -0.2417 -0.2326 -0.2319
log(N) -1.4675 -1.4597 -1.4566 -1.4563
Rf 1.1493 1.0470 1.0070 1.011
R 1.1493 1.0532 1.0156 1.022

* The deterministic steady state value
See Table 5 and 8, Tallarini (2000).

Table 4: Standard Deviation Comparison

Variable Baseline Calibration Constant Volatility Calibration Tallarini (2000) Data
∆ log(c) 0.0055 0.0055 0.0055 0.0055
∆ log(y) 0.0096 0.0100 0.0095 0.0104
∆ log(i) 0.0240 0.0223 0.0224 0.0279
log(c)− log(y) 0.0154 0.0150 0.0147 0.0377
log(i)− log(y) 0.0425 0.0404 0.0403 0.0649

See Table 7, Tallarini (2000).
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Table 5: Variance Decomposition in Percentage

Constant Volatility Calibration Baseline Calibration
1st order amp. risk adjustment 1st order amp. risk adjustment

cmpr 0 100 0 100
erp 0 100 0 100
rp 109.03 0.60 80.68 8.51
log(k) 96.35 0.02 75.08 1.37
i 95.28 0.02 57.19 30.25
log(c) 96.65 0.01 75.88 2.62
log(y) 95.03 0.04 44.54 36.99
log(N) 97.82 0.01 66.25 18.61

For each calibration, the columns may not add up to 100 due to the omission of 2nd
and 3rd order amplification and cross effects.

Table 6: Standard Deviation Comparison

Variable Baseline Calibration Extended Model Data
∆ log(c) 0.0055 0.0055 0.0055
∆ log(y) 0.0096 0.0058 0.0104
∆ log(i) 0.0240 0.0068 0.0279
log(i)− log(k) 0.0707 0.0368 -
log(c)− log(y) 0.0154 0.0018 0.0377
log(i)− log(y) 0.0425 0.0052 0.0649

Table 7: Variance Decomposition in Percentage

Constant Volatility Calibration Baseline Calibration Extended Model
1st order amp. risk adj. 1st order amp. risk adj. 1st order amp. risk adj.

cmpr 0 100 0 100 0 100
erp 0 100 0 100 0 100
rp 109.03 0.60 80.68 8.51 79.45 0.95
r f 105.56 0.14 80.35 0.86 14.83 81.54
log(k) 96.35 0.02 75.08 1.37 80.03 0.21
i 95.28 0.02 57.19 30.25 78.39 1.03
log(c) 96.65 0.01 75.88 2.62 80.02 0.23
log(y) 95.03 0.04 44.54 36.99 80.09 0.21
log(N) 97.82 0.01 66.25 18.61 78.76 1.44

For each calibration, the columns may not add up to 100 due to the omission of 2nd and 3rd order
amplification and cross effects.
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Section3
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Figure 4: Expected Risk Premium IRFs: Volatility and GrowthShocks, Baseline Model of
Section3
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Figure 5: Simulated Squared Conditional Market Price of Risk, Baseline and Constant Volatility
Model of Section3
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Figure 6: Stochastic Volatility and the Hansen-Jagannathan Bounds
×: Expected Utility;+: Constant Volatility;©: Baseline (Stochastic Volatility)
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Figure 7: Macro IRFs: Volatility Shock, Extended Model of Section 7
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