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FAIR AND EFFICIENT LOTTERIES OVER INDIVISIBLE GOODS

CHRISTIAN BASTECK

Technische Universität Berlin

Abstract. We study the problem of assigning indivisible goods to individuals where each is to
receive one object. To guarantee fairness in the absence of monetary compensation, we consider
random assignments and analyse various equity criteria for such lotteries. In particular, we find
that sd-no-envy (as championed by the Probabilistic Serial) is incompatible with the sd-core
from equal division. As an alternative, we present a Walrasian mechanism, whose outcomes are
sd-efficient, group sd-envy-free, lie in the sd-core from equal division and satisfy the sd-equal-
division-lower-bound.
Keywords: Probabilistic Serial; Sd-efficiency; Sd-no-envy; Sd-core from equal division
JEL codes: C70, D63

1. Motivation

Efficiency in itself is rarely sufficient to determine a unique allocation of resources. In order to
remedy this problem and to arrive at a compromise, we frequently apply formal fairness criteria,
often in the spirit of equity. However, where resources are indivisible, equity with respect to
deterministic allocations is ruled out. Applying a lottery may then allow us to restore fairness
at least from an ex-ante perspective. While the design of optimal lotteries has received a lot
of attention in recent years, most of the work concentrates on their efficiency and incentive
properties (i.e. is it optimal for participants to reveal their true preferences). In this paper, we
try to complement the literature by taking a closer look at the original motivation for applying
a lottery mechanism and ask “when is a lottery fair?”. For this, we draw on the rich literature
on fair allocation and adapt various equity criteria to random assignments.

2. Technicalities

We consider the problem of allocating n objects to n agents. Each agent i ∈ I is to receive
one object o ∈ O and holds strict ordinal preferences �i over the set of objects O:

o(1, i) �i o(2, i) �i ... �i o(n, i)

where o(l, i) denotes the l-most preferred object of individual i. A lottery p assigns object o to
agent i with probability pio. It is feasible, if ∀o ∈ O :

∑
i∈I p

i
o = 1. The collection pi = (pio)o∈O

is referred to as the individual lottery of agent i; throughout this paper we restrict attention
to individual lotteries such that ∀i ∈ I :

∑
o∈O p

i
o = 1.1

To extend agents preferences to (individual) lotteries,2 we rely on first order stochastic dom-
inance: pi �i p̃

i iff

∀k ∈ {1, ..., n} :
k∑

l=1

pio(l,i) ≥
k∑

l=1

p̃io(l,i),

E-mail address: christian.basteck@tu-berlin.de.
I thank Morimitsu Kurino, Vikram Manjunath, William Thomson, as well as participants at the Seventh

Doctoral Workshop on Economic Theory in Bielefeld and the 2013 Conference on Economic Design in Lund for
their helpful comments and suggestions.

1We assume that there is no outside option preferred to any of the objects o ∈ O.
2We do not consider any consumption externalities, so preferences only depend on the individual component.
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2 FAIR AND EFFICIENT LOTTERIES OVER INDIVISIBLE GOODS

i.e. an agent weakly prefers lottery p iff it guarantees her a weakly higher chance of receiving
her most preferred object and a weakly higher chance of receiving the most or second most
prefered object and ... so on. Iff at least one of the inequalities is strict, we write pi �i p̃

i.
Note that first order stochastic dominance only induces a partial ordering over lotteries - this
will require us to differentiate between weak and strong versions of prominent equity criteria.

Finally, a lottery p is sd-efficient3 unless there exists another feasible lottery p̃ 6= p such that
p̃i �i p

i, for all i ∈ I. Bogomolnaia and Moulin [2001] refer to this concept as ordinal efficiency,
to highlight the coarse informational underpinning of our preference relation.

3. Equity Criteria

Envy-Freeness is arguably the most prominent equity criterion if we rule out interpersonal
comparability. To check whether an allocation is envy-free, we need to compare agents indi-
vidual allocations - no agent should then prefer anyone else’s lottery.

Definition 1. Formally, a lottery p is

• sd-envy-free iff ∀i, j ∈ I : pi �i p
j.

• weakly sd-envy-free iff @i 6= j ∈ I : pj �i p
i.

As mentioned before, the difference between the strong and weak notion arises out of the
incompleteness of preferences. Weak sd-envy-freeness is satisfied iff there exist (row-)vectors
of Bernoulli utilities ui = (ui

o)o∈O, consistent with agents preferences over sure objects4, such
that each lottery p is envy-free with respect to u, i.e. if ∀i 6= j : ui · pi ≥ ui · pj. Strict sd-
envy-freeness is satisfied whenever p is envy-free with respect to all possible Bernoulli utilities
ui
o that are consistent with individuals preferences over sure objects. From the perspective

of a social planer who assumes that agents evaluate lotteries as expected utility maximisers,
requiring sd-envy-freeness can then be seen as an attempt to ensure equity in the face of the
limited information available. The most prominent allocation mechanism that satisfies sd-envy-
freeness is the Probabilistic Serial Mechanism, proposed by Bogomolnaia and Moulin [2001],
where agents are simultaneously “eating” probability shares, starting with their most preferred
object until it is exhausted, then moving down to their second most preferred object, and so
on.

Another natural yardstick to measure individuals shares is equal division, denoted as ( 1
n
),

i.e. the individual lottery that grants an agent each object with probability 1
n
.

Definition 2. A lottery p satisfies the

• sd-equal-division-lower-bound iff ∀i ∈ I : pi �i ( 1
n
).

• weak sd-equal-division-lower-bound iff @i ∈ I : ( 1
n
) �i p

i.

Again, the weak notion is satisfied iff the equal division lower bound is met for some consistent
Bernoulli utilities ui

o, while the strong notion requires that it is met for all possible ui
o that are

consistent with agents preferences over sure objects.
Observe that any lottery that is sd-envy-free also meets the sd-equal-division-lower-bound -

as each agent receives one of her k-most preferred objects with a higher probability than anyone
else, she also receives it with a probability weakly greater than k

n
:

∀i, k :
k∑

l=1

piol,i ≥
k∑

l=1

1

n

∑
j∈I

pjol,i =
k∑

l=1

1

n
=

k

n

The two weak notions, however, are logically independent; neither implies the other. To see
this, consider the following two examples.

3’sd’ stands for ’stochastic dominance’.
4I.e., ∀i : ui

o(1,i) > ui
o(2,i) > ... > ui

o(n,i) > 0.



FAIR AND EFFICIENT LOTTERIES OVER INDIVISIBLE GOODS 3

Example 1. Consider 3 agents {1, 2, 3} who share the same preferences over objects a � b � c.
Then the following lottery

a b c

1: 11
20

0 9
20

2: 3
20

14
20

3
20

3: 6
20

6
20

8
20

is weakly sd-envy-free but fails to meet the weak sd-equal-division-lower-bound as agent 3 would
prefer the uniform lottery.

Example 2. Suppose that the preferences of agent i ∈ {1, 2} are given as a �i b �i c while
the third agents most preferred object is c. Then the following lottery

a b c

1: 2
3

1
3

0

2: 1
3

2
3

0

3: 0 0 1

meets the sd-equal-division-lower-bound but fails to be weakly sd-envy-free as p1 �2 p
2.

In addition, there are various equity criteria for groups of agents, perhaps most notably the
core from equal division - see for example Thomson [2011].

Definition 3. A group of agents G ⊂ I may object to a lottery p̃ if there is an alternative
lottery p such that

• ∀o ∈ O :
∑

i∈G pio = |G|
n

and
• ∀i ∈ G : pi � p̃i and ∃j ∈ G : pj � p̃j.

If there is no such objection that can be raised against a lottery, the lottery is said to be in the
sd-core (from equal division).

Note that an inefficient lottery would be blocked by the grand coalition. Hence, any lottery
in the (strong) sd-core is sd-efficient.

The sd-core extends the idea of an equal-division-lower-bound to group comparisons. In the
same way, we can extend envy-freeness to take by comparing the (aggregate) share of one group
with the share of other groups. This leads us to the concept of group envy-freeness [Thomson,
2011],[Varian, 1974],[Vind, 1971]5.

Definition 4. A group of agents G ⊂ I may object to a lottery p̃ if there is another group
G′ ⊂ I and a lottery p such that

• ∀o ∈ O :
∑

i∈G pio = |G|
|G′|
∑

j∈G′ p̃jo and

• ∀i ∈ G : pi � p̃i and ∃j ∈ G : pj � p̃j

If there is no objection that can be raised against a lottery, the lottery is said to be group
sd-envy-free.

Note that as we allow for the case |G| > |G′|, the alternative lottery p may not be feasible.
Restricting objections, e.g. by requiring p to be feasible or demanding that G and G′ are
disjoint, enlarges the set of group sd-envy-free lotteries. However, as our main finding on
group sd-envy-freeness will be a possibility result, working with the most restrictive notion
only strengthens our result.

Group envy-freeness is typically satisfied in a walrasian equilibrium with equal incomes [Var-
ian, 1974]. When allocating indivisible goods as we do here, Hylland and Zeckhauser [1979]

5Varian and Vind use the term Coalition Fairness.
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sd-envy-

weak sd-

group sd-

equal division

equal-division-

weak sd-

lower-bound

sd-core from

envy-freeness

envy-freeness

lower-bound

equal-division-

sd-

freeness =⇒

=⇒

=⇒

=⇒

=⇒ =⇒

Probabilistic Serial

Hylland and Zeckhauser’s Mechanism

Figure 1. Logical relations between equity criteria and 2 sd-efficient mechanisms

show how general equilibrium theory can be used to derive a lottery that is efficient and, so
we add, group envy-free when the initial incomes are equal. In contrast to our setup, they
assume that agents evaluate lotteries according to some vNM-utilities (ui)i∈I . However, any
lottery constructed via their mechanism, will be sd-efficient and group sd-envy-free, provided
that (ui)i∈I and (�i)i∈I agree on the ranking of objects o ∈ O. The reason is simple: any trade
(resp. objection) that would make everyone (resp. members of G) better of with respect to
first order stochastic dominance would also yield an increase in individuals expected utility.

Note that group sd-envy-freeness implies weak sd-envy-freeness (just choose G and G′ as
singletons). Moreover, any lottery that is group sd-envy-free is also in the sd-core - just chose
G′ = I as comparison group. Figure 1 summarises all logical relations and examplary mech-
anisms discussed so far. See the Appendix for an example where Hylland and Zeckhausers
mechanism does not satisfy the strict equal division lower bound6. The fact that probabilistic
serial does not, in general, yield lotteries that are in the sd-core will follow from our Proposition
1.

4. Main Results

In light of Figure 1, we may ask whether there exists an efficient mechanism that is able to
satisfy all of the above equity concepts. The following Proposition answers that question in the
negative.

Proposition 1. For all n ≥ 4, there exist preference profiles (�i)i∈I such that lottery simulta-
neously satisfies sd-envy-freeness an lies in the sd-core from equal division.

6Of course, if one assumes that agents vNM-utilities are known, as Hylland and Zeckhauser do, the sd-equal-
division-lower-bound looses much of its appeal.
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sd-envy-

weak sd-

group sd-

equal division

Proposition 1 - Impossibility Result

Proposition 2 - Possibility Result

equal-division-

weak sd-

lower-bound

sd-core from

envy-freeness

envy-freeness

lower-bound

equal-division-

sd-

freeness

 
=⇒

=⇒

=⇒

=⇒

=⇒ =⇒

Figure 2. Main Results

In the following we give a proof for the case n = 4; the general case is referred to the Appendix.
Consider 4 agents with preferences b �1 a �1 c �1 d, a �2 c �2 b �2 d, a �3 b �3 d �3 c,
a �4 b �4 c �4 d. Then sd-envy-freeness and sd-efficiency (the latter is a necessary condition
for a lottery to lie in the sd-core) are sufficient to pin down the following unique lottery.

a b c d

1: 0 60/108 28/108 20/108

2: 36/108 0 52/108 20/108

3: 36/108 24/108 0 48/108

4: 36/108 24/108 28/108 20/108

The zero entries are a consequence of efficiency: Suppose for example that p2a > 0. Then
p1b < 1 and hence pib > 0 for some i ∈ {2, 3, 4}. But then agent 1 could trade some of
her probability share in a against some of i′s share in b, leading to a pareto improvement.
Analogously, we find that p2b = p3c = 0. The remaining entries then follow from strict sd-envy-
freeness: agent 2, 3 and 4 need to receive weakly more of object a than anybody else, and so
receive 1/3 = 36/108 each. Agents 1, 3 and 4 need to receive weakly more of objects a and b than
anybody else, so each receives 60/108 in sum. Entries in the c column are computed analogously
and the d entries are chosen so that the sum over individual probabilities is 1.

However, the following lottery constitutes a blocking proposal from the point of view of
agents i ∈ {1, 2, 3}. Agent 1 receives her most preferred object with a higher probability while
the probability of receiving her third-most preferred object decreases. Agent 2 is able to shift
some probability mass from 4th to 2nd position, and agent 3 from 2nd to 1st.
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a b c d

1: 0 66/108 29/108 13/108

2: 36/108 0 52/108 20/108

3: 45/108 15/108 0 48/108

4: 27/108 27/108 27/108 27/108

This proves proposition 1 for the case n = 4. In the appendix, we add a general example for
the case of n ≥ 5.

Accepting the disconcerting news of Proposition 1, we may ask whether group equity criteria
are at least compatible with the sd-equal-division-lower-bound. Here the answer is yes.

Proposition 2. For all n and all preference profiles (�i)i∈I, there exist lotteries that are group
sd-envy-free and that meet the sd-equal-division-lower-bound.

Note that a fortiori, such lotteries will be sd-efficient, weakly sd-envy-free and lie in the
sd-core from equal division.

We will proof Proposition 2 by establishing existence of a competitive equilibrium from equal
incomes and suitably constrained consumption sets. Let us define the set of admissable price
vectors as Q = {(qo)o∈O ∈ Rn|∀o ∈ O : qo ≥ −1,

∑
o∈O qo = 1}7 and fix individual incomes at

1/n.8 Consumption sets of agents are given by

Ci = {(pio)o∈O|∀o ∈ O : pio ≥ 0,∀k :
k∑

l=1

pio(n+1−l,i) ≤ k/n}.

Recall that o(l, i) denotes the l-most preferred object of individual i, so individuals are restricted
to consume at most 1/n of their least preferred object, a total of 2/n of their two least favourite
objects... and not more than 1 of their n least favourite objects, i.e. not more than 1 of all
objects. If

∑
o∈O p

i
o = 1, as will be the case in equilibrium, the constraints on consumption

ensure that the sd-equal-division-lower-bound is met. Unfortunately �i, i.e. the preference
relation given by first order stochastic dominance, is not continuous. So in order to apply
a fixed point argument for continuous correspondences, we augment each �i by choosing a
(row-)vector of compatible Bernoulli utilities ui = ui

o∈O,

ui
o(1,i) > ui

o(2,i) > ... > ui
o(n,i) > 0.

The precise choice of ui is not important for our existence result. What matters is, that each
ui and �i agree on the ranking of sure objects. This guarantees that ui · pi > ui · p̃i whenever
pi �i p̃

i. We are now set to formulate the main Lemma towards a proof of Proposition 2.

Lemma 1. For any choice of Bernoulli utilities (ui)i∈I, there exists a competitive equilibrium
from equal incomes, i.e. a tupel (p, q) ∈ C1 × ...× Cn ×Q such that

• ∀i ∈ I; p̃i ∈ Ci : q ·pi ≤ 1/n and (ui · p̃i > ui ·pi ⇒ q · p̃i > 1/n) (preference maximisation)
• ∀o ∈ O :

∑
i∈I p

i
o = 1 (feasibility / non-wastefulness)

The proof of Lemma 1 is referred to the Appendix.

Proof of Proposition 2. Assured of its existence, consider an equilibrium (p, q) ∈ C1× ...Cn×Q.

Claim 1. The associated lottery p meets the sd-equal-division-lower-bound.

The constraint
∑

o∈O p
i
o ≤ 1 imposed on each individual lottery pi ∈ Ci, together with the

equilibrium condition ∀o ∈ O :
∑

i∈I p
i
o = 1 guarantee that

∑
o∈O p

i
o = 1 for all i. Hence, by

construction of Ci, p satisfies the sd-equal-division-lower-bound.

7The price vector q is taken to be a row vector, while individual lotteries pi take the form of column vectors.
8This income corresponds to the value of the average bundle ( 1

n ) at any price vector q ∈ Q.
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Claim 2. The associated lottery p is group sd-envy-free.
Assume otherwise, i.e. there are groups G,G′ and an alternative lottery p̃, such that

∀i ∈ G : p̃i �i p
i and

∑
i∈G

p̃i =
|G|
|G′|

∑
j∈G′

pj.

Due to Claim 1, we know that p̃i ∈ Ci for all i ∈ G. From the non-wastefulness property,
∀o ∈ O :

∑
i∈I p

i
o = 1, we know that each individual spends its whole budget, i.e. ∀i ∈ I :

q · pi = 1/n. But then ui(p̃
i) ≥ ui(p

i), implies that q · p̃i ≥ q · pi = 1/n for all i ∈ G while for at
least on j ∈ G, ui(p̃

i) > ui(p
i) and q · p̃i > 1/n . However, this contradicts our initial assumption∑

i∈G p̃i = |G|
|G′|
∑

j∈G′ pj, which implies that∑
i∈G

q · p̃i =
|G|
|G′|

∑
j∈G′

q · pj ≤ |G|1/n,

where the inequality follows from individual budget constraints, i.e. q ·pj ≤ 1
n
, for all j ∈ I. �

5. Appendix

Proof of Proposition 1. It remains to show how our example can be extended to the case of
n ≥ 5. To do so, add objects o5, o6..., on and assume that all agents agree on their ranking, i.e.
a, b, c, d �i o5 �i ... �i on, for all i ∈ I. Moreover, let us add n− 4 copies of agent 4, such that
each agent j ∈ {4, ..., n} holds preferences a �j b �j c �j d �j o5 �j ... �j on. The unique
lottery p̃ that satisfies sd-efficiency and strict sd-envy-freeness can then be calculated, as

a b c d ok

1: 0 2
n−1 - 1

(n−1)2
1

n−1 −
1

(n−1)2 + 1
(n−1)3

4
n
− 3

n−1 + 2
(n−1)2 −

1
(n−1)3

1
n

2: 1
n−1 0 2

n−1 −
2

(n−1)2 + 1
(n−1)3

4
n
− 3

n−1 + 2
(n−1)2 −

1
(n−1)3

1
n

3: 1
n−1

1
n−1 −

1
(n−1)2 0 4

n
− 2

n−1 + 1
(n−1)2

1
n

j: 1
n−1

1
n−1 −

1
(n−1)2

1
n−1 −

1
(n−1)2 + 1

(n−1)3
4
n
− 3

n−1 + 2
(n−1)2 −

1
(n−1)3

1
n

where k = 5, ..., n and j = 4, ..., n. The following lottery p constitutes a blocking proposal by
agents 1, 2 and 3:

a b c d ok

1: 0 2
n

+ 1
(n−1)2

7
n
− 5

n−1 + 2
(n−1)2 −

1
(n−1)3 − 5

n
+ 5

n−1 −
3

(n−1)2 + 1
(n−1)3

1
n

2: 4
n
− 2

n−1 0 − 4
n

+ 5
n−1 −

2
(n−1)2 + 1

(n−1)3
4
n
− 3

n−1 + 2
(n−1)2 −

1
(n−1)3

1
n

3: − 1
n

+ 2
n−1

1
n
− 1

(n−1)2 0 4
n
− 2

n−1 + 1
(n−1)2

1
n

j: 1
n

1
n

1
n

1
n

1
n

It is straightforward, to check that

3∑
i=1

pia =
3∑

i=1

pib =
3∑

i=1

pic =
3∑

i=1

pid =
3

n
.

To see that p1 �1 p̃
1, observe that

p1b − p̃1b =
2

n
+

1

(n− 1)2
− 2

n− 1
+

1

(n− 1)2
=

2(n− 1)2 + n− 2n(n− 1) + n

n(n− 1)2
=

2

n(n− 1)2
> 0



8 FAIR AND EFFICIENT LOTTERIES OVER INDIVISIBLE GOODS

and

p1d − p̃1d = − 5

n
+

5

n− 1
− 3

(n− 1)2
+

1

(n− 1)3
− 4

n
+

3

n− 1
− 2

(n− 1)2
+

1

(n− 1)3

=
−5(n− 1)3 + 5n(n− 1)2 − 3n(n− 1) + n− 4(n− 1)3 + 3n(n− 1)2 − 2n(n− 1) + n

n(n− 1)3

=
−9(n− 1)3 + 8n(n− 1)2 − 5n(n− 1) + 2n

n(n− 1)3

=
−n3 + 6n2 − 12n + 9

n(n− 1)3

=


− 26

320
, n = 5

1
n(n−1)3 (−n3 + 6n2︸ ︷︷ ︸

≤0

−12n + 9︸ ︷︷ ︸
<0

) < 0 , n ≥ 6

Hence agent 1 now receives more of her most and less of her least prefered object. To see that
agent 2 is better off, note that p2b = p̃2b and p2d = p̃2d while

p2a − p̃2a =
4

n
− 3

(n− 1)
=

4(n− 1)− 3n

n(n− 1)
=

n− 4

n(n− 1)
> 0.

Finally, agent 3 strictly prefers p3 as well, given that p3c = p̃3c and p3d = p̃3d while

p3a − p̃3a =
1

n− 1
− 1

n
> 0.

�

Proof of Lemma 1. We rely on the following fixed point theorem, see Mas-Colell [1992].

Let X1×X2× ...×XH = X ⊂ Rm be the Cartesian product of non-empty, compact, convex sets.
Assume that Fh : X → Xh, h = 1, ..., H are convex-valued correspondences with an open graph.
Then there exists an x ∈ X such that, for every h, we have either xh ∈ Fh(x) or Fh(x) = ∅.

To apply the theorem, we identify each Ci with Xi and Q with XH , H = n+ 1. It is easy to
check that all Xi are non-empty, compact and convex. Next, for any i = 1, ..., n define

Fi(x) =

{
{pi ∈ Ci|q · pi < 1/n}, if q · pi > 1/n.

{pi ∈ Ci|q · pi < 1/n and ui · pi > ui · pi}, if q · pi ≤ 1/n.

where x = (x1, x2..., xH) = (p1, p2, ..., pn, q). Surely, Fi is convex valued. Moreover, by con-
struction, xi ∈ Fi(x) is ruled out. To see that Fi has an open graph, consider yi ∈ Fi(x). If
xH · xi > 1/n then xH · yi < 1/n and both inequalities continue to hold in a small neighbourhood
of x and yi. If xH · xi ≥ 1/n, then xH · yi < 1/n and ui · yi > ui · xi. Consider x′ and y′i close to
x, yi. The two strict inequalities still hold, x′H · y′i < 1/n and ui · y′i > ui · x′i, so if x′H · x′i ≥ 1/n,
then y′i ∈ Fi(x

′
i). If on the other hand x′H · x′i < 1/n, the fact that x′H · y′i < 1/n is sufficient; in

either case y′i ∈ Fi(x
′
i). Next, consider a market agent setting prices q according to

FH(x) =

{
q ∈ Q|q ·

(∑
i∈I

pi − (1)

)
> q ·

(∑
i∈I

pi − (1)

)}
where (1) denotes the total supply. The economic logic is familiar; the price of commodities in
excess supply is raised, while in the face of excess demand, the price is reduced. It is easy to
check that FH is convex-valued and open. Morever, as for Fi, we find that xH ∈ FH(x) is ruled
out. Hence, from our fixed-point theorem, we know that there exists x such that Fh(x) = ∅,
for all h = 1, 2, ...H.

To see that x = (p1, p2, ..., pn, q) satisfies our preference maximisation condition, observe first,
that q · pi ≤ 1/n as otherwise Fi(x) = {pi ∈ Ci|q · pi < 1/n} 6= ∅. Second, assume there exists
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another pi ∈ Ci that is affordable (q · p ≤ 1/n) and preferred over pi (ui · pi > ui · pi). But then,
p̂i = (1− ε)pi costs even less and is still preferred over pi. Hence, p̂i ∈ Fi(x) 6= ∅.

Finally, consider feasibility. If there is positive excess supply for each good, i.e. ∀o :
∑

i∈I p
i
o <

1, then every agent spend her complete income 1/n - otherwise, she must be satiated, i.e. able
to afford a full share of her most preferred object at cost below 1/n. But then, there is at least
one good not in excess supply. Hence, we know that

∀o :
∑
i∈I

pio < 1⇒ q · (
∑
i∈I

pi − (1)) = 0.

Then, it would be possible to distribute the remaining probability shares among the agents
without increasing the aggregate cost. But if there is no cost increase in the aggregate, there
is at least one affected agent for whom the cost does not increase individually - yet her utility
would increase which is in conflict with our previous conclusion on preference maximisation.
Having ruled out positive excess supply in each good, consider the case

∑
i∈I p

i 6= (1) while
there is one o, such that

∑
i∈I p

i
o ≥ 1. Then maxq′q

′ · (
∑

i∈I p
i− (1)) has a positive value: (i) if

there exists a good o′ in positive excess supply, set q′o′ = −1, q′o = 2 and all other prices to zero.
Then q′ ·(

∑
i∈I p

i−(1)) > 0. If on the other hand (ii) there is no good in positive excess supply,
then by

∑
i∈I p

i 6= (1) there has to be a good o′ in positive excess demand. Set q′(o′) = 1 and
all other prices to zero, and q′ ·(

∑
i∈I p

i−(1)) > 0. Hence, as q ∈ argmaxq′q
′ ·(
∑

i∈I p
i−(1)), we

find that q · (
∑

i∈I p
i− (1)) > 0. But this violates the first part of our preference maximisation

condition: q · pi ≤ 1/n. Thus, we conclude that
∑

i∈I p
i = (1). �

Example 3. To see that the outcome of Hylland and Zeckhausers mechanism may not meet the
sd-equal-division-lower-bound, suppose that agents utilities are given as u1(a) = 5, ui(a) = 4
for i ∈ {2, 3}. The remaining objects b and c yield the same utility for all agents; ui(b) = 2 and
ui(c) = 1 for i ∈ {1, 2, 3}. Then the following lottery

a b c

1: 1
2

0 1
2

2: 1
4

1
2

1
4

3: 1
4

1
2

1
4

is a walrasian equilibrium with equal incomes 1/3 and prices qa = 2/3, qb = 1/3 and qc = 0.
Thus, it is (sd-)efficient,as well as group (sd-)envy-free. However, it doesn’t meet the sd-equal-
division-lower-bound, as p2,3a < 1

3
.
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