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Abstract

Lack of transmission capacity hampers the efficient integration of the Euro-
pean electricity market, and thereby precludes reaping the full benefits of com-
petition. We investigate to what extent the expansion of the transmission grid
promotes competition, efficiency, and welfare. This work proposes a three-stage
model for grid investment: a benevolent planner decides on network upgrades;
she considers the welfare benefits of investment through a reduction of market
power exertion by strategic generators. These firms anticipate their impact on the
Independent System Operator and are able to exert market power, in particular
when lines are congested.

We illustrate the model on a simple three-node network. Results indicate
that network expansion indeed provides a suitable way of enhancing welfare due
to a reduction of market power potential.
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1 Market Power and Network Expansion in Europe

Starting in the mid-nineties, the European Union has been developing the institutional basis
for an internal energy market (IEM). Initiated by numerous directives, formerly integrated
companies were unbundled, and the transmission grid opened up for competitive genera-
tion. As a consequence, regional energy exchanges were established, providing market places
with transparent wholesale prices. Interconnectors between those single market areas had
originally been constructed for contigencies, not with the aim of facilitating cross-border
trade – national markets basically remained in autarky. Today, in ten Member States the
largest generating company has a market share above 70% (European Commission, 2012b,
data for 2010), and in eight Member States more than 80% of generating assets are held by
the former incumbent (European Commission, 2012a, data for 2012). By means of further
European integration, this high degree of concentration could be reduced, thereby mitigating
the potential to exert market power, enhancing efficiency, and increasing welfare. Along this
basic economic rationale, policymakers acknowledge the gains from further integration:

The European Union needs an internal energy market that is competitive, integrated
and fluid providing a solid backbone for electricity and gas flowing where it is needed.
[. . .] Despite major advances in recent years in the way the energy market works,
more must be done to integrate markets, improve competition and respond to new
challenges. (European Commission, 2012a, p.2)

The formation of the Council of European Energy Regulators (CEER) in 2000, and the
Agency for the Cooperation of Energy Regulators (ACER) in 2010 laid institutional corner-
stones. The organizational framework to accomplish enhanced integration and competition,
is provided by different specifications of market coupling, eventually creating a common
electricity market. In the Central Western Europe (CWE) region comprising France, the
Benelux states, and Germany/Austria, for example, the current market coupling algorithm
was introduced in 2010, extending a similar mechanism comprising France, the Netherlands,
and Belgium.1 Unlike the prior explicit auctioning of interconnector capacities, the CWE
coupling mechanism employs an implicit auction algorithm in order to utilize existing ca-
pacities efficiently, and directing flows from low to high price areas. Throughout Europe,
further national markets are also on their way to integration through several regional cou-
pling initiatives. The ultimate goal is laid down by the so-called Electricity Target Model
(ETM) of market integration, envisaging a single pan-European price coupling mechanism
(ACER/CEER, 2013).

What is missing, however, are sufficient physical interconnector capacities to accomplish
a truly integrated market. Strong indicators for factually incomplete integration within
Europe come from analyses of wholesale price spreads. Zachmann (2008) econometrically
examines the period from 2002 to 2006: he identifies significant convergence between some
bilateral wholesale price pairs. Especially during peak hours of high flows within the network,
however, tendencies of divergence are observable.2 A similar detection for more recent data
from 2008 to 2012 is made by ACER/CEER (2013): in 2012, full price convergence in
CWE, for example, is achieved in about 50% of hours, whereas in roughly a quarter of the
year wholesale prices differed by more than 10 Euro per MWh. It is important to note that
these trends coincide with an increasing use of commercial transfer capacities, and a declining
number of flows against the price differential. Böckers et al. (2013) provide analogous figures.
These findings, thus, lend stark evidence that, first, physical capacities are still insufficient

1Before the introduction of market coupling, interconnector capacities were auctioned explicitly, often
weeks or months ahead, which inevitably led to inefficiencies like flows against the prevailing price differential
(cf. Booz & Company et al., 2013).

2He also identifies the explicit auctioning of cross-border capacities as significant obstacle to integration,
as discussed above.
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to achieve full integration, and, second, inefficiencies in the allocation mechanism are no
predominant driver of this incomplete convergence.

From a pure gains-from-trade perspective, ACER launched attempts to quantify welfare
benefits from integration. To this end, several European Power Exchanges were prompted to
carry out counterfactual analyses, holding historically received bids constant while varying
interconnector capacities. According to these calculations, gross welfare gains up to 25
million Euro for a single interconnector would have accrued for a virtual increase of 100 MW
in 2012 (ACER/CEER, 2013, pp.73-75). In an analogous fashion, Booz & Company et al.
(2013) quantifies the efficiency losses due to congestion on the interconnector between France
and the UK with more than 20 million Euro in 2011, and more than 70 million Euro in 2012.
A similar analysis is provided on a monthly basis by the European power exchange EPEX
Spot: in its Social Welfare Report, historical data are compared to a hypothetical world
with infinite cross-border capacities. For the CWE region, gross welfare increases of more
than 250 million Euro would have originated from the absence of any congestion (EPEX
Spot, 2013). Beyond these (rough approximations of) efficiency gains from trade, enhanced
security of supply or more efficient feed-in of variable renewables3, integration is essential to
ensure vigorous inter-regional competition where concentration on single markets remains
high – which is the focus of our contribution.

Modeling the interaction between strategic firms and the expansion of constraining net-
works is, however, still challenging – especially to properly account for gaming opportunities
between generators and network operators. In our paper, we investigate to which extent
transmission grid expansion between national markets offers a way to realize welfare im-
provements due to reduced market power. The major contribution consists in directly incor-
porating the tradeoff between costs and benefits of network expansion into one integrated
model. In a three-stage game, we account for the fact that each agent anticipates the im-
pact of her actions on subsequent decisions: the transmission system planner for her effect
on strategic firms’ behavior, and those, in turn, for their effect on the network operator.
Thereby, we endogenize transmission grid expansion decisions and do not have to rely on the
exogenous variation of parameters or the analysis of scenarios or cases. To the best of our
knowledge, this is the first contribution exhibiting this tradeoff, and provides a consistent
framework for future applications.

The remainder of this paper is structured as follows: Section 2 gives an overview of
the existing literature and relates it to our research, Section 3 presents the methodological
formulation, Section 4 delivers and discusses numerical results, and Section 5 provides a
wrap-up.

2 Modeling Market Power in Electricity Networks

We develop a three-stage model capturing the interaction of strategic generators and electric-
ity grid expansion. On the third stage an Independent System Operator (ISO) dispatches
competitive fringe plants, and ensures feasible network flows, assigning locational prices
to each node in the system, taking all upper level decisions as given. Reformulating her
Karush-Kuhn-Tucker (KKT) optimality conditions with help of duality theory establishes
the solution space for the second stage: strategic generators maximize profit in Cournot
competition, anticipating their impact on the ISO’s actions, but treating first level decision
as exogenous. These two lower stages of the model describe the spot market phase – mathe-
matically they constitute an Equilibrium Problem under Equilibrium Constraints (EPEC).
Deriving its KKT conditions renders a set of inequalities capturing all stationary points,
among which a multitude of extrema and saddle points may be found. Among this set of
vectors fulfilling the necessary conditions for optmimality, the first model stage serves as

3A basic exposition of the economics of European electricity market integration can be found in Böckers
et al. (2013).
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a selection device: a benevolent planner maximizes social welfare over expanding links in
the network, thereby picking that stationary point rendering the welfare-optimal solution.
Beyond necessity, we have to ensure that proposed solutions are indeed Nash equilibria. To
this end, a post-solve check confirms incentive compatibility for the strategic players in order
to ensure sufficiency. To account for multiple optima, we implement an iterative algorithm
systematically exploring the solution space.

The analysis of strategic generator behaviour in constraining networks has been draw-
ing the attention of the research community for several years. Since Neuhoff et al. (2005)4

we know that the devil is in the details: comparing different approaches concerning the
treatment of transmission constraints in two-stage models, the authors identify difficulties in
rendering a realistic representation of interactions between strategic generation and clearing
of multiple markets. Specifically, there are two methods to incorporate the TSOs’ optimiza-
tion programs (cf. Hobbs et al., 2005), depending on whether strategic players anticipate
their impact on the network operation (Stackelberg) or not (Bertrand or näıve). The latter
perspective considerably reduces model complexity at the cost of excluding strategic effects.
Examples comprise the exogenous assumption of rationing mechanisms in case transmission
capacity is sparse (Willems, 2002), or, more recently, strategic players treating transmission
charges arising from the TSO optimization as exogenous in their constraint sets (Tanaka,
2009). The Stackelberg assumption is pursued, for example, in Hobbs et al. (2000), proposing
an algorithmic solution of the arising EPEC, or Cunningham et al. (2002), who explicitly
derive reaction functions for special cases. For all of these approaches, however, network
expansion remains exogenous to the model and is restricted to a limited number of cases in
varying line constraint parameters.

For a reduced special case, the assumption of strategic firms anticipating their impact on
the network situation found reflection in the theoretical industrial organization literature:
in their seminal contribution, sometimes referred to as the thin-line paper, Borenstein et al.
(2000) demonstrate that in a simple two-node network even a line with relatively low capacity
may be enough to foster competition and evoke substantial welfare gains. In this context,
it is irrelevant whether the line capacity does in fact suffice to realize the threat of harsh
competition, or is even utilized. For certain capacity levels, however, there may exist no
Nash equilibrium in pure strategies at all.

Combining the so-called peak load pricing literature with the presence of a potentially
limiting transmission grid, another, more recent strand of the electricity economic literature
on producer market power focused on plant investments from a theoretical perspective: Rud-
erer and Zöttl (2012) compare the outcomes of different transmission management systems5

on investment incentives into generation and transmission. They derive that the social opti-
mum is achieved under nodal pricing. This approach is extended to strategic Cournot firms
by Léautier (2013). He finds that under certain assumptions the marginal social value of
augmenting the capacity of a congested transmission line is positive, and isolates the fraction
that can be attributed to increased competition intensity.

The recent literature also features some empirical approaches, each with a distinct re-
gional scope: for cross-border trade flows between particular European countries, Gebhardt
and Höffler (2013) compare a theoretical benchmark with actual data in order to investigate
whether wholesale price spreads between countries originate from limited interconnector
capacities or rather from missing competition incentives. They presume that prima facie
irrational non-participation in cross-border trade – although positive profits could be ex-
pected – could be incentivized by dynamically upholding market power instead of engaging
in potential retaliation in supergame structures.6 For the Indian electricity market, Ryan

4The article also provides a comprehensive literature review on strategic two-stage games in constraining
networks up to the date of publication

5Nodal pricing directly incorporating scarce transmission capacity into locational prices, as in our model,
and a redispatch system in which a subsequent market corrects for potentially infeasible flows resulting from
a spot dispatch not taking network capacities into account.

6Note that their analysis is based on the European market organization in the years 2002 to 2006, where
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(2013) analyzes the impact of transmission expansion between regions which are frequently
separated by congestion. To this end, he imposes hypothetical line upgrades and presents a
counterfactual analysis disentangling welfare gains from different sources. He finds that 72%
of the detected welfare increase can be traced back to decreased market power exertion. Fi-
nally, Wolak (2012) studies supplier behaviour in the wholesale electricity market of Alberta
(Canada). Within the framework of a theoretical model of bidding strategies, he establishes
a causality running from firms’ perception of the likelihood of transmission constraints to
bind to substantially reduced market power exertion – realized as wedge between actual
marginal costs and submitted bidding curves. This perception of increased competition in-
tensity can, naturally, be promoted by actual transmission expansion. A model calibration
finds consumer surplus effects between roughly 30 and 700 million Canadian Dollars per
year.

There is a modeling stream similar to the work presented here: under the label proactive
planning, Sauma and Oren (2006) present a methodology to evaluate network expansion
projects such that their effect on strategic players is taken into account. Variations and
extensions of this paper are brought forward in Pozo et al. (2013a) and Pozo et al. (2013b),
who propose an improved solution technique allowing for more flexibility concerning line
expansions. The results of all three analyses are in line with intuition: network expansion
has the potential to enhance social welfare, and this increase is greater in case the network
planning entity proactively takes strategic behaviour into account. Although the studies are
based on three-stage models, and incorporate strategic interactions among generating firms,
we depart from their approach in multiple significant ways, and aim at filling several research
gaps:

First, by employing results from duality theory following Ruiz et al. (2012), we are able to
reformulate the market model EPEC such that first order conditions can be explicitly derived.
The virtue of this methodological contribution lies in circumventing the inconvenient usage
of iterative algorithms or discretizations of decision variables. Thereby, we gain flexibility
in employing a first-stage optimization function as selection mechanism choosing among
equilibrium points of the EPEC – compared to the analysis of a small number of predefined
cases. Second, we decidedly focus on market power exertion and strategic withholding. To
this end, we contrast our model results with those of several benchmark runs excluding
network expansions or strategic firm behaviour7.

Third, we suggest a formulation allowing to employ network as well as demand and
generation data as a stylized representation of actual power systems.8 In this respect, we
incorporate different generation technologies and fringe suppliers, aiming at providing more
realistic results. As a further important difference, note that we do not consider investments
in generation capacity while inelastic demand is satisfied by a perfectly competitive dispatch
as in Pozo et al. (2013a) and Pozo et al. (2013b), but rather strategic interaction on a spot
market with existing capacities. This choice deserves some explanation why we are convinced
it is a good approach: in Sauma and Oren (2006), and Pozo et al. (2013a) there is only
one generation technology whose marginal production costs decrease in capacity invested,
an assumption needed to justify investment activities by firms.9 This might be a viable
approximation if one only regarded one stylized technology comprising the entire generation

cross-border transmission capacity was auctioned off explicitly. Moreover, they do not model generators as
strategic, but rather hypothesize strategic behaviour as described.

7Pozo et al. (2013a), Pozo et al. (2013b), and to a greater extent Sauma and Oren (2006) do indeed
regard market power, the latter as a leitmotif, as their analyses center on strategic players. Their discussions,
however, do not detail the impact of network expansion on market power exertion. Sauma and Oren (2006)
rather focus on comparing different network planning paradigms. Pozo et al. (2013a) and Pozo et al. (2013b)
mention positive profits of competitive firms originating in strategic generation investment. However, neither
do they provide a deeper discussion nor present a tradeoff between market power rents and potentially costly
mitigation due to transmission expansion.

8Pozo et al. (2013b) do also provide a case study of the Chilean power system.
9Pozo et al. (2013b) incorporate different conventional technologies. There is, however, only one distinct

technology per node and investment is possible only into that technology. The other assumptions remain.
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mix. As we go for a representation of the existing technology mix, however, considerably
lower marginal costs due to a “larger” generating unit do not appear convincing. Moreover,
we believe that decisions to invest in certain technologies are also driven by other substantial
factors, which are not captured by a model of this kind, than the potential exertion of market
power due to limited network capacities. Among these are the dynamic patterns of demand
and renewables, the existing fleet of a firm, aspects of financing and fuel prices, or innovation
processes. For example, the publication by Léautier (2013), discussed above, and in a more
reduced form Zöttl (2011), exhibit that the analysis of strategic investment behaviour even
with only two distinct technologies (base and peak) is already quite involved, and results
are substantially related to assumptions on the occurrence of different spot markets10 or the
policy framework.

As a final remark, Kreps and Scheinkman (1983) pointed out in their seminal contribu-
tion that Cournot competition can be regarded as equivalent to a two-stage game of strategic
capacity investments with subsequent price competition. Pozo et al. (2013a) note this anal-
ogy – due to their approach of discretizing decision variables, however, they admit that an
interpretation in that fashion does not hold true any more. As we do not apply such model
reformulations, our approach lends itself to evoke that parallel and reinterpret the Cournot
market as investment game, in case one wants to pursue that view.

Subsuming, if the potential to exert market power with an existing power plant park does
exist, strategic firms will have the incentive to exploit it. We therefore restrict ourselves to
the analysis of strategic spot market behaviour under endogenous network configurations.

3 The Three-Stage Model

We propose a three-stage model in which a benevolent social planner anticipates the reactions
of the lower stage strategic players to transmission grid expansion: on the third model stage,
an ISO optimizes the dispatch of non-strategic fringe power plants and ensures that resulting
flows are feasible with given network capacities – taking strategic firms’ generation and
network expansion as given.

On the second model stage, the strategic generators, in turn, anticipate the effect of their
generation decisions on the ISO. In particular, they can potentially generate excess returns
by appropriating rents through congesting the network. Among each other, the strategic
generators play a Nash-Cournot game; that is, they anticipate the ISO’s reaction on the
third stage, while taking the generation levels of other strategic firms and the first stage
network expansion decisions as given. By withholding capacity, they are able to increase
prices above the competitive level. The spot market therefore constitutes a two-stage game,
with strategic firms on the upper-level and the ISO representing the lower level. We use the
notation of an ISO for convenience, but it is equivalent to the equilibrium of an otherwise
competitive market. To this end, consider the ISO as that entity which assigns nodal prices
after having received bids by strategic players, and thus clears the market by dispatching
strategic and competitive fringe plants. Respecting network constraints, she directs flows in a
welfare-optimal manner, mimicking the coupling of nodal markets in the most efficient way.
Actual market coupling procedures are, in some European regions, based on net transfer
capacity (NTC)-based systems, in which commercial flows may underuse existing capacities.
Our apporach thus renders an upper bound for efficiency and welfare.11

10More precisely, the expectations about the occurrence of different demand scenarios. Related to that
point, there is an ongoing debate about the appropriate market design to provide firms with sufficient
incentives to invest into capacity such that security of supply is maintained. Compare Cramton et al. (2013)
for an overview.

11In an NTC system, a fixed calculatory amount of interconnector capacity between two countries is quoted
in advance, and the cheapest bids from one market to another are accepted as long as this capacity limit
is reached. Actually resulting physical flows, however, may diverge from merchant flows due to Kirchhoff’s
laws. In case physical interconnector capacities are violated, counter-trading has to be carried out. Compare
Oggioni et al. (2012) for an analysis of this issue.
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Level Time Player(s) and decisions

I Network expansion
Welfare-maximizing planner
transmission capacity investment

II

Spot Market

Strategic Generators
generation level(s) at each node

III
Independent System Operator (ISO)
dispatch of competitive generation, load, prices,
network flows subject to network feasibility

Table 1: Model Structure

At the top stage of our model, a benevolent social planner maximizes total welfare by
deciding upon the level of transmission grid expansion. While anticipating how changes in the
network topology will influence the Nash equilibrium outcome on the lower stages, she faces
a trade-off between costs of grid expansion and the welfare-enhancing effect of integration
between the different regions: by increasing competition among the strategic generators,
their potentially dominant positions are weakened and thus the potential to exert market
power is reduced. Table 1 illustrates the model structure.

To solve for the Nash equilibrium of this three stage game, we follow the methodology
proposed by Ruiz et al. (2012). We reformulate the ISO’s optimization problem on the
lowest stage (III) using strong duality, which enables us to get rid of bilinearities arising
from complementarity slackness constraints, and replace it by a system of equalities and
inequalities. As we employ an elastic demand curve — an important assumption when it
comes to analyzing market power — we extend the approach from the literature by in-
corporating nonconvexities. Our ISO problem is hence quadratic and not linear, slightly
complicating the duality reformulation. These third stage constraints then provide the so-
lution space for the second stage strategic generators’ Generalized Nash game (GNE). For
each of those, we derive the KKT conditions, and combine them to form one Equilibrium
Problem under Equilibrium Constraints (EPEC). We now face two problems: first, there
may exist multiple Nash equilibria – as demonstrated by Borenstein et al. (2000). Second,
due to the nonconvexity of the EPEC, stationary points do not necessarily capture a Nash
equilibrium, but may also describe minima for some strategic players or saddle points. To
address these issues, we utilize the overall game’s first stage as selection mechanism: the
benevolent social planner optimizes overall welfare deciding on network expansion, and trad-
ing off its costs against the positive welfare effects on the underlying spot market, while the
lower level is rendered by the Karush-Kuhn-Tucker (KKT) first-order optimality conditions
of all strategic generators. Our approach thus picks that level of transmission grid expansion
which yields a welfare second best solution, considering that generators behave strategically.
Using a disjunctive constraints reformulation, the resulting model is a non-convex Mixed-
Integer Quadratic Problem, which can be solved using standard approaches (Tawarmalani
and Sahinidis, 2005).

In order to address the potential multiplicity of solutions, we implement an iterative
algorithm, exploring the solution space by rendering candidate vectors solving the overall
problem, but differing in quantities produced and the magnitude of network expansion. In a
second step, we solve for each solution candidate an optimization program for each strategic
firm, holding decisions of other firms constant, and check whether the particular quantity is
incentive compatible.

Throughout the analysis, keep in mind that we assume a system with nodal prices, and
a welfare-optimal exchange between single nodes accomplished by the ISO. In the following,
we will present our model from a mathematical point of view. For load flows, we use a DC
approximation based on H and B matrices, which is equivalent to a ptdf formulation (for a
detailed exposition, cf. Leuthold et al., 2012).
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Stage III: A Competitive Market – or the ISO

On the third model stage, the ISO maximizes welfare — the sum of consumer surplus,
generator profit and congestion rent, minus variable production costs of utilized plants —
over the dispatch of nonstrategic fringe plants at all nodes n, consumed quantities dn and
voltage angles δn, while rendering feasible network flows. We employ a lossless DC load flow
approximation incorporating loop flows by voltage angles at each node (Schweppe et al.,
1988). Its constraint set consists of the nodal balances, feasibility flows on each line as well
as maximum generation and positivity restrictions, each with its respective dual variable.
Inverse nodal demand is assumed linear with reservation price an and slope parameter bn.
Note that index s indicates an individual plant, where each plant is exogenously mapped to
a node n. An additional superscript F denotes that the respective plant belongs to the fringe
supply being optimized by the ISO. All other plants, indicated by superscript S, are owned
by strategic generators – therefore their generation is treated as exogenous parameter by the
ISO. Generation quantities for each plant s are rendered by gSs or gFs , respectively. From
the ISO’s point of view, the line expansion el is an exogenous parameter. For notational
convenience, we introduce set Sn containing all plants at node n, and assemble all dual
variables in set D, all fringe plants in F, and all nodes at which nonzero demand is located
in N The optimization problem reads as follows:

min
d,δ,gF

−
∑
n∈N

[(
an − 1

2bndn
)
dn
]

+
∑
s∈F

cGs g
F
s (1a)

s.t. −
∑
s∈Sn

(
gSs + gFs

)
+
∑
k

Bnkδk + dn = 0 (pn) ∀n (1b)

−f l − el +
∑
k

Hlkδk ≤ 0 (µl) ∀l (1c)

−f l − el −
∑
k

Hlkδk ≤ 0 (µ
l
) ∀l (1d)

−gFs + gFs ≤ 0 (βs) ∀s ∈ F (1e)

−gFs ≤ 0 (ψs) ∀s ∈ F (1f)

−dn ≤ 0 (φn) ∀n ∈ N (1g)

δn̂ = 0 (γ) (1h)

The hub node of the network is given by n̂. In case there is no demand at node n, we fix
dn and φn at zero. Differentiating yields the respective first order KKT conditions:

cGs − pn,s∈Sn + βs − ψs = 0 ⊥ gFs (free) ∀s ∈ F (2a)

−an + bndn + pn − φn = 0 ⊥ dn (free) ∀n ∈ N (2b)∑
k

Bknpk +
∑
l

Hln
(
µl − µl

)
+

{
γ if n = n̂

0 else

}
= 0 ⊥ δn (free) ∀n (2c)

∑
s∈Sn

(
gSs + gFs

)
−
∑
k

Bnkδk − dn = 0 ⊥ pn (free) ∀n (2d)

f l + el −
∑
k

Hlkδk ≥ 0 ⊥ µl ≥ 0 ∀l (2e)

f l + el +
∑
k

Hlkδk ≤ 0 ⊥ µ
l
≥ 0 ∀l (2f)

gFs − g
F
s ≥ 0 ⊥ βs ≥ 0 ∀s ∈ F (2g)

gFs ≥ 0 ⊥ ψs ≥ 0 ∀s ∈ F (2h)
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dn ≥ 0 ⊥ φn ≥ 0 ∀n ∈ N (2i)

δn̂ = 0 ⊥ γ (free) (2j)

Recall that the ISO’s problem constitutes the third stage of our multistage optimization
model. On the second stage, the strategic firms come into play and seek to optimize their
profits over quantities, at the same time anticipating the subsequent ISO’s actions. At this
point, note the formal problem we have to overcome: conditions (2a) – (2j) come in com-
plementarity form and thus cannot serve as constraint set for the second stage. In order to
transform the third-stage equilibrium conditions into an operational form that can directly
be utilized as feasible set for the strategic players, we have to get rid of the complementary
slackness conditions, represented by the perpendicular operator ⊥. There are three options:
first, a disjunctive constraints reformulation, expressing the complementarity requirement
with help of dummy variables, as for example employed by Gabriel and Leuthold (2010).
Second, the so-called SOS1 method (Siddiqui and Gabriel, 2013), and third the applica-
tion of duality theory. The first two alternatives come with the drawback of introducing a
multitude of additional constraints and binary variables, complicating the analysis compu-
tationally, and requiring difficult calibration of large scalars serving as upper bounds for new
auxiliary inequalities. More importantly, we then would be left with a discretely-constrained
Nash-Cournot game for which it is, again, not possible to derive KKT conditions without
further modifications. Although theoretical research has made progress in that field – Gabriel
et al. (2013) propose a method to tackle that issue by relaxing both integrality and comple-
mentarity – it is, however, still ongoing and does not provide a ready-made toolbox yet. We
therefore pursue the third option and make use of properties stemming from duality theory
(cf. Boyd and Vandenberghe, 2004, ch.5). To this end, we first set up the ISO’s equivalent
dual problem.

Proposition 1
The equivalent dual problem to (1a) - (1h) is given by

max
p,µ,µ,β,φ,ψ,γ

− 1
2

∑
n∈N

1

bn
[an − pn + φn]2 −

∑
l

(f̄l + el)(µl + µ
l
)

−
∑
n

pn

(∑
s∈Sn

gSs

)
−
∑
s∈F

βsḡ
F
s (3a)

s.t. (2a), (2b), (2c) without complementarity, (3b)

µ, µ, φ, β, ψ ≥ 0, p, γ ∈ R (3c)

Proof:
See Appendix A.1 �

For a primal problem, here the ISO minimization of negative welfare, the dual problem
consists in finding that dual variables which maximize the Lagrangian value function – that
is in detecting the greatest minimum of the primal problem over all elements of D. In any
case, the optimal value of the dual problem is no larger than the optimal value of the primal
problem, a characteristic that holds by definition. The difference between these two values is
called duality gap. Under certain conditions, the duality gap collapses to zero – a property
referred to as strong duality. One condition triggering strong duality is fulfilled when the
primal’s objective is convex, and Slater’s constraint qualification holds. Both is the case
in our setup. The first requirement is easily verified, the second follows from all inequality

9



constraints being affine. The optimal values of the primal function and the dual function,
thus, are identical. As, moreover, the primal objective is strictly convex, the KKT conditions
are necessary and sufficient to describe the unique global optimum of the ISO problem.

Therefore, both the KKT conditions and the identity of the primal and dual functions are
equivalent descriptions of the unique global solution of the ISO welfare maximization prob-
lem. Replacing the former by the latter, hence, leaves us with a representation of optimality
on stage three without explicitly incorporating mathematically inconvenient complementar-
ity conditions. Concretely, instead of (2a) - (2j), we employ:

(1b)− (1h), (2a)− (2c) without complementarity (4a)

−
∑
n∈N

[
(an −

1

2
bndn)dn

]
+
∑
s∈F

cGs g
F
s +

1

2

∑
n∈N

1

bn
[an − pn + φn]2+

+
∑
n

pn

(∑
s∈Sn

gSs

)
+
∑
l

(
f̄l + el

) (
µl + µl

)
+
∑
s∈F

βsḡ
F
s ≤ 0 (4b)

where (4a) simply ensures feasibility for both the primal and dual problem, and (4b)
imposes a zero optimality gap12. We thus express the problem’s solution by means of a
set of equalities and inequalities without having to make use of complementarity slackness
conditions. Thereby, we are able to explicitly derive KKT conditions of the second-level
players on the set of vectors capturing ISO optimal behaviour.

Stage II: Strategic Firms

Now, we introduce the second model stage: strategic firms, i, own plants s at nodes n.
Letting Si denote the set of all plants owned by strategic firm i, gSi the respective production
vector, and DS

i the set of Lagrange multipliers attached to i’s optimization program. Firm
i’s minimization task thus reads:

min
gSi ,g

F ,δ,d,D
−
∑
n

∑
s∈(Sn∩Si)

(
pn − cGs

)
gSs (5a)

where each firm i faces:

−gSs + gSs ≤ 0 (βSs ) ∀s ∈ Si (5b)

−gSs ≤ 0 (ψSs ) ∀s ∈ Si (5c)

and the following constraints arising from the ISO problem:

s.t. cGs − pn,s∈Sn + βs − ψs = 0 (ζSsi) ∀s ∈ F (5d)

−an + bndn + pn − φn = 0 (ηSni) ∀n (5e)∑
k

Bknpk +
∑
l

Hln
(
µl − µl

)
+

{
γ if n = n̂

0 else

}
= 0 (θSni) ∀n (5f)

−
∑
s∈Sn

(
gSs + gFs

)
+
∑
k

Bnkδk + dn = 0 (ιSni) ∀n (5g)

−f l − el +
∑
k

Hlkδk ≤ 0 (µSli) ∀l (5h)

−f l − el −
∑
k

Hlkδk ≤ 0 (µS
li

) ∀l (5i)

12Note that for convenience we do not state an equality here. By definition, the primal’s objective is
weakly greater than the dual’s. Requiring the reverse inequality to hold thus imposes identity
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−gFs + gFs ≤ 0 (βSFsi ) ∀s ∈ F (5j)

−gFs ≤ 0 (ψSFsi ) ∀s ∈ F (5k)

−dn ≤ 0 (φSni) ∀n (5l)

δn̂ = 0 (γSi ) (5m)

−
∑
n∈N

[
(an −

1

2
bndn)dn

]
+
∑
s∈F

cGs g
F
s +

1

2

∑
n∈N

1

bn
[an − pn + φn]2+

+
∑
n

pn

(∑
s∈Sn

gSs

)
+
∑
l

(
f̄l + el

) (
µl + µl

)
+
∑
s∈F

βsḡ
F
s ≤ 0 (ξSi ) (5n)

where superscript S indicates a strategic firm’s problem. As each firm i faces the anal-
ogous optimization, the spot market, captured by stages II and III, mathematically consti-
tutes an Equilibrium Problem under Equilibrium Constraints (EPEC). Due to our duality
reformulation of the third-stage optimality constraints, as derived in the previous section,
however, we circumvent difficulties in solving this type of model. Observe that constraints
(5d) - (5n) are identical for each player whereas the attached Lagrange multipliers in brack-
ets are specific to each firm i. Formally, this constitutes a Generalized Nash Equilibrium
(GNE) setup of shared constraints, which comes along with the feature that there are more
endogenous variables, that is Lagrange multipliers, than distinct equations. Mathematically,
an underdetermined system of equations emerges. The implied degrees of freedom, therefore,
potentially admit a multitude of solutions. Note, however, that the strategic firms are not
bound in their decisions by the output choice of their competitors although the quantities of
all firms enter the constraint set of each of them. Formally, they do not only interact over
their objective functions, but also over the constraint sets – practically, however, the subse-
quent ISO stage accomodates all strategic decisions such the the market clears in a feasible
way. As a second point, by (5n) the constraint set is nonconvex such that KKT points are
necessary, but not sufficient for an equilibrium. We will return to both issues later, and first
derive the KKT conditions for all firms. Consider:

−pn,s∈Sn + cGs + βSs − ψSs − ιSni,s∈Sn,s∈Si
+ ξSi,s∈Si

pn,s∈Sn = 0 ⊥ gSs (free) ∀s /∈ F (6a)

−ιSni,s∈Sn
+ βSFsi − ψSFsi + ξSi

(
cGs + βs

)
= 0 ⊥ gFs (free) ∀s ∈ F, i (6b)

−
∑

s∈(Sn∩Si)

gSs −
∑

s∈(Sn∩F)

ζSsi + ηSni +
∑
k

θSkiBnk+

+ξSi
1
bn

(pn − an − φn) + ξSi
∑
s∈Sn

gSs = 0 ⊥ pn (free) ∀n, i (6c)

bnη
S
ni + ιSni − φSni − ξSi (an − bndn) = 0 ⊥ dn (free) ∀n, i (6d)∑

k

Bknι
S
ki +

∑
l

Hln
(
µSli − µ

S

li

)
+

{
γSi if n = n̂

0 else

}
= 0 ⊥ δn (free) ∀n, i (6e)

ζSsi + ξSi g
F
s ≥ 0 ⊥ βs ≥ 0 ∀s ∈ F, i (6f)

−ζSsi ≥ 0 ⊥ ψs ≥ 0 ∀s ∈ F, i (6g)

−ηSni + ξSi

[
1
bn

(φn + an − pn)
]
≥ 0 ⊥ φn ≥ 0 ∀n, i (6h)∑

n

θSniHln + ξSi
(
f̄l + el

)
≥ 0 ⊥ µl ≥ 0 ∀l, i (6i)

−
∑
n

θSniHln + ξSi
(
f̄l + el

)
≥ 0 ⊥ µ

l
≥ 0 ∀l, i (6j)

θSn̂i = 0 ⊥ γ (free) ∀i (6k)

gSs − g
S
s ≥ 0 ⊥ βSs ≥ 0 ∀s /∈ F (6l)

gSs ≥ 0 ⊥ ψSs ≥ 0 ∀s /∈ F (6m)
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cGs − pn,s∈Sn + βs − ψs = 0 ⊥ ζSsi (free) ∀s ∈ F, i (6n)

−an + bndn + pn − φn = 0 ⊥ ηSni (free) ∀n, i (6o)∑
k

Bknpk +
∑
l

Hln
(
µl − µl

)
+

{
γ if n = n̂

0 else

}
= 0 ⊥ θSni (free) ∀n, i (6p)

−
∑
s∈Sn

(
gSs + gFs

)
+
∑
k

Bnkδk + dn = 0 ⊥ ιSni (free) ∀n, i (6q)

f l + el −
∑
k

Hlkδk ≥ 0 ⊥ µSli ≥ 0 ∀l, i (6r)

f l + el +
∑
k

Hlkδk ≥ 0 ⊥ µS
li
≥ 0 ∀l, i (6s)

gFs − g
F
s ≥ 0 ⊥ βSFsi ≥ 0 ∀s ∈ F, i (6t)

gFS ≥ 0 ⊥ ψSFsi ≥ 0 ∀s ∈ F, i (6u)

dn ≥ 0 ⊥ φSni ≥ 0 ∀n, i (6v)

δn̂ = 0 ⊥ γSi (free) ∀i (6w)∑
n∈N

[
(an −

1

2
bndn)dn

]
−
∑
s∈F

cGs g
F
s −

1

2

∑
n∈Sn

1

bn
[an − pn + φn]2+

−
∑
n

pn

(∑
s∈Sn

gSs

)
−
∑
l

(
f̄l + el

) (
µl + µl

)
−
∑
s∈F

βsg
F
s ≥ 0 ⊥ ξSi ∀i (6x)

The bilinearities in (6x) are nonconvex and inconvenient to deal with. Recalling the
equivalence between strong duality and the ISO’s optimality conditions, we replace this
constraint by the according first order conditions (2a) - (2j).13

cGs − pn,sSn
+ βs − ψs = 0 ⊥ gFs (free) ∀s ∈ F (7a)

−an + bndn + pn − φn = 0 ⊥ dn (free) ∀n (7b)∑
k

Bknpk +
∑
l

Hln

(
µl − µl

)
+

{
γ if n = n̂

0 else

}
= 0 ⊥ δn (free) ∀n (7c)∑

s∈Sn

(
gSs + gFs

)
−
∑
k

Bnkδk − dn = 0 ⊥ pn (free) ∀n (7d)

f l + el −
∑
k

Hlkδk ≥ 0 ⊥ µl ≥ 0 ∀l (7e)

f l + el +
∑
k

Hlkδk ≤ 0 ⊥ µ
l
≥ 0 ∀l (7f)

gFs − gFs ≥ 0 ⊥ βs ≥ 0 ∀s ∈ F (7g)

gFs ≥ 0 ⊥ ψs ≥ 0 ∀s ∈ F (7h)

dn ≥ 0 ⊥ φn ≥ 0 ∀n (7i)

δn̂ = 0 ⊥ γ (free) (7j)

The only elements in (7a) - (7j) it is not accounted for so far are the complementarity
conditions. Bringing them in disjunctive constraints formulation (cf. Fortuny-Amat and
McCarl, 1981) allows for integrating them into (6a) - (6w). Applying the same procedure to
all other instances of complementarity, we have the following necessary optimality conditions
for the spot market of stages two and three:

(6a)− (6w) (8a)

13Note that we can ignore the complementarity requirement in (6x) here because the left-hand side cannot
be different from zero in any case.
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∑
i

(
ζSsi + ξSi g

F
s

)
≤ rβsKβ

s , βs ≤
(

1− rβs
)
Kβ
s ∀s ∈ F (8b)

∑
i

(
−ζSsi

)
≤ rψs Kψ

s , ψs ≤
(

1− rψs
)
Kψ
s ∀s ∈ F (8c)

∑
i

(
−ηSni + ξSi

[
1
bn

(φn + an − pn)
])
≤ rφnKφ

n , φn ≤
(

1− rφn
)
Kφ
n ∀n (8d)

∑
i

(∑
n

θSniHln + ξSi
(
f̄l + el

))
≤ rµl K

µ
l , µl ≤

(
1− rµl

)
Kµ
l ∀l (8e)

∑
i

(∑
n

θSniHln + ξSi
(
f̄l + el

))
≤ rµl K

µ

l , µ
l
≤
(

1− rµl
)
K
µ

l ∀l (8f)

gSs − gSs ≤ rβ
S

s KβS

s , βSs ≤
(

1− rβ
S

s

)
KβS

s ∀s /∈ F (8g)

gSs ≤ rψ
S

s KψS

s , ψSs ≤
(

1− rψ
S

s

)
KψS

s ∀s /∈ F (8h)

f l + el −
∑
k

Hlkδk ≤ rµ
S

l KµS

l ,
∑
i

µSli + µl ≤
(

1− rµ
S

l

)
KµS

l ∀l (8i)

f l + el −
∑
k

Hlkδk ≤ r
µS

l K
µS

l ,
∑
i

µS
li

+ µ
l
≤
(

1− rµ
S

l

)
K
µS

l ∀l (8j)

gFs − gFs ≤ rβ
SF

s KβSF

s ,
∑
i

βSFsi + βs ≤
(

1− rβ
SF

s

)
KβSF

s ∀s ∈ F (8k)

gFs ≤ rψ
SF

s KψSF

s ,
∑
i

ψSFsi + ψs ≤
(

1− rψ
SF

s

)
KψSF

s ∀s ∈ F

(8l)

dn ≤ rφ
S

n KφS

n ,
∑
i

φSni + φn ≤
(

1− rφ
S

n

)
KφS

n ∀n (8m)

where K together with the according superscripts and subscripts denotes a sufficiently
large scalar.

Stage I: Welfare-Optimal Network Expansion

Equations and inequalities (8a) - (8m) capture all vectors fulfilling the necessary conditions
for an optimum of the EPEC spot market model. Among those, global and local maxima,
minima, and saddle points may be found. The first stage now serves as a selection device,
in which a benevolent planner optimizes global welfare over expansion of network capacity,
demand and generation costs. Letting cEl denote the costs, and el the amount of network
expansion for line l, consider her welfare-maximization:

min
e,g,d,δ,D,DS ,

−
∑
n∈N

[(
an − 1

2bndn
)
dn
]

+
∑
s∈F

cGs g
F
s +

∑
l

cEl el (9a)

s.t. 0 ≤ el ≤ el ∀l, (9b)

(8a)− (8m) (9c)

where line expansion is bounded between zero and an exogenous maximum el. Program
(9a) - (9c) can be solved as Mixed Integer Quadratic Problem using standard approaches
and commercial solvers (Tawarmalani and Sahinidis, 2005).

Post-Solve Checks

Recall that the first stage picks the solution vector out of an admissible space only rendering
necessary conditions. Therefore the vector returned by the first-stage program may neither
fulfil the sufficiency conditions – that is in fact constitute a saddle point, maximum or local
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minimum of the overall problem – nor be incentive compatible – that is be in fact no Nash
equilibrium solution. To tackle these issues, we implement a two-step procedure, where step
one consists of an algorithm systematically exploring the solution space, and step two checks
for incentive compatibility. For step one, we first solve (9a) - (9c) for one candidate solution,
and fix the outcomes on generation and line expansion. In order to introduce variation, we
then impose the requirement that for the next solution to be found exactly one of these
variables has to be sufficiently different from the current solution’s value, and solve the
program again. To impose this restriction, we extend (9a) - (9c) by:

gs ≥ Dg+
s (ĝs + ε) ∀s, ĝs (10a)

gs ≤ gs −D
g−
s (gs − ĝs + ε) ∀s, ĝs (10b)

el ≥ De+
l (êl + ε) ∀l, êl (10c)

el ≤ el −De−
l (el − êl + ε) ∀l, êl (10d)∑

s

[
Dg+
s +Dg−

s

]
+
∑
l

[
De+
l +De−

l

]
≥ 1 (10e)

where D are binary variables, and ε represents the tolerance distance level for the next
solution to be different from all preceding ones. Once a solution is found, we keep it and
denote it – with slide abuse of notation – by a tilde for future reference. Inequalities (10a)
- (10e) therefore implement that no two solution vectors are alike, but differ at least by
tolerance ε for at least one variable14. Iterating over this procedure successively cuts ’holes’
into the admissible space and delivers a number of candidate solutions that are ranked
according to their welfare objective value.

In the second step, we test for deviation stability: for each candidate solution, we fix
all variables except generation for one strategic firm and let her optimize profits to check
whether she wants to depart from what was proposed by the actual model. Repeating this
procedure for all firms reveals whether a candidate solution is incentive compatible, or must
be discarded otherwise.15

4 Results and Discussion

Teh results demonstrate the prevailing effects of the tradeoff concerning welfare-enhancing
but costly network expansion when strategic firms are present. We choose a straightforward
three-node network, representing the simplest possible case capturing loop flows.16 The
three nodes are mutually linked by transmission lines with limited capacities of f1 = f2 =
0.5, f3 = 2.5 that are subject to potential expansion. At node one, there is linear-elastic
demand represented by P1 = 10 − q1, where q1 captures the quantity consumed at that
node. The other two nodes, at each of which one strategic firm with zero marginal costs
is located at, feature no consumption. By disregarding potentially asymmetric production
costs, we preclude results that are driven by pure efficiency gains: a welfare increase due
to substitution effects from expensive to previously unaccessible cheap production could
flaw the stylized assessment of reduced market power rents. For convenience, moreover, we
abstract from competitive fringe generation. Consider figure 1 depicting the network.

To frame the problem, we first calculate results for two benchmark cases: 1) Copperplate,
in which all line capacities are exogenously set sufficiently high to accommodate all poten-
tially emerging flows, and 2) No expansion, in which network expansion is exogenously set
to zero. Table 2 presents the results:

14Pozo et al. (2013a) implement a comparable approach
15A uniqueness discussion for the solutions of this MPEC can be found in the results section ??.
16For interpretational purposes, each node can selectively be regarded as a national market, where we

abstract from internal congestion, and the links as international interconnectors.
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Figure 1: Sample network. Pictograms are under public domain free licence

1) Copperplate 2) No expansion

Generation
node 2 3.33 1.5
node 3 3.33 0

Price
node 1 3.33 8.5
node 2 3.33 8.5
node 3 3.33 8.5

Demand node 1 6.67 1.5

Network flows
line 1 0 0.5
line 2 3.33 0.5
line 3 −3.33 −1

Consumer rent total 22.22 1.13

Profit
firm 2 11.11 12.75
firm 3 11.11 0

Congestion rent total 0 0
Welfare total 44.44 13.88

Table 2: Results for the benchmark cases
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The copperplate results set the upper welfare benchmark: if line restrictions are never
binding, the Cournot solution emerges, representing the maximum degree of competition
among the two firms, unconstrained by any network limitations. The lower bound is rendered
by the no expansion results: in that case, firm two beahves aggressively by actively congesting
the transmission lines that connect the passive firm three to the demand node. By that
strategy, a stable passive-aggressive equilibrium emerges as also detected by Borenstein et al.
(2000). From an overall welfare perspective, thus, there is scope for network expansion to
push welfare closer to the upper bound. Assuming expansion costs of cEl = 1 ∀l, stage I
of our actual model selects candidates for optimal points, three distinct types of which are
rendered in table 3

Asymmetric Cournot 2 Cournot 1

Generation
firm 2 1.5 3.33 3.33
firm 3 4.25 3.33 3.33

Price 4.25 3.33 3.33
Demand node 1 5.75 6.67 6.67

Network capacity
(initial + expansion)

line 1
1.23 0.5 0.8

(0.5 + 0.73) (0.5 + 0) (0.5 + 0.3)

line 2
3.33 3.33 3.33

(0.5 + 2.83) (0.5 + 2.83) (0.5 + 2.83)

line 3
2.5 3.33 3.33

(2.5 + 0) (2.5 + 0.83) (2.5 + 0.83)

Total expansion 3.57 3.67 3.97

Network flows
line 1 −0.92 0 0
line 2 3.33 3.33 3.33
line 3 −2.42 −3.33 −3.33

Consumer rent total 16.53 22.22 22.22

Profit
firm 2 6.38 11.11 11.11
firm 3 18.06 11.11 11.11

Congestion rent total 0 0 0
Expansion cost total 3.57 3.67 3.97

Welfare total 37.40 40.78 40.48

Table 3: Results for the network expansion model

For a low level of network expansion,
∑
l el = 3.57, a first type of solutions is attained,

which we denote by asymmetric (A1). This fosters an equilibrium in which the previously
passive firms enters the aggressive position due to now being connected to demand by a line
with higher capacity. The character of the equilibrium, however, is of the same passive-
aggressive nature as in the no expansion benchmark, although overall welfare raises consid-
erably from 13.88 to 37.4. The post-model check for deviation stability does not indicate
any deviation incentives for the strategic players.

Further network expansion, then, promotes the emergence of a second, symmetric type of
KKT points, which we call – due to the quantities produced by the strategic firms – Cournot
2 (C2 ), and Cournot 1 (C1 ). The level of network expansion,

∑
l el = 3.67 for solution

candidate C2, renders the lowest level of line capacities exactly necessary to accommodate
the prevailing flows in the Cournot solution, see table 3, thereby delivering the theoretically
highest amount of social welfare that can be attained in this numerical setup. This KKT
point, however, turns out to be not stable against deviations of the strategic firms, and
therefore must be discarded. The rationale that prevails here found also reflection in (Pozo
et al., 2013a) who discuss it under optimistic versus pessimistic solutions – a label we want
to adopt here. Holding firm 3’s generation fixed at gS3 = 3.33, the post-solve MPEC check
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delivers the result summarized in table 417:

Firm 2 Firm 3 n1 n2 n3 l1 l2 l3 Total

Generation 1.83 3.33
Demand 5.37 0 0

Price 4.83 9.67 0
Network capacity 0.5 3.33 3.33

Network flows −0.5 2.83 −2.83
Consumer rent 13.35 13.35

Profit 17.72 0 17.72
Congestion rent 10.91
Expansion costs 0 2.83 0.83 3.67

Welfare 38.32

Table 4: Post-solve MPEC check: Results for a deviation by firm 2

Firm 2 deviates by lowering its generation to gS2 = 1.83, and increases its profits from
11.11 to 17.22 whereas the other firm 3 yields zero profits. This outcome is induced by the
emerging price pattern with p2 = 9.67 and p3 = 0. The re-optimizing player, thus, picks
a generation level such that an equilibrium reached that is most profitable to him. This
mechanism is a very feature of the MPEC: recall that the ISO’s equilibrium conditions on
model stage III merely describe a set of stationary points, and admit multiple equilibria.
If all decision variables except generation of one firm are fixed, then this firm will pick the
equilibrium most profitable to her. In this case, lowering production, evoking congestion
and profiting from the resulting high price at her node. Insofar the label optimistic applies
– hypothetically, the ISO could also behave in a way such that the worst outcome would
emerge, for example when attaching nonequal weights to the components of welfare18. A
solution that is stable under the optimistic assumption, however, is not necessarily stable
under the pessimistic one. This most favourable setup for firms, thus, triggers a conservative
perspective on our research question. If no market power can be exerted under the optimistic
assumption, then thisholds true for all other setups. For a stable solution, line 1 as well has
to be expanded, yielding a total network expansion of

∑
l el = 3.97, as proposed by solution

C1, which is stable against deviations. Two effects are at work here: firstly, line l1 has
sufficient capacity such that a unilateral reduction of generation does not evoke a congested
equilibrium with substantially differentited prices, as in C2, any more. Secondly, the thin
line-effect (Borenstein et al., 2000): although connection line l2 between the two firms is
not actually used at all, compare the respective entries for flows in table 3, its expansion is
required so that each firm can credibly maintain the threat of harsh competition to keep the
Cournot equilibrium stable.

We now turn to the distributional implications. The bars in 2 indicate the outcomes for
the three model cases. Comparing the no expansion benchmark them with the asymmetric
equilibrium A1 illustrates that the considerable welfare increase goes along with higher
producer and consumer rents, where the latter profit to a higher extent. For the stable
Cournot equilibrium C1 total welfare increases further as already discussed. The distribution
of rents, however, reveals an interesting effect: the consumer rent increases whereas the
producer rent decreases. We thus detect a shift of rents from suppliers towards the demand
side, underlining the decreased potential of firms to extract rents due to their dominant
position.

The effect of network expansion on welfare when strategic firms are present, therefore, is
twofold: on the one hand, overall rents increase in the availability of transmission resources,

17Due to symmetry, holding firm 2’s generation fixed and letting firm 3 re-optimize delivers a parallel
result.

18In a similar formal setup, Huppmann and Egerer (2014) discuss the issue of weighting the components
of the welfare objective unequally.
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Figure 2: Distribution of rents

where consumers and producers profit. On the other hand, at some point, however, the
network features enough capacity to accommodate the Cournot solution, the highest degree
of competition in this sample case. Along with the generation of additional rents, there is
a redistribution of from generators towards consumers – network expansion, thus, has the
potential to limit the exertion of market power, and prevents firms from extracting rents
that arise due to limited transmission capacity

5 Conclusion & Outlook

Insufficient transmission grid capacities may impede reaping the full benefits of a compet-
itive electricity market. To assess whether and to which extent costly network expansion
promotes social welfare due to enhanced competition, we set up a three-stage model mimick-
ing the interplay of electricity grid expansion, and strategic generation: on its third stage, an
ISO dispatches competitive fringe plants and ensures feasible flows. Reformulating her KKT
conditions with help of duality theory yields the solution space for the profit-maximization
programs of strategic firms engaging in Cournot competition. The first-order KKT condi-
tions of this EPEC capture the set of all vectors fulfilling the necessary conditions for an
optimum of the spot market game. Finally, to pick the welfare-optimal outcome out of these,
on the first stage a benevolent planner maximizes total welfare over network expansion deci-
sions. To ensure sufficiency and incentive compatibility, we implement a two-step algorithm
exploring the solution space in an iterative procedure, and checking deviation incentives for
the strategic players.

Numerical results for a basic three-node network illustrate the strategic effects: firstly,
network expansion has the potential to mitigate market power by banning firms from se-
lecting into equilibria that congest the transmission lines, and thereby foster competition.
Secondly, higher levels of transmission grid expansion prevent asymmetric passive-aggressive
equilibria as described by Borenstein et al. (2000), and induce a relative shift of rents to-
wards the demand side. Stability of the suggested solutions is tested assuming an optimistic
perspective, putting a natural lower bound on the behaviour of strategic firms within their
feasible sets: if they assume that the ISO will always act to the best of their interests and
still do not find an incentive to deviate from a suggested solution, they cannot find such an
incentive in case the ISO “works against them”.

In this contribution, we lay the theoretical foundations of a model that can be suited
to larger applied work, opening up several avenues for future research in this field: for
instance, an application of the model to a representation of the European electricity system
based on the aggregation of realistic data will be able to assess benefits of further electricity
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market integration in terms of the welfare-enhancing effects of more vigorous competition.
A further elaboration on the distributional implications can, moreover, allow for an analysis
of gains and losses from integration, which is, in turn, connected to the question of incentive
compatibility of integration among sovereign states.19
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A Appendix

A.1 Proof of Proposition 1

First, we derive the Langrangian dual problem for a quadratic problem with a positive
definite matrix in a general form:

min
x,y

1
2x

TDxx+ cT
[
x
y

]
s.t. A

[
x
y

]
≤ b (λ), B

[
x
y

]
= e (ν) (11)

where x is the vector of variables that enter the quadratic part of the objective function, and
y is the vector of variables that only appear in linear terms. By assumption, Dx is symmetric
and strictly positive definite.

The Lagrangian (primal) function is then:

L(x, y, λ, ν) = 1
2x

TDxx+ cT
[
x
y

]
+

(
A

[
x
y

]
− b
)T

λ+

(
B

[
x
y

]
− e
)T

ν (12)

Lemma A1
The Lagrangian dual function for (12) is given by

L̂(λ, ν, x, y) = − 1
2

(
cx +ATx λ+BTx ν

)T
(Dx)−1

(
cx +ATx λ+BTx ν

)
− bTλ− eT ν (13a)

where Dxx+ cx + (Ax)T λ+ (Bx)T ν = 0, (13b)

cy + (Ay)T λ+ (By)T ν = 0, (13c)

where subscripts indicate that parts of matrices that are multiplied with the respective
variable vector.

Proof
The Lagrange dual function is defined as the infimum of the Lagrange primal function over
the primal decision variables20. Differentiating (12) with respect to x and y yields

∂L
∂x

= Dxx+ cx + (Ax)
T
λ+ (Bx)

T
ν = 0 (14a)

⇒ x∗ = − (Dx)
−1
(
cx + (Ax)

T
λ+BTx ν

)
(14b)

∂L
∂y

= cy + (Ay)
T
λ+BTy ν = 0 (14c)

Note that L is strictly convex in x and y such that the first order equality conditions are
necessary and sufficient to ensure a global minimum. Plugging optimality condition (14b)
into the (primal) Lagrangian (12)

L = 1
2

[[
(−D−1

x )(cx +ATx λ+BTx ν)
]T
Dx
[
(−D−1

x )(cx +ATx λ+BTx ν)
]]

+ cTx

[
(−D−1

x )(cx +ATx λ+BTx ν)
]

+ cTy y

+
[
Ax
[
(−D−1

x )(cx +ATx λ+BTx ν)
]

+Ayy − b
]T
λ

+
[
Bx
[
(−D−1

x )(cx +ATx λ+BTx ν)
]

+Byy − e
]T
ν (14d)

= 1
2

[
(cx +ATx λ+BTx ν)TD−1

x (cx +ATx λ+BTx ν)
]

−
[
cTxD

−1
x (cx +ATx λ+BTx ν) + (cx +ATx λ+BTx ν)TD−1

x ATx λ+ (cx +ATx λ+BTx ν)TD−1
x BTx ν

]
20Consult Boyd and Vandenberghe (2004, chapter 5) for a theoretical exhibition.
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+ cTy y + yTATy λ+ +yTBTy ν − bTλ− eT ν (14e)

where we have made use of (D−1x )T = D−1x due to symmetry of Dx. Now observe that from
(14c) ATy λ+BTy ν = −cy and obtain

L = 1
2

[
(cx +ATx λ+BTx ν)TD−1

x (cx +ATx λ+BTx ν)
]

−
[
cTxD

−1
x (cx +ATx λ+BTx ν) + (cx +ATx λ+BTx ν)TD−1

x ATx λ+ (cx +ATx λ+BTx ν)TD−1
x BTx ν

]
+ cTy y − yT cy − bTλ− eT ν (14f)

The inner products cTy y and yT cy in the last row of (14f) are of dimension (1 × 1), thus
necessarily symmetric and cancel out. Moreover, straightforward algebra yields that the two
terms in brackets in the first and second line of (14f) are identical. Therefore,

L̂(λ, ν) = − 1
2

[
(cx +ATx λ+BTx ν)TD−1x (cx +ATx λ+BTx ν)

]
− bTλ− eT ν (14g)

�

Now, we can set up the dual Lagrangian problem, consisting in maximizing L∗ over
λ and ν, while optimality conditions concerning x and y are added as constraints. By
construction, further constraints comprise weak positivity of decision variables attached to
inequality constraints

max
λ,ν

− 1
2

[
(cx +ATx λ+BTx ν)TD−1x (cx +ATx λ+BTx ν)

]
− bTλ− eT ν (15a)

s.t. Dxx+ cx + (Ax)
T
λ+ (Bx)

T
ν = 0, (15b)

cy + (Ay)
T
λ+ (By)

T
ν = 0 (15c)

λ ≥ 0, ν ∈ R (15d)

Next, we apply this result to our problem. Rewriting the primal problem (1a) - (1h) in
matrix notation in the fashion of (11) yields for the objective function:

min
gF ,d,δ,D

−
∑
n∈N

[(
an − 1

2bndn
)
dn
]
−
∑
s∈F

cGs g
F
s =̂ min

gF ,d,δ,D

1
2d
T∆d+ γT

 dgF
δ

 (16a)

where the variable vectors are composed as follows:

d
(Ñ×1)

=

d1...
dÑ

 , gF

(F̃×1)
=

g
F
1
...
gF
F̃

 , δ
(N×1)

=

 δ1...
δN

 (16b)

and the parameter matrices as21:

∆
(Ñ×Ñ)

=

 b1 . . . 0
...

. . .
...

0 . . . bÑ

 , γ
((Ñ+F̃+N)×1)

=
[
−a1 . . .− aÑ cG1 . . . c

G
F̃

0 . . . 0
]T

(16c)

For convenience, let |N| = Ñ , and |F| = F̃ render the number of nodes at which demand
is located, and number of fringe plants respectively. Moreover, observe that ∆ fulfils our

21We assume for convenience here that vector gF is nonempty, i.e. that there are F̃ fringe suppliers,
beginning with plant s = 1. The results can easily be reduced to the case without fringe, i.e. F̃ = 0.
Moreover, formally excluding nodes with no demand makes matrix ∆ strictly positive definite and allows
inverting it, which is necessary for Lemma A1 to hold and to follow our proposed procedure.
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assumptions of symmtetry and strict positive definiteness. Expressing constraints (1b) - (1h)
in matrix notation:

A

 dgF
δ

 ≤ b (λ) =̂
[
Ad : AgF δ

]  dgF
δ

 ≤ b (λ), (16d)

B

 dgF
δ

 = e (ν) =̂
[
Bd : BgF δ

]  dgF
δ

 = e (ν) (16e)

with submatrices Ad, AgF δ, Bd, BgF δ capturing the relevant entries for the respective
constraints, and accordingly composed vectors b, e, λ, and ν. We now just have to plug the
matrices and vectors into the formulation of the dual Lagrangian problem (15a) - (15d).
Straightforward algebra yields for the expression (cx +ATx λ+BTx ν):

[
cx +ATx λ+BTx ν

]
=̂


 −a1...
−aÑ

+ATd λ+BTd ν

 =

 −a1 + p1 − φ1
...

−aÑ + pÑ − φÑ

 (17a)

obviously rendering the first term of the dual objective:

− 1
2

[
(cx +ATx λ+BTx ν)TD−1

x (cx +ATx λ+BTx ν)
]

=̂− 1
2


 −a1 + p1 − φ1

...
−aÑ + pÑ − φÑ



T

∆−1


 −a1 + p1 − φ1

...
−aÑ + pÑ − φÑ




=̂− 1
2

∑
n∈N

1
bn

(an − pn + φn)2 (17b)

For the second term of (15a) it immediately follows:

bTλ+ eT ν =
∑
l

(f̄l + el)(µ̄l + µ
l
) +

∑
n

pn

(∑
s∈Sn

gSs

)
+
∑
s∈F

βsḡ
F
s (17c)

Bringing (17b) and (17c) together thus yields the dual objective. The constraint set of the
dual is abstractly given by:

Dxx+ cx + (Ax)T λ+ (Bx)T ν =̂ ∆d− [a1 . . . aÑ ] + (Ad)
T λ+ (Bd)

T ν = 0, (17d)

cy +ATy λ+BTy ν =̂
[
cG1 . . . cGF̃ 0 . . . 0

]T
+ATgF δλ+BTgF δν = 0, (17e)

cf. (15b) - (15c). Plugging in the relevant matrices reproduces KKT conditions (2a) - (2c)
of the original problem:

cGs − pn,s∈Sn
+ βs − ψs = 0 ∀s ∈ F (17f)

−an + bndn + pn − φn = 0 ∀n ∈ N (17g)∑
k

Bknpn +
∑
l

Hln

(
µl − µl

)
+

{
γ if n = n̂

0 else

}
= 0 ∀n (17h)

Therefore, the equivalent Lagrangian dual problem to (1a) - (1h) is given by

max
p,µ,µ,β,ψ,φ,γ

− 1
2

∑
n∈N

1

bn
[an − pn + φn]2 −

∑
l

(f̄l + el)(µ̄l + µ
l
)

−
∑
n

pn

(∑
s∈Sn

gSs

)
−
∑
s∈F

βsḡ
F
s (18)
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s.t. (17f), (17g), (17h) (19)

µ̄, µ, β, ψ, φ ≥ 0, p, γ ∈ R (20)

�
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