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Abstract

This paper investigates how heterogeneity in contestants’ investment costs affects the

competition intensity in a dynamic elimination contest. Theory predicts that the abso-

lute level of investment costs has no effect on the competition intensity in homogeneous

interactions. Relative cost differences in heterogeneous interactions, however, reduce

equilibrium expenditures. Evidence from lab experiments for treatments with homo-

geneous participants is qualitatively in line with the theoretical prediction. The effect

of cost differences on expenditures is positive rather than negative, however, in all

heterogeneous treatments.

JEL-Classification: C72, D72

Keywords: Multi-Stage Contest, Heterogeneity, Experiment, Joy of Winning

∗Corresponding author: Rudi Stracke, Schackstr. 4, 80539 München (Germany); Tel.:+49-89-2180 1285;

Fax:+49-89-2180 17834; Email: Rudi.Stracke@econ.lmu.de



1 Introduction

Rent seeking contests are interactive decision situations in which several agents compete

by expending valuable resources to receive some rent. Depending on the context, the rent

might be a particular regulation or law that is implemented by policy makers due to lobbying

of interest groups, an office awarded to the winner of a political campaign, a procurement

contract that is profitable to the winning firm, or a patent which allows the winner of an

R&D contest to charge monopoly prices. Contest theory is not only used as an instrument

to study the competition for a rent in public economics, however. Important application in

other fields include bonus or promotion tournaments in labor economics, the organization of

leagues in sports economics, and military conflicts in political sciences. Even though the same

technical tools are used to study strategic behavior in all these settings, the measures which

matter for an evaluation of the outcome are sometimes different: Labor economists are often

interested in the efficiency of the tournament contract, for example, while sports economics

mainly care about competitive balance. A common measure of interest in public economics is

the rent-dissipation rate which normalizes aggregate expenditures by all contestants with the

value of the rent at stake. The rent dissipation is not only directly related to the competition

intensity in a contest, it also reveals the surplus that remains in settings where the rent is

taken as given (rather than endogenously generated) after expenditures are accounted for.

An important finding in theoretical and empirical studies investigating static settings

where contestants interact only once is that heterogeneity between rent seekers reduces the

rent-dissipation rate. This is taken as an indication that the competition is less intense if

contestants are heterogeneous rather than homogeneous. Even though many real-life applica-

tions can best be modelled as a dynamic multi-stage contest with heterogeneous participants

– think of the presidential election in the U.S. where candidates must succeed in the primaries

to qualify for the federal election, or of procurement contracts that involve a qualification

stage, for example – we know of no study that theoretically or empirically analyzes the effect

of heterogeneity on competition intensity in dynamic settings.

In this paper, we investigate theoretically and experimentally how heterogeneity in con-

testants’ investment costs affects the competition intensity in a dynamic elimination contest.

The theoretical analysis proceeds in two steps. First, we show that the absolute level of in-

vestment costs has no effect on the rent-dissipation rate in a two-stage version of the standard

Tullock (1980) lottery contest with four homogeneous contestants: While contestants reduce

their equilibrium investments as marginal investment costs increase, equilibrium expendi-

tures and expected payoffs from contest participation remain constant. Second, we address

our main research question by analyzing the effect of relative cost differences between compet-
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ing contestants on behavior in the same theoretical framework. In particular, we investigate

how heterogeneity in different stages of the contest affects the aggregate rent-dissipation rate.

To address this issue, we consider a setting with two low-cost and two high-cost contestants

that allows for two different seeding variants: While equal types compete in stage-1 of setting

LLHH, contestants are seeded such that different types interact in stage 1 of setting LHLH. An

implication is that the stage-2 interaction is always between different types in setting LLHH,

while equal types interact with high probability in stage 2 of setting LHLH. Thus, heterogene-

ity is basically shifted across stages in these two settings with heterogeneous contestants. In

the theoretical investigation, we find that the rent-dissipation rate is lower in both heteroge-

neous settings than in any setting with homogeneous contestants. Moreover, a comparison

of rent-dissipation rates across the two heterogeneous settings by stage indicates that hetero-

geneity has a negative impact on the competition intensity in any stage. Consequently, the

stage-1 rent-dissipation rate is higher in setting LLHH than in LHLH, while the reverse relation

holds for the stage-2 dissipation rate.

In the second part of the paper, we use lab experiments to test these theoretical predic-

tions. We implement four treatments that differ only with respect to the investment cost

parameters of contestants. In addition to the heterogeneous treatments LLHH and LHLH where

contestants of both types interact with each other, we implement the two homogeneous treat-

ments LLLL and HHHH where all contestants have low or high investment costs, respectively.

While we observe high degrees of over-dissipation relative to the benchmark prediction in all

treatments, the experimental data show that the aggregate rent-dissipation rate in the two

homogeneous treatments is almost exactly the same. This does still hold if we disaggregate

the data and separately compare the stage-1 and stage-2 rent-dissipation rates across treat-

ments. Thus, the experimental evidence is in line with the qualitative prediction that the level

of investment costs has no effect on the rent-dissipation rate if contestants are homogeneous.

The effect of heterogeneity on the rent-dissipation rate goes counter to theoretical prediction,

however. Specifically, we observe that the rent-dissipation rate is higher – and not lower –

in the heterogeneous treatments LLHH and LHLH than in the homogeneous treatments LLLL

and HHHH. When disaggregating the data by stage, we find that heterogeneity in stage 2 has

almost no effect on rent dissipation in this stage, while the effect of heterogeneity is strictly

positive in stage 1. Additional analyses of the experimental data suggests that confusion,

which might arise due to the strategic complexity of a dynamic contest, is unlikely to be the

main explanation for these findings. Instead, it seems that behavioral factors such as ‘joy of

winning’ and ‘joy of competing’ are responsible for the pattern we observe.

Our results suggest that behavior in the qualification stage of a multi-stage contest

strongly deviates even from qualitative predictions of a model that assumes rational and
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risk-neutral agents. While this is already suggested by existing studies investigating behavior

in homogeneous contests, we show that this effect is even more pronounced when contestants

are heterogeneous – heterogeneity seems to strengthen the behavioral effects that were previ-

ously shown to be particularly important in the initial stage of a competition with multiple

stages. An important consequence is that heterogeneity in the qualification stage increases

the competition intensity in dynamic settings, in contrast to what is commonly observed in

static contests and what theoretical models predict.

This paper contributes to the extensive theoretical and to the growing experimental lit-

erature on multi-stage contests. Such contests were first proposed by Rosen (1986) to model

dynamic promotion tournaments in labor markets. Even though this paper already discusses

settings with heterogeneous contestants, it focusses on the optimal structure of rewards with-

out analyzing the effect of heterogeneity on competition intensity. Subsequent theoretical

work on dynamic contests also addresses different issues: Gradstein and Konrad (1999) and

Fu and Lu (2013) are both concerned with the effect of repeated interactions in dynamic

contests on investment decisions, but they restrict attention to settings with homogeneous

agents. While Harbaugh and Klumpp (2005) allow for heterogeneity, they investigate how

binding budget constraints affect optimal behavior in different stages of a dynamic contest.1

Stein and Rapoport (2004) and Stracke (2013) compare different contest structures with het-

erogeneous participants with each other, but not with a homogeneous benchmark. The same

holds for the literature on the optimal seeding of heterogeneous agents which does not vary

the structure of the competition, but rather the allocation of the same set of players across

different interactions – see Groh, Moldovanu, Sela, and Sunde (2012), Höchtl, Kerschbamer,

Stracke, and Sunde (2011), and Kräkel (2013).

The experimental literature has only recently started to investigate behavior in contests

with multiple stages. Our experimental setup is similar to the one used by Sheremeta (2010b)

and Altmann, Falk, and Wibral (2012). In line with what they report, we find that exper-

imental subjects invest too much in stage 1 of the contest. However, both of these studies

restrict attention to settings with homogeneous contestants and compare static one-stage

with dynamic two-stage elimination contests, while we focus on the effect of heterogeneity

on competition intensity. Previous studies by Parco, Rapoport, and Amaldoss (2005) and

Amegashie, Cadsby, and Song (2007) also observe relative over-dissipation in stage 1 of a

two-stage contest, but their results are less relevant for the qualification of our findings since

they assume that agents are budget constrained. Other less related experimental studies on

multi-stage contests allow for effort carryover across stages (Sheremeta 2010a) or analyze the

optimal structure of prizes, assuming that contestants are homogeneous (Stracke, Höchtl,

1See Stein and Rapoport (2005) for a related study that assumes homogeneity of contestants.
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Kerschbamer, and Sunde 2012). Settings with heterogeneous agents have only been consid-

ered for static contests. The seminal contribution is by Bull, Schotter, and Weigelt (1987),

subsequent studies incluce Anderson and Stafford (2003), Schotter and Weigelt (1992), and

Kimbrough, Sheremeta, and Shields (2011), for example.2 These studies share the finding

that heterogeneity between contestants reduces competition intensity in static contests, while

we find the opposite for dynamic contests.

The remainder of this paper is organized as follows: Section 2 analyzes the effects of

variations in the level of investment costs and of cost-heterogeneity on the rent-dissipation

rate in a simple dynamic contest model; moreover, the robustness of our theoretical findings is

briefly discussed. Section 3 outlines the experimental design and derives our main hypotheses.

The experimental results are presented and discussed in Section 4, and Section 5 concludes.

2 Theoretical Analysis

2.1 A Dynamic Contest with Heterogeneous Contestants

Consider the simplest version of a dynamic pairwise elimination contest with two stages, as

depicted in Figure 1. Each of the three pairwise interactions is modelled as a Tullock (1980)

lottery contest with linear investment costs. The four risk-neutral contestants who compete

for the indivisible rent R are of two different types. In particular, each unit invested into

the contest costs cL for low-cost contestants, while constant marginal investment costs for

the high-cost contestants amount to cH > cL; types and thus investment cost parameters are

common knowledge among contestants.

We consider two homogeneous and two heterogeneous versions of the model. In each

homogeneous contest, the investment cost parameter is the same for all participants; in LLLL

it is low for all, while the cost parameter is high for all participants in HHHH. In heterogeneous

versions of the model, we assume that equal shares of the two types participate in the contest.

This allows for two strategically different seeding variants with heterogeneous participants:

Contestants can either be seeded to ensure that equal types interact in stage 1 (LLHH), or in

such a way that both stage-1 interactions are heterogeneous (LHLH). The relevant equilibrium

concept is Subgame Perfect Nash in all cases. Thus, we solve the game via backwards

induction and consider the stage-2 subgame before we determine equilibrium behavior in

stage 1.

2See Dechenaux, Kovenock, and Sheremeta (2012) for a recent survey of the experimental contest litera-
ture.

4



    
 

                                                         STAGE  1         

                                   
 

        Contestant 1    Contestant 2             Contestant 3           Contestant 4 
 

 

 

                                        
                          Winner moves on to stage 2                                             Winner moves on to stage 2 
 
                                                                   

 Contestant                                     Contestant 
                                             1 or 2                     STAGE  2                         3 or 4   
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                 Winner receives the rent R 

Figure 1: Structure of the Contest

2.1.1 Solving Stage 2

The stage-2 subgame is a pairwise interaction between two contestants i and j with investment

costs ci and cj, respectively. Each contestant chooses her investment level to maximize the

expected payoff. Contest investment increases the probability to receive the indivisible rent

R, but leads to investment costs that are independent of success or failure. The formal

optimization problem of contestant i reads

max
x2i≥0

Π2i(x2i, xj) =
x2i

x2i + x2j
R− cix2i,

where x2i (x2j) denotes contest investment by i (j) in stage 2. Following Nti (1999), first-order

optimality conditions determine the unique pure strategy Nash equilibrium. Equilibrium

investments satisfy

x∗2i =
cj

(ci + cj)2
R ; x∗2j =

ci
(ci + cj)2

R. (1)

Inserting equilibrium investments in the objective functions delivers

Π∗
2i ≡ Π2i(x

∗
2i, x

∗
2j) =

c2j
(ci + cj)2

R; Π∗
2j ≡ Π2j(x

∗
2j, x

∗
2i) =

c2i
(ci + cj)2

R. (2)

Expected equilibrium payoffs from a participation in the last stage of the contest are stricly

positive, decreasing in the own cost parameter, and increasing in the cost parameter of the

opponent.
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2.1.2 Solving Stage 1

Since there is no immediate reward for winning in stage 1, contestants only compete for the

continuation value, that is, for the right to participate in stage 2. This value is determined by

the expected stage-2 equilibrium payoff in (2), as discussed in detail below. First, however,

consider the stage-1 optimization problem of some contestant i with investment costs ci who

competes with contestant j for a given continuation value CVi. The problem is formally

defined as follows:

max
x1i≥0

Π1i(x1i, x1j) =
x1i

x1i + x1j
CVi − cix1i,

where x1i (x1j) is the stage-1 investment level of contestant i (j). Stage-1 equilibrium invest-

ment choices by contestants i and j for given continuation values CVi and CVj read

x∗1i =
cjCViCVj

(ciCVj + cjCVi)2
CVi; x∗1j =

ciCVjCVi
(ciCVj + cjCVi)2

CVj. (3)

In the next step, we formally derive the continuation values for the four settings.

Settings LLLL and HHHH: In case of homogeneity, the continuation value is the same for

all contestants and it is independent of the level of unit costs in the unique equilibrium which

is symmetric.3 Given ci = cj, it follows from (2) that the continuation value reads

CV =
1

4
R .

Setting LLHH: If contestants are heterogeneous and seeded in such a way that equal types

interact in stage 1, one high-cost and one low-cost contestant will make it to stage 2, inde-

pendent of the outcomes in the two stage-1 interactions. Thus, contestants know which type

they will face in stage 2 if they win in stage 1. In particular, any low-cost contestant in the

stage-1 competition anticipates that she will meet a high-cost opponent in stage 2, and vice

versa. Thus, it follows from (2) that the continuation values read

CVL =
c2H

(cL + cH)2
R and CVH =

c2L
(cL + cH)2

R

for a low-cost and a high cost contestant, respectively. Intuitively, the continuation value of

each contestant is independent of the outcome in the parallel stage-1 interaction, since only

the type (and not the identity) of the stage-2 opponent matters for the expected equilibrium

payoff.

3Asymmetric equilibria do not exist in a lottery contest – see Cornes and Hartley (2005) for details.
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Setting LHLH: If heterogenenous contestants are seeded such that different types interact

in stage 1, contestants do not know the type of opponent they would face in stage 2 in case of

success when competing in stage 1 since either of the two types from the other semifinal makes

it to the final with a positive and endogenously determined probability. This complicates

continuation values, since the value of participation in the final depends on the expected

type of the opponent. To illustrate this argument, consider the stage-1 interaction between

a low-cost and a high-cost contestant with continuation values CVL and CVH, respectively.

These values are formally defined as

CVL = qL ·
R

4
+ (1− qL) ·

c2H
(cL + cH)2

R; CVH = qL ·
c2L

(cL + cH)2
R + (1− qL) ·

R

4
,

where qL, the probability that the second low-cost contestants wins, is endogenously deter-

mined by contest investments in the parallel stage-1 interaction. Since the continuation values

in the parallel stage-1 interaction have the same structure, stage-1 investment choices by all

four contestants are interdependent through endogenously determined continuation values.

It can be shown, however, that the probability of a low-cost contestants to win in stage 1 is

the same in both stage-1 interactions in the unique equilibrium. This symmetry allows to

determine the equilibrium stage-1 winning probability of a low-cost contestant, q∗L. It reads4

q∗L =
(cH − cL)(cH + cS)

2 +
√

64c3Hc
3
L + (cL − cH)2(cL + cH)4

(cH − cL)(cH + cL)2 +
√

64c3Hc
3
L + (cL − cH)2(cL + cH)4 + 8c3L

.

2.2 Rent Dissipation Rates and Heterogeneity

A common measure for the intensity of a rent-seeking contest is the rent-dissipation rate,

defined as the share of the contested rent that is invested into the contest. Let DRs, the

rent-dissipation rate in stage s ∈ {1, 2}, be defined as the ratio of aggregate expenditures

EXPs of all contestants in that stage over the rent R. Then, the aggregate rent-dissipation

rate in setting T ∈ {LLLL,HHHH,LLHH,LHLH} across both stages of the contest reads

DR(T) =
∑
s

DRs(T) =
∑
s

EXPs(T)

R
.

Since DR(T) relates total expenditures by rent-seekers to the value of the rent at stake, it

is closely related to average gains for rent-seekers. In particular, expected average gains are

decreasing in the rent-dissipation rate, such that this measure reveals the attractiveness to

enter a rent-seeking contest.

An important advantage of the rent-dissipation rate over other measures of contest in-

4Details are provided in Appendix A.

7



tensity (e.g. total investment) is that it does not depend on the level of the cost parameter

in homogeneous settings. In particular, the rent-dissipation rate in a dynamic contest with

four low-cost contestants (LLLL) is the same as in a model with four high-cost contestants

(HHHH).

Proposition 1 (Homogeneity). Aggregate rent dissipation across both stages, as well as rent

dissipation in each stage do not depend on the level of the cost parameter in homogeneous

settings. That is,

(a) DR (LLLL) = DR (HHHH) ≡ DR (HOM)

(b) DR1(LLLL) = DR1(HHHH) ≡ DR1(HOM)

(c) DR2(LLLL) = DR2(HHHH) ≡ DR2(HOM)

Proof. See Appendix B.

Proposition 1 will help to address the main research question of our analysis, namely how

heterogeneity between contestants affects aggregate rent dissipation across both stages of the

contest and thus the attractiveness to enter a rent-seeking competition.

While it is a well established result for static contests that rent dissipation is lower in

heterogeneous than in homogeneous interactions, dynamic elimination structures with het-

erogeneous contestants and multiple sequential interactions have not been analyzed yet. To

address this issue, we compare the aggregate rent-dissipation rate in HOMto the rates in LLHH

and LHLH. These comparisons yield:

Proposition 2 (Aggregate Effect of Heterogeneity). Aggregate rent dissipation across both

stages is lower if contestants are heterogeneous than if they are homogeneous. That is,

(a) DR(HOM) > DR(LLHH);

(b) DR(HOM) > DR(LHLH).

Proof. See Appendix B.

According to this finding, the result established for static models that rent dissipation is

lower in heterogeneous than in homogeneous interactions carries over to dynamic structures.

Note that heterogeneity is basically shifted across stages when moving from LLHH to LHLH:

The two stage-1 interactions are homogeneous in setting LLHH, while different types interact

in stage 1 of setting LHLH. At the same time, the stage-2 interaction is always heterogeneous

in LLHH and often homogeneous in LHLH. Thus, a comparison of stage-specific rent-dissipation

rates across settings LLHH and LHLH allows us to analyze the effect of heterogeneity on the
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rent-dissipation rate in different stages of the contest. In line with standard intuition, we

find that the rent-dissipation rate in a particular stage is lower in heterogeneous than in

homogeneous interactions.

Proposition 3 (Stage Effect of Heterogeneity). Rent dissipation in a particular stage is

higher if interactions in that stage are between homogeneous rather than heterogeneous types.

That is,

(a) DR1(LHLH) < DR1(LLHH);

(b) DR2(LHLH) > DR2(LLHH).

Proof. See Appendix B.

The previous proposition suggests that the seeding of types in stage 1 shifts expenditures

across stages: While the stage-1 rent-dissipation rate is higher in LLHH than in LHLH, the

reverse relation holds for rent dissipation in stage 2.

2.3 Discussion and Robustness

Even though the dynamic contest structure we consider has already received some attention,

the aggregate effect of heterogeneity in a dynamic contest has not yet been analyzed to the

best of our knowledge. The existing literature either assumes homogeneity, or considers a

more general framework with more than two types. Even in the latter case, the issue of how

heterogeneity affects behavior is not addressed explicitly, since the degree of heterogeneity

is hard to define if there are more than two types. In a two-stage model with four types,

for example, there is some heterogeneity between all players, but it is not clear whether

heterogeneity increases or decreases when the investment cost parameter of an intermediate

type changes; that player becomes more similar to one and less similar to another competitor,

then.

The issue how the seeding of types in stage 1 affects investment decisions by contestants

received some attention already, however. Groh et al. (2013) prove that seeding LHLH maxi-

mizes aggregate investments in a perfectly discriminating contest where a marginal lead by

any contestant leads to a sure win. Kräkel (2013) shows that the optimal seeding crucially

depends on the relative importance of contest investment and noise for the outcome: Seeding

LHLH maximizes aggregate investments when the outcome is almost entirely determined by

relative investment choices, while seeding LLHH becomes optimal in this dimension if contest

investments become less and chance more important for the probability of success. The Tul-

lock lottery contest we consider is an example of the latter, i.e., aggregate contest investments
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are higher in setting LLHH than in LHLH in our model – see Höchtl, Kerschbamer, Stracke, and

Sunde (2011) for details. While the contest technology determines the relative importance

of investment choices in stage 1 and stage 2, respectively, for aggregate contest investments,

it is always the case that investments are lower in an interaction with heterogeneous than

in one with homogeneous types. Thus, Proposition 3 is robust to variations of the contest

technology.

3 Experimental Design and Procedures

3.1 Experimental Treatments and Testable Hypotheses

Our experimental design involves four treatments that correspond to the four settings stud-

ied in the previous section, with investment cost parameters cL and cH set to 1 and 1.5,

respectively, and the contested rent R set to 240. Table 1 shows the theoretical equilibrium

predictions from the model in Section 2.1 for all treatments. The theoretically predicted

aggregate rent-dissipation rates are always below one, such that the contested rent is never

completely dissipated. Consequently, the expected payoff from a participation is strictly

positive for contestants in all treatments, and the participation constraint is always satisfied.

In a first step, we compare rent-dissipation rates in the homogeneous treatments, which

are predicted to be the same. This allows us to test the hypothesis:

Hypothesis 1 (Homogeneity). Aggregate rent dissipation across both stages of the contest,

as well as rent dissipation in each stage are the same in treatments LLLL and HHHH:

(a) DR (LLLL) = DR (HHHH);

(b) DR1(LLLL) = DR2(HHHH);

(c) DR2(LLLL) = DR2(HHHH).

To test the hypothesis that heterogeneity reduces aggregate rent dissipation, we compare the

rent-dissipation rates in homogeneous and heterogeneous treatments.

Hypothesis 2 (Aggregate Effect of Heterogeneity). Heterogeneity between contestants re-

duces aggregate rent dissipation across both stages of the contest:

(a) Min{DR(LLLL),DR(HHHH)} ≥ DR(LLHH);

(b) Min{DR(LLLL),DR(HHHH)} ≥ DR(LHLH).

The theoretical analysis and Table 1 not only suggest that heterogeneity reduces the rent-
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Table 1: Theoretical Predictions for Rent-Dissipation Rate

Homogeneity Heterogeneity

LLLL HHHH LLHH LHLH

Aggregate (DR) 0.750 0.750 0.738 0.683

Stage-1 (DR1) 0.250 0.250 0.258 0.192

Stage-2 (DR2) 0.500 0.500 0.479 0.491

Note: Number stands for predicted rent-dissipation rate in the
respective treatment. Investment costs equal cL = 1 and cH = 1.5;
the contested rent equals R = 240.

dissipation rate, but also predict that the seeding of contestants has an effect on the com-

petition intensity in each stage. In particular, the share of the rent that is dissipated in a

particular stage is higher if the interaction(s) in that stage are likely to be between equal

types:

Hypothesis 3 (Stage Effect of Heterogeneity). The stage-1 rent-dissipation rate is higher in

LLHH than in LHLH, but the stage-2 rent-dissipation rate is higher in LHLH than in LLHH:

(a) DR1(LHLH) ≤ DR1(LLHH);

(b) DR2(LHLH) ≥ DR2(LLHH).

3.2 Experimental Procedures

Protocol of an Experimental Session. We adopt a between-subject design; that is, our

experimental subjects encountered only one of the four treatments LLLL, LLHH, LHLH and HHHH.

The protocol of an experimental session was the same for all treatments: First, participants

received some general information about the experimental session. Then, instructions for

the respective treatment (either LLLL, LLHH, LHLH or HHHH) were distributed.5 After each

participant confirmed that he/she had read and understood the instructions, participants

had to answer a set of control questions correctly. Subsequently, each subject was informed

about her investment cost parameter. Only then did the first decision round start. Overall,

each subject participated in 30 decision rounds and subjects were informed on that at the

beginning. They were also informed that only four decision rounds (out of 30) would be

randomly chosen and paid out at the end of the experiment. This was done in order to

5A translated version of the instructions is provided in Appendix C. The original (German) instructions
are available from the authors upon request.
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minimize the potential impact of income effects. To minimize the potential impact of repeated

game effects, subjects were randomly matched in each round and they were informed on that

at the beginning. Matching groups corresponded to the entire session. After the main

treatment, we first elicited risk preferences using a standard incentivized procedure, and

then asked participants to fill out a questionnaire (voluntary and non-incentivized). Only

thereafter participants were informed about their payoff in the experimental session. We

ran a total of 18 computerized sessions (five for treatments LLLL, LLHH and LHLH; three for

treatment HHHH) with 20 participants per session. The experiment was programmed in z-

Tree (Fischbacher 2007), and we used experimental currency units (ECU) in all experimental

sessions, where 200 ECU corresponded to 1.00 Euro. All 360 participants were students from

the University of Innsbruck, which were recruited using ORSEE (Greiner 2004). Each session

lasted approximately 70 minutes in total (including the distribution of instructions at the

beginning and the payment at the end), and participants earned between 9 and 13 Euro

(approximately 11 Euro on average).6

Implementation of the Contest. Participants played 30 rounds of the same contest game

in all treatments. Each participant knew that the identities of her opponents were randomly

determined at the start of each decision round, while the own investment cost parameter

as well as those of the other contestants (and in particular that of the stage-1 opponent)

remained constant across decision rounds. Apart from the number of type-L/type-H subjects

and their initial seeding in stage 1, everything else was kept constant across treatments.

The role of investments into the contest was explained to subjects using a lottery analogy.

Specifically, participants were told that they could buy a discrete number of balls in each

interaction for the price cL = 1 or cH = 1.5, respectively.7 The balls purchased by the subjects

as well as those purchased by their respective opponents were then said to be placed in the

same ballot box, out of which one ball would be randomly drawn subsequently. This set-up

replicates the Tullock (1980) lottery contest technology studied in the theoretical analysis.

Players had to buy (and pay for) their desired number of balls before they knew whether or

not they won a pairwise interaction in the contest. For this purpose, each participant received

an endowment of 240 Taler in each round, independent of his/her type. This endowment

could then be used to buy balls on both stages, i.e., a subject that reached stage 2 could use

6In six sessions an additional experiment was conducted after the risk-elicitation part. This experiment
was entirely unrelated to the contest experiment and subjects were not informed about what to expect in
this third experiment. All they knew is that the session included a third part, rather than only two parts.
These sessions where approximately 15 minutes longer, and the earnings in this third part amounted to
approximately 2.50 Euros on average.

7The chosen prizes ensure existence and uniqueness of equilibrium in each of the four treatments despite
the discrete grid on the strategy space.
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Table 2: Main Results

Homogeneity Heterogeneity

LLLL HHHH LLHH LHLH

DR 1.271 1.262 1.427 1.526
(0.750) (0.750) (0.738) (0.683)

DR1 0.572 0.547 0.679 0.815
(0.250) (0.250) (0.258) (0.192)

DR2 0.699 0.715 0.748 0.711
(0.500) (0.500) (0.479) (0.491)

Note: Bold numbers denote rent-dissipation rate av-
erages over all rounds of experimental sessions. DR
is defined as average expenditures over both stages by
subject, multiplied by four and divided by the value of
the rent R = 240. Theoretical benchmarks (from Ta-
ble 1 are provided in parentheses below the respective
measure.

whatever remained of his/her endowment to buy balls in the stage-2 interaction. The part of

the endowment that a participant did not use to buy balls was added to the payoffs for that

round. Since the endowment was as high as the value of the rent R, agents were not budget-

constrained at any time.8 Experimental subjects were told that the endowment could only

be used in a given round, that is, that transfers across decision rounds were not possible.

Therefore, the strategic interaction is the same in each of the 30 decision rounds. After

each decision round, participants were informed about their own decision, the decision(s) of

their immediate opponent(s), and about their own payoff. This allows for an investigation of

whether players learn when completing the task repeatedly.

4 Experimental Results

The main experimental results are summarized in Table 2. The table displays the theoret-

ical predictions from the model in Section 2.1 as well as observed means for the aggregate,

the stage-1 and the stage-2 rent-dissipation rate for the different treatments. The empirically

observed rent-dissipation rates substantially exceed their theoretical counterparts in all treat-

ments and in both stages. This is in line with the findings of other authors. For instance, the

rent-dissipation rates we observe in the two homogeneous treatments LLLL and HHHH are well

in line with Sheremeta (2010b) who reports even slightly higher degrees of over-dissipation in

8This is also confirmed by the experimental data on investment decisions.
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Figure 2: Rent-Dissipation in LLLL and HHHH by Decision Round and Stage
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an almost identical two-stage ‘winner-takes-all’ contest with four homogeneous contestants.

9 Given the high absolute differences between theoretical benchmarks and experimental re-

sults we follow the rest of the literature in focussing on qualitative rather than quantitative

predictions in the subsequent analysis.

4.1 Results Regarding the Hypotheses

We proceed in the same order as in Subsection 3.1, starting with the comparison of rent-

dissipation rates across the two homogeneous treatments. According to the numbers in Table

2, observed means for aggregate, stage-1 and stage-2 rent-dissipation rates are remarkably

similar across treatments LLLL and HHHH, in line with the theoretical prediction. A random-

effect panel regression of the respective dissipation measure on a treatment dummy indicates

that we cannot reject any part of Hypothesis 1 – the respective p-values are 0.943 for the

aggregate, 0.800 for the stage-1, and 0.859 for the stage-2 rent-dissipation rate.10 Figure 2

plots aggregate, stage-1, and stage-2 dissipation rates in the two treatments separately for

each decision round and show that the equality relation is not only reflected in session means.

Dissipation rates are very similar in the homogeneous treatments in all decision rounds and

follow the same time trend: The stage-1 rent-dissipation rate is strongly decreasing in the

first half of an experimental session in both treatments, while stage-2 dissipation rates remain

rather constant. Consequently, the aggregate rent-dissipation rate is decreasing over the

course of an experimental session, which indicates that subjects realize that their initial

contest investments were too high. Dissipation rates exceed their theoretical counterparts

even in the very last decision rounds, however. We summarize our findings with respect to

the comparison of the homogeneous treatments as follows:

9Over-dissipation is not a particular feature of multi-stage contests, but can be observed in almost any
contest experiment – see Sheremeta (2013) for an extensive survey and potential explanations of this behavior.

10Standard errors are clustered on the session level to account for potential interdependencies due to random
matching within each session.
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Result 1 (Homogeneity). In line with the theoretical prediction, aggregate, stage-1, and stage-

2 rent-dissipation rates are remarkably similar across the homogeneous treatments LLLL and

HHHH. Thus, we cannot reject Hypothesis 1.

Hypothesis 2 is concerned with the effect of heterogeneity on rent dissipation. While the

theoretical model predicts that heterogeneity between contestants reduces the aggregate rent-

dissipation rate, this is not what we observe in the experiments. On the contrary, observed

means for DR equal 1.427 and 1.526 in the heterogeneous treatments LLHH and LHLH, respec-

tively, compared to only 1.271 and 1.262 in the homogeneous treatments LLLL and HHHH. Since

the difference between LLLL and HHHH is economically small and statistically insignificant, we

will use LLLL as the homogeneous benchmark in the sequel. Based on this benchmark, the

respective differences are large enough to reject Hypothesis 2(a) at the 10%- (p-value 0.0595)

and Hypothesis 2(b) at the 5%-level (p-value 0.0475).11 Figure 3 plots the evolution of aggre-

gate rent dissipation in treatments LLLL, LLHH, and LHLH over the course of an experimental

session. It reveals that the time-trend is remarkably similar across treatments, such that the

relation between any one of the two heterogeneous treatments and the homogeneous bench-

mark does not change with experience of experimental subjects. Thus, subjects realize that

their initial contest investments are too high, but even experience does not help to deliver

the theoretical prediction that heterogeneity reduces (rather than increases) the aggregate

rent-dissipation rate – subjects invest more in the heterogeneous treatments in all decision

rounds.

Result 2 (Aggregate Effect of Heterogeneity). In contrast to the theoretical prediction, het-

erogeneity tends to increase rather than decrease the aggregate rent-dissipation rate in treat-

ments LLHH and LHLH; the data allow us to reject Hypothesis 2.

Finally, Hypothesis 3 addresses the stage-specific effect of heterogeneity in treatments LLHH

and LHLH. Broadly speaking, the hypothesis predicts that heterogeneity in a given stage

should reduce rent dissipation in that stage. Thus, stage-1 rent dissipation is predicted to

be higher in the treatment with homogeneous stage-1 interactions (LLHH), and stage-2 rent

dissipation should be higher in LHLH where stage-2 interactions are often between contestants

of the same type. The numbers in Table 2 display the opposite relations, however: DR1 is

lower (and not higher) in LLHH than in LHLH (0.679 vs. 0.815), while DR2 is higher (and not

lower) in LLHH than in LHLH (0.748 vs. 0.711). While the difference across treatments in stage

2 is modest and, according to panel (b) of Figure 4, not systematic across decision rounds,

this is different in stage 1: According to panel (a) of Figure 4, the stage-1 rent-dissipation

11We use the random effect panel regression DR = α + β ∗ treat, where treat is a dummy for LLHH or
LHLH, respectively. Standard errors are clustered on the session level. Since H0 states that β ≤ 0, we use a
one-sided test on the estimated parameter β for inference.
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Figure 3: DR in LLLL, LLHH and LHLH by Decision Round
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rate in LHLH is higher than in in LLHH in all decision rounds. Moreover, a statistical inference

allows to reject Hypothesis 3(a) at the 10% level (p-value 0.095), while a p-value of 0.3285

does not allow us to reject Hypothesis 3(b). We summarize these findings below:

Result 3 (Stage Effect of Heterogeneity). In contrast to the theoretical prediction, the stage-1

(stage-2) rent-dissipation rate is lower (slightly higher) in treatment LLHH than in LHLH; the

data allow us to reject Hypothesis 3(a), while we cannot reject 3(b).

Overall, our results suggest that the behavior in our homogeneous treatments is qualitatively

in line with theoretical predictions. In particular, the value of the cost parameter has no

effect on contest investments by experimental subjects under homogeneity (Result 1). The

effect of heterogeneity on rent-dissipation rates is not even qualitatively in line with equi-

librium predictions, however, since cost-heterogeneity seems to have a positive rather than

a negative impact on contest intensity: We find that the aggregate rent-dissipation rate is

higher (and not lower) in both heterogeneous treatments (Result 2). Moreover, heterogeneity

in stage 1 positively (and not negatively) affects the rent-dissipation rate in that stage, while

heterogeneity in stage 2 has almost no effect on the rent-dissipation rate in that stage (Result

3).

4.2 Disaggregating the Data by Cost-Type

To shed some light on the question why the observed behavioral reaction to heterogeneity

differs from the theoretical equilibrium predictions, we separately analyze the behavior of

low- and high-cost subjects in each stage. In particular, we investigate how different types

respond to heterogeneity in a particular stage of the contest.

Stage 2. The two-type setting allows for different interactions in stage 2: Either, the in-

teraction is homogeneous and both subjects have high- or low investment costs (HH or LL),
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Figure 4: Rent-Dissipation in LLHH and LHLH by Stage and Decision Round
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respectively, or the interaction is heterogeneous and subjects with different types compete

with each other (LH). To investigate how high-cost and low-cost subjects respond to hetero-

geneity in stage 2, we compare stage-2 expenditures of a particular type in homogeneous and

heterogeneous interactions. The experimental design allows for two identification strategies:

First, the fact that all potential stage-2 interactions may occur in treatment LHLH allows for a

within-subject identification in a regression with fixed effects. Second, we can pool all stage-2

interactions of a certain type across treatments and then use a random effect regression for

inference in a between-subject comparison.

Table 3 provides the observed means in stage-2 interactions LL, LH and HH for treat-

ment LHLH as well as the averages for these interactions across all treatments. Consider

first treatment LHLH. In line with the qualitative theoretical prediction, low-cost subjects

expend significantly less in the heterogeneous interaction LH than in the homogeneous one

(81.85 vs. 85.75, p-value 0.052).12 Even though theory predicts an even more pronounced

expenditure reduction for high-cost subjects, they expend slightly more in the heterogeneous

interaction LH than in HH (83.63 vs. 83.03); the difference is insignificant, however (p-value

0.337). The observed pattern is similar if we consider the averages for homogeneous and het-

erogenous stage-2 interactions across all treatments.13 Again, we find that low-cost subjects

reduce their expenditures in response to heterogeneity (84.24 vs. 81.36, p-value 0.007), while

high-cost subjects tend to expend more in LH than in HH. The response to heterogeneity by

high-cost subjects is more pronounced in the pooled data, however, and here the difference

is statistically significant (p-value 0.050).14

12We use a fixed effect regression and cluster standard errors on the session level.
13Using a random effect panel regression with clustered standard errors, we cannot reject the null that the

behavior in a particular stage-2 interaction (LL, LH, HH) is independent of the treatment. Details available
from the authors upon request.

14Thus, we can reject the null that high-cost subjects expend the same amount or less in LH compared to
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Table 3: Stage-2 Expenditures by Cost-Type

only LHLH all treatments

LL LH HH LL LH HH

L 85.78 81.85 - 84.24 81.36 -
(60) (58) (60) (58)

H - 83.63 83.03 - 88.18 83.83
(57) (60) (57) (60)

Bold numbers denote rent-dissipation rate averages over all
rounds of experimental sessions. Theoretical benchmarks
are provided in parentheses below the respective measure.

Taken together, we find that low-cost subjects respond to heterogeneity in stage 2 as

theory predicts, while high-cost subjects do not – they tend to expend more and not less. The

additional expenditures by high-cost subjects at least partly compensate for the expenditure

reduction by low-cost subjects. This explains why heterogeneity has almost no effect on

stage-2 expenditures, as established in Result 3.

Stage 1. Table 4 provides the observed means in stage 1 by treatment and cost-type, as well

as the theoretical predictions. Before we compare stage-1 expenditures across treatments,

note that the distinction between homogeneous and heterogeneous interactions is insufficient

to analyze behavior in stage 1. As discussed in Section 2, the rent for which subjects compete

in stage 1 is the right of a stage-2 participation. This value depends on the expected stage-2

opponent, however. In particular, everybody would rather compete with a high-cost than

with a low-cost opponent in stage 2. Consequently, equilibrium expenditures by low-cost

contestants are higher in stage 1 of treatment LLHH (where the investment costs of the stage-2

opponent are high) than in stage 1 of the homogeneous treatment LLLL (where the investment

costs of the stage-2 opponent are low), even though the stage-1 interaction is homogeneous

in both treatments. Similarly, equilibrium expenditures by high-cost contestants are lower

in stage 1 of treatment LLHH (where the investment costs of the stage-2 opponent are low)

than in stage 1 of the homogeneous treatment HHHH (where the investment costs of the stage-

2 opponent are high), even though the stage-1 interaction is again homogeneous in both

treatments. Thus, we can test whether subjects rationally react to different continuation

values by comparing stage-1 expenditures in the two homogeneous treatments with those in

treatment LLHH. In addition, a comparison of stage-1 expenditures in treatment LHLH (where

stage-1 interactions are heterogeneous) with the homogeneous benchmarks LLLL and HHHH

LL.
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Table 4: Stage-1 Expenditures by Cost-Type

LLLL LLHH LHLH HHHH

L 34.33 46.10 47.66 -
(15) (22) (14)

H - 35.39 50.16 32.79
(9) (9) (15)

Bold numbers denote rent-dissipation rate av-
erages over all rounds of experimental sessions.
Theoretical benchmarks are provided in paren-
theses below the respective measure.

allows us to test how subjects respond to heterogeneity in stage 1.

Consider the continuation-value effect first. In line with the qualitative theoretical pre-

diction, low-cost subjects significantly increase their expenditures in response to the higher

stage-1 continuation value in treatment LLHH (p-value 0.000).15 According to Table 4, stage-1

expenditures amount to 34.33 units in LLLL, compared to 46.10 units in LLHH. Panel (a) of

Figure 5 plots stage-1 expenditures for low-cost subjects over all rounds of the experiment

and shows that this relation holds in all rounds of an experimental session. The reaction of

high-cost subjects to the changing continuation value is not in line with theoretical predic-

tions, however. High-cost subjects slightly increase (rather than decrease) stage-1 expendi-

tures from 32.79 in treatment HHHH to 35.39 in LLHH, even though their continuation value

is lower in LLHH. Note, however, that this behavioral change is statistically insignificant (p-

value 0.861). Moreover, panel (b) of Figure 5, which plots stage-1 expenditures for high-cost

subjects over all rounds of the experiment, shows that the relation reflected in averages does

only hold in the first part of an experimental session, while we observe that stage-1 expen-

ditures by high-cost subjects are lower in later decision rounds. This suggests that subjects

need some experience to realize that their stage-1 continuation value is comparably low in

treatment LLHH.

Next, consider the effect of heterogeneity in the current interaction. The theoretical model

predicts that both low-cost and high-cost contestants expend less in the heterogeneous stage-

1 interaction of treatment LHLH than in the homogeneous stage-1 interactions of treatments

LLLL and HHHH, respectively. Moreover, the effect is predicted to be more pronounced for

contestants with high investment costs. Result 3 suggests that we observe the opposite in

the experiments, however. A disaggregate analysis of stage-1 behavior reveals that both

types expend more in case of heterogeneity: Low-cost subjects increase expenditures from

15We use a random effect panel regression, as described in Footnote 11, for inference.
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Figure 5: Stage-1 Expenditures by Cost-Type and Decision Round
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34.33 to 47.66 units, and high-cost subjects expend 50.16 units in stage 1 of treatment LHLH,

compared to only 32.79 units in HHHH. Those numbers already indicate that we can reject

the null that low-cost and high-cost subjects (weakly) reduce expenditures.16 Interestingly,

the pattern we observe in session means does not change with experience: Figure 5 plots

stage-1 expenditures over all rounds of the experiment in the three treatments and shows

that stage-1 expenditures by both low-cost and high-cost subjects are strictly higher in the

heterogeneous interactions of treatment LHLH than in the homogeneous treatment LLLL.

4.3 Discussion of Results and Potential Explanations

The experimental data for the two homogeneous treatments is qualitatively in line with

both the existing experimental evidence and the theoretical prediction. However, in stark

contrast to the theoretical benchmark the experimental results indicate that the overall effect

of heterogeneity on dissipation rates in a multi-stage contest is positive rather than negative.

This already manifests itself in treatment LLHH where theory predicts that dissipation rates

are (slightly) lower than in the homogeneous benchmark due to heterogeneity in stage 2,

while we can reject a negative effect at the 10%-level in the experimental data. The positive

effect of heterogeneity is more pronounced in treatment LHLH were theory again predicts that

heterogeneity reduces the aggregate rent-dissipation rate, while we observe a strong increase

and can reject a negative aggregate effect at the 5%-level. The separate analysis by stage

and cost-type revealed that the deviation from the theoretical benchmark is particularly

pronounced in stage 1 of LHLH: While both types should expend less in stage-1 of treatment

LHLH than in a homogeneous benchmark, they expend significantly more. Subsequently, we

will discuss potential explanations for this behavior.

16The respective p-values are 0.025 for type L, and 0.011 for type H subjects.
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Budget Constraints. Even though the budget is not binding in any stage in the theoretical

benchmark, the high degree of over-dissipation in all treatments and stages could change that

in principle. Harbaugh and Klumpp (2005) theoretically analyze behavior in a two-stage

contest that is similar to our setting LHLH. Under the assumption that the budget has no

intrinsic value, they show that ‘underdogs’ are more likely to win against ‘favourites’ in stage

1 than in stage 2, since the former expend relatively more of their endowment in stage 1. In

line with this prediction, we observe that stage-1 expenditures by high-cost subjects exceed

the theoretical benchmark by the factor 5, while low-cost subjects spend only three times

as much as the model without budget constraints would predict. While this observation

is broadly consistent with a binding budget constraint, several details in the experimental

data undermine the plausibility of this explanation: First, the whole endowment is expended

in less than 8% of all interactions in LHLH, and the pattern we observe does not change if

these observations are excluded. Second, stage-2 expenditures in a particular interaction

do not differ across treatments, even though stage-1 expenditures do. Stage-2 expenditures

should differ across treatments, however, if the endowment were binding in LHLH, but not

in homogeneous treatments, where the whole endowment is dissipated in less than 4% of

all cases. Finally, the endowment has an intrinsic value in our experimental treatments and

control questions indicate that subjects realize that whatever remains of the endowment is

paid out in cash. Thus, the results of Harbaugh and Klumpp (2005) from a model with

a budget without intrinsic value are unlikely to be relevant for our framework, even if the

endowment were binding.

High Strategic Complexity and Mistakes. We are not the first who find that the

deviation from the benchmark is particularly pronounced in stage 1 of a two-stage pairwise

elimination contest – Sheremeta (2010b) and Altmann, Falk, and Wibral (2012), for example,

report that over-dissipation is much higher in stage 1 than in stage 2 of a two-stage contest

with homogeneous contestants. A prominent explanation for this observation relies on the

idea that it is cognitively more demanding to determine optimal behavior in stage 1 than in

stage 2, since contestants need to form expectations about their potential opponents’ stage-

2 behavior to determine the value of winning the stage-1 interaction. Thus, the strategic

complexity in stage 1 of a multi-stage contest is high, which may cause excess expenditures.

Both aforementioned studies find evidence in support of this story: Sheremeta (2010b) reports

that the degree of stage-1 over-dissipation decreases in a homogeneous two-stage elimination

contest as subjects become more experienced, while stage-2 over-dissipation remains constant

– this suggests that subjects need experience to correctly understand the complex strategic

decision they face in stage 1, while this problem is less pronounced in stage 2. Altmann, Falk,
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Table 5: Main Results (decision rounds 21-30)

Homogeneity Heterogeneity

LLLL HHHH LLHH LHLH

DR 1.082 1.167 1.245 1.375
(0.750) (0.750) (0.738) (0.683)

DR1 0.438 0.440 0.501 0.647
(0.250) (0.250) (0.258) (0.192)

DR2 0.645 0.727 0.744 0.727
(0.500) (0.500) (0.479) (0.491)

Note: Bold numbers denote rent-dissipation rate av-
erages over rounds 21-30 of the experimental sessions
and are defined as in Table 2

and Wibral (2012) test the complexity hypothesis with a different experimental design, since

subjects in their treatments participate in only one two-stage contest without repetition,

which does not allow for learning due to experience. They use a control treatment where

the stage-2 winner is determined by a coin toss rather than by stage-2 investment choices

which arguably reduces the strategic complexity in stage 1. Consistent with the hypothesis

that strategic complexity is in part responsible for over-dissipation in stage 1, they find that

stage-1 over-dissipation is lower in the control than in the main treatment.

If strategic complexity is a main driver for behavior in stage 1 of our two-stage contest,

then it arguably should be particularly relevant in stage-1 of treatment LHLH, since hetero-

geneity in both stage-1 interactions introduces uncertainty about the configuration of types

in stage 2 in this treatment. In line with this argument, Table 2 reveals that over-dissipation

is not only higher in stage 1 than in stage 2 in all treatments, but also most pronounced in

treatment LHLH. In particular, average stage-1 rent-dissipation rates are between two-times

(in LLLL) and four-times (in LHLH) as high as the respective benchmark, while stage-2 aver-

ages exceed their equilibrium predictions by only about 40% in the homogeneous treatments

LLLL and HHHH, and by only approximately 55% in the heterogeneous treatment LLHH. In

line with the evidence reported by Sheremeta (2010b) figures 2 and 4 reveal that stage-1

expenditures decrease as subjects become more experienced, while the dissipation rate in

stage 2 remains rather constant. This pattern is also confirmed in a regression analysis which

uses period dummies for all but the last decision round to explain stage-1 and stage-2 rent-

dissipation rates.17 In addition, the regressions reveal that the effect of experience on stage-1

17We use separate random effect regression for each treatment and cluster standard errors on the session
level. Period dummies exhibit a clear downward trend in stage 1, but are insignificant in stage 2.
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expenditures disappears over the course of an experimental session. Interestingly, however,

the regressions also provide support for the argument that the strategic complexity is partic-

ularly high in stage 1 of treatment LHLH. In particular, the estimations suggest that the effect

of experience on stage-1 expenditures lasts longer in treatment LHLH than in the homogeneous

treatments – while only the first ten period dummies are significantly different from zero in

LLLL and HHHH, this holds for the first seventeen periods in LHLH. While all this evidence is in

line with the hypothesis that complexity is an important driver for behavior, other evidence

suggests that it is unlikely to be the main explanation for our finding that heterogeneity

increases rather than decreases rent dissipation: Table 5 provides average rent-dissipation

rates by treatment and stage for the last ten decision rounds where we find no experience

effect in any treatment. The numbers suggests that all previously established relations across

treatments do still hold, and formal tests confirm this conjecture.18 Thus, it is unlikely that

mistakes due to the high degree of strategic complexity are responsible for the positive effect

of heterogeneity on stage-1 expenditures by high- and low-cost contestants that we observe.

Joy of Winning or Competing. As discussed above, previous studies found evidence that

the high strategic complexity is at least partly responsible for the finding that over-dissipation

relative to theoretical predictions is much higher in stage 1 than in stage 2. The same studies

also report, however, that this pattern prevails even when accounting for experience or when

the strategic complexity is directly reduced in a control treatment. To account for this

remaining relative over-dissipation in stage 1, Parco et al. (2005) and Sheremeta (2010b)

consider a behavioral model where winning has a value per se. Since the continuation value

in stage 1 is much lower than the prize awarded in stage 2 in a ‘winner-takes-all’ contest, the

relative effect of this value of winning on expenditures should be more pronounced in stage

1, which is in line with observed behavior by experimental subjects. A related hypothesis by

Altmann, Falk, and Wibral (2012) is that contestants may not only derive extra utility from

winning a competition, but from competing per se. In that case, subjects who enjoy future

competition should again invest relatively more in stage 1 than in stage 2, since stage-1 losers

are eliminated from the contest and thus excluded from future competition, while the contest

ends for everybody after stage 2.

As the aforementioned studies, we observe that stage-1 over-dissipation is still higher

than stage-2 over-dissipation in all treatments even after accounting for experience. Thus,

the ‘joy of winning’ or ‘joy of competing’ argument might also be relevant in our treatments.

18The p-values are very similar: For Hypothesis 1, we obtain 0.613 for (a), 0.978 for (b), and 0.111 for (c);
for Hypothesis 2, we get 0.055 for (a) and 0.027 for (b); for Hypothesis 3, the respective p-values are 0.048 for
(a) and 0.980 for (b). The only thing that changes in later decision rounds is that high-cost subjects expend
less in stage 1 of treatment LLHH than in HHHH, as already discussed in subsection 4.2 above.
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While any one of these two arguments can explain the qualitative pattern we observe across

stages in our treatments, the arguments must be combined with an approach put forth by

Chen, Ham, and Lim (2011) to explain why heterogeneity increases rather than decreases

rent dissipation. Chen et al. (2011) develop a behavioral model of a contest with asymmetric

contestants and suggest that the ‘joy of winning’ depends on the type of the opponent. In

particular, they assume that underdogs derive additional utility from beating a favourite,

while losing against an underdog is particularly unattractive for a favourite. In the context

of our multi-stage model, this assumption would imply that the ‘joy of competing’ argument

is particularly important for heterogeneous interactions in stage 1. Intuitively, failing to

make it to the next stage is less of an issue for a low-cost agent when the opponent is equally

talented, but extremely unattractive when competing against an opponent with worse odds.

Thus, low-cost subjects react to stage-1 heterogeneity by expending much more, while they

expend less in heterogeneous stage-2 interactions where the ‘joy of competing’ argument is

irrelevant. Similarly, if winning against an advantaged opponent delivers an additional ‘joy

of winning’ for a high-cost contestants, this would imply that she bids more as an underdog

than when facing an equally strong opponent. Thus, this story would be in line with what

we observe in both stages.

5 Concluding Remarks

This paper has analyzed how heterogeneity in contestants’ investment cost parameters affects

the competition intensity in a dynamic elimination contest. While the theoretical model sug-

gest that the level of investment costs has no effect on the rent-dissipation rate in a two-stage

pairwise elimination contest with homogeneous participants, it predicts that cost hetero-

geneity between competing contestants matters. In particular, heterogeneity is predicted to

reduce the rent-dissipation rate, no matter whether stage-1 or stage-2 interactions are be-

tween heterogenous contestants. The experimental data for the homogeneous treatments is

qualitatively well in line with theoretical predictions. This is not the case for heterogeneous

settings, however. In contrast to the theoretical prediction, we observe a pronounced pos-

itive effect of stage-1 heterogeneity on competition intensity in that stage, while the effect

of stage-2 heterogeneity is close to zero. A more thorough analysis of the experimental data

suggests that confusion is not a plausible explanation for our findings. Instead, it seem that

behavioral factors such as type specific ‘joy of winning’ or ‘joy of competing’ is responsible

for the patterns we observe.

While our results show that the effect of heterogeneity on competition intensity can be

positive in multi-stage contests, the exact circumstances under which this positive effect arises
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are not yet clear. It is an open question whether our findings carry over to multi-stage pyramid

contests that pool participants in each stage. It seems reasonable that underdogs slack off

if they compete against several rather than just one strong opponent at the same time,

for example. Moreover, the relation between competition intensity and stage-1 heterogeneity

might be U-shaped rather than monotonic. Then, it could well be that the effect of increasing

heterogeneity becomes negative for high levels of heterogeneity. While investigating the effect

of increasing the degree of heterogeneity seems an interesting avenue for future research, it

should be mentioned that the degree of heterogeneity implemented in our experiments is

already relatively high – with our parametrization underdogs are 50% less productive than

favourites which seems quite a lot for a real world competition.
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Appendix

A Derivation of Equilibrium Efforts

A.1 Solution for Stage 2

Assume that two contestants i and j with cost parameters ci and cj, respectively, compete
against each other in stage 2. The optimization problems of these two workers, who maximizes
their stage-2 payoff Π2i and Π2j, respectively, by choosing an optimal level of investment x2i
(x2j), read as follows:19

max
x2i≥0

Π2i =
x2i

x2i + x2j
R− cix2i,

max
x2j≥0

Π2j =
x2j

x2i + x2j
R− cjx2j.

First order conditions are necessary as well as sufficient in any pair-wise interaction for the
lottery CSF (see Nti, 1999, or Cornes and Hartley, 2005). The combination of first-order
conditions implies equilibrium efforts

x∗2i =
cj

(ci + cj)2
R and x∗2j =

ci
(ci + cj)2

R, (4)

respectively. Inserting optimal actions in the two objective functions gives the expected
equilibrium payoffs

Π∗
2i =

c2j
(ci + cj)2

R and Π∗
2j =

c2i
(ci + cj)2

R (5)

Equations (4) and (5) characterize equilibrium investments and payoffs, respectively, for any
possible combination of types, i.e., for LL, LH, and HH. In the main text of this paper, the
particular tournament environment considered (that is, LL, LH, HH, LLHH, LHLH, LLLL or HHHH)
is in parentheses – as in x2i(LL) or Π2i(LL), for example – or is omitted when there is no risk
of confusion.

A.2 Solution for Stage 1

In stage 1 contestants compete in two pairwise interactions against each other. Suppose
contestant i competes with j and contestant k with l. We consider the optimization problems
of i and j with

max
x1i≥0

Π1i(x1i, x1j) =
x1i

x1i + x1j
CVi − cix1i

max
x1j≥0

Π1j(x1i, x1j) =
x1j

x1i + x1j
CVj − cjx1j

The optimization problems for contestant k and l can be formulated accordingly and are
omitted here. For given continuation values the first order conditions are

x1j · CVi − ci(x1i + x1j)
2 = 0 and x1i · CVj − cj(x1i + x1j)

2 = 0. (6)

19Throughout the paper the first subscript of the variables Π and x indicates the stage, while the second
subscript indicates the player.
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Combining the first order conditions of contestants i and j equilibrium investments in stage
1 are

x∗1i =
cjCViCVj

(ciCVj + cjCVi)2
CVi and x∗1j =

ciCVjCVi
(ciCVj + cjCVi)2

CVj (7)

The continuation values are affected by the seeding of types in stage 1. Thus, we derive the
explicit expressions for equilibrium investments separately for the homogenous settings and
the heterogenous setting LLHH and LHLH.

Homogenous Settings LLLL and HHHH. In the case where all contestants have same costs
of investment ci = cj = ck = cl > 0 each contestant competes against an agent of the same
type in stage-2. Since contestants are symmetric and continuation values are the same for
each contestant consider without loss of generality the continuation value of agent i which is
determined by the respective stage-2 equilibrium payoff

CVi =
R

4
. (8)

Inserting this expression in (7) gives following equilibrium effort level

x∗1i =
R

16ci
, (9)

where investment costs of all contestants could be either high or low (cH > cL).

Heterogeneous Setting LLHH. In setting LLHH each contestant knows the type of the op-
ponent in stage 2 for sure. Thus, an agent with low costs cL (high costs cH) knows that he
will face an agent with high costs cH (low costs cL). Therefore the continuation value of an
agent i is determined by the respective stage-2 equilibrium profit Π2i(LH) derived in (5) for
a mixed interaction between a low cost and a high cost contestant. Continuation values for
a low cost agent (CVL) and a high cost agent (CVH) read as follows

CVL = Π∗
2L(LH) =

c2H
(cL + cH)2

R and CVH = Π∗
2H(LH) =

c2L
(cL + cH)2

R

Inserting continuation values in (7) delivers stage-1 equilibrium investments

x∗1L(LLHH) =
c2H

4cL(cL + cH)2
R and x∗1H(LLHH) =

c2L
4cH(cL + cH)2

R. (10)

Heterogeneous Setting LHLH. Whereas the derivation of equilibrium effort levels in setting
LLHH is straightforward, it needs more attention in setting LHLH because continuation values
are determined endogenously20.

We assume (without loss of generality) that contestants i and k have low costs, whereas con-
testants j and l have high costs, and that the two pairwise stage-1 interactions are between

20Whereas continuation values in setting LLHH are solely determined by the payoff of interaction LH in stage
2 there are 3 different possible interactions in stage-2 of setting LHLH, namely LH, LL or HH. Thus continuation
values are expected values now.
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contestants i and j, and between contestants k and l, respectively. In each interaction both
contestants choose their optimal stage-1 effort, given equilibrium behavior in any potential
stage-2 interaction. Combining the first order conditions derived in (6) we obtain two ex-
pressions that define a relation between equilibrium effort choices of contestants within each
interaction, namely

x1i
x1j

=
cH
cL

CVi
CVj

and
x1k
x1l

=
cH
cL

CVk
CVl

, (11)

respectively. These expressions show that each stage-1 interaction is a tournament between
agents with different costs and endogenously different valuations of winning. While the costs
of investment differ by construction, the difference of the value for winning is a result of
the tournament structure: Reaching stage 2 is more valuable for low cost than for high cost
contestants.

The continuation values are endogenously determined by the probabilities of entering the
different actions in stage 2 (which are determined by the investments in the other pairwise
stage-1 interaction) and the respective equilibrium payoffs. They read as follows:

CVi =
x1k

x1k + x1l
· Π∗

2L(LL) + (1− x1k
x1k + x1lk

) · Π∗
2L(LH);

CVj =
x1k

x1k + x1l
· Π∗

2H(LH) + (1− x1k
x1k + x1l

) · Π∗
2H(HH).

Similarly, the continuation values in the other stage-2 interaction between contestant k and
l depend on the behavior of agents i and j.

We proceed now to the solution of the problem, which comprises two participants which
differ in their investment costs and their valuation. As mentioned previously, any tournament
with two heterogenous participants has a unique, interior equilibrium for the chosen contest
success function (Cornes and Hartley 2005, Nti 1999). Consequently, each of the two pairwise
stage-1 interactions has a unique equilibrium for each pair of continuation values. What
remains to be shown is that the two expressions in (11) can be satisfied jointly. Inserting the
continuation values in (11) and simplifying gives

x1i
x1j

=
cH
cL

(cL + cH)
2 xk1

xl1
+ 4c2H

4c2L
xk1

xl1
+ (cL + cH)2

and
xk1
xl1

=
cH
cL

(cL + cH)
2 xi1

xj1
+ 4c2H

4c2L
xi1

xj1
+ (cL + cH)2

. (12)

System (12) consists of two equations in the two unknowns
x∗
1i

x∗
1j

and
x∗
1k

x∗
1l

, respectively. Note

that the two equations are symmetric, since the two contestants in each of the two stage-1
interactions face identical optimization problems. This implies that x∗1L ≡ x∗1i = x∗1k and
x∗1H ≡ x∗1j = x∗1l do hold in the symmetric equilibrium.21 Combining these conditions with
(12) gives:

x∗1L
x∗1H

=
cH
cL

(cL + cH)
2 x

∗
1L

x∗
1H

+ 4c2H

4c2L
x∗
1L

x∗
1H

+ (cL + cH)2

21The symmetric equilibrium exists for any degree of heterogeneity and is unique. Intuitively, one must
show that the graphs of the two relations in (12) have a unique intersection in the domain defined by
x∗
1j

x∗
1i
∈ [0, 1] and

x∗
1l

x∗
1k
∈ [0, 1]. It suffices to consider this domain, since the assumption of lower investment

costs and the resulting higher value of winning of contestants with low costs imply x∗1i ≥ x∗1j and x∗1k ≥ x∗1l,
respectively. This follows from (11). Details available upon request from the corresponding author.
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⇔ 0 = 4c2L

[
x∗1L
x∗1H

]2
+

(
1− cH

cL

)
(cL + cH)

2

[
x∗1L
x∗1H

]
− 4

c3H
cL

⇔ x∗1L
x∗1H

= F ∗(cL, cH),

where

F ∗(cL, cH) =
(cH − cL)(cL + cH)

2 +
√

64c3Hc
3
L + (cL − cH)2(cL + cH)4

8c3L
. (13)

F ∗(cL, cH) is the ratio of stage-1 investments of the two types of contestants. It is directly
proportional to heterogeneity in costs and continuation values, as equation (11) shows. There-
fore, F ∗(cL, cH) can be interpreted as a measure for both the exogenous heterogeneity in in-
vestment costs between low cost and high cost contestants and the endogenous heterogeneity
between types that is due to different continuation values in stage 1. Using this expression
we can redefine the probability that a low cost contestant wins as

q∗L =
x∗1L

x∗1L + x∗1H
=

F ∗

1 + F ∗ =
(cH − cL)(cL + cH)

2 +
√

64c3Hc
3
L + (cL − cH)2(cL + cH)4

(cH − cL)(cL + cH)2 +
√

64c3Hc
3
L + (cL − cH)2(cL + cH)4 + 8c3L

.

(14)
The expression F ∗(cL, cH) allows us to disentangle and solve analytically the two interdepen-
dent stage-1 interactions. We start by considering the continuation values which satisfy

CVi(x
∗
1L, x

∗
1H) = CVk(x∗1L, x

∗
1H) =

(cL + cH)
2F ∗(cL, cH) + 4c2H

4(cL + cH)2[1 + F ∗(cL, cH)]
R ,

CVj(x
∗
1L, x

∗
1H) = CVl(x

∗
1L, x

∗
1H) =

(cL + cH)
2 + 4c2LF

∗(cL, cH)

4(cL + cH)2[1 + F ∗(cL, cH)]
R.

Note that CVi(x
∗
1L, x

∗
1H) = CVk(x∗1L, x

∗
1H) and CVj(x

∗
1L, x

∗
1H) = CVl(x

∗
1L, x

∗
1H) due to symmetry.

Given these continuation values, stage 1 equilibrium efforts can be determined as

x∗1L(LHLH) ≡ x∗1i(LHLH) = x∗1k(LHLH) =
(cL + cH)

2F ∗(cL, cH)
2 + 4c2HF

∗(cL, cH)

4cL(cL + cH)2[1 + F ∗(cL, cH)]3
P (15)

x∗1H(LHLH) ≡ x∗1j(LHLH) = x∗1l(LHLH) =
(cL + cH)

2F ∗(cL, cH) + 4c2LF
∗(cL, cH)

2

4cH(cL + cH)2[1 + F ∗(cL, cH)]3
P . (16)

B Proofs

Prerequisites

For the proofs for propositions 2 and 3 we need the following lemmata. In the derivation, we
assume without loss of generality that cH ≥ cL = 1.

Lemma 1. Define f(cH) = 5c3H+2c2H+cH
c2H+2cH+5

. Then, the relation F ∗(1, cH) > f(cH) does hold for all

cH > 1. Furthermore, for cH = 1 it holds that F ∗(1, cH) = f(cH).

Proof. From 11 we know that x1i

x1j
= cH

cL

CVi(x1k,x1l)
CVj(x1k,x1l)

. Further
x∗
1i

x∗
1j

= F ∗(cL, cH). Consequently,

using the assumption that cH ≥ cL = 1, it must hold that

F ∗(1, cH) = cH
CVi(x1k, x1l)

CVj(x1k, x1l)
=

4c3H + cH(1 + cH)
2 x1k

x1l

(1 + cH)2 + 4x1k

x1l

.
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Note that for cH > 1, we have

∂F ∗(1, cH)

∂ x1k

x1l

=
(1 + cH)

4 − 16c2H
[(1 + cH)2 + 4x1k

x1l
]2
> 0.

Further, recall that player l has both higher cost (cH > 1) and a lower continuation value
(CVk > CVl), such that x1k > x1l does hold. Therefore, assuming x1k = x1l underestimates
F ∗(1, cH). Since

f(cH) =
5c3H + 2c2H + cH
c2H + 2cH + 5

is the expression we derive from F ∗(1, cH) under this assumption, we have proven F ∗(1, cH) >
f(cH). If we assume cH = 1, all players are perfectly symmetric, such that x1k = x1l does
hold. Consequently, the relation F ∗(1, cH) = f(cH) does hold for cH = 1.

Lemma 2. Define f l(cH) = 2cH − 1. Then, the relation F ∗(1, cH) > f l(cH) does hold for all
cH > 1. Furthermore, for cH = 1, it holds that f(cH) = f l(cH).

Proof. We start with the relation that we want to prove, namely:

f(cH) > f l(cH)

⇔ 5c3H + 2c2H + cH > (2cH − 1)(c2H + 2cH + 5)

⇔ 3c3H − c2H − 7cH + 5 > 0

We now have to prove that φ(cH) ≡ 3c3H − c2H − 7cH + 5 > 0 does always hold for cH > 1.
To see this, note that φ(·) is a cubic function that has a local minimum at cH = 1, and a
local maximum at cH = −7/9. Furthermore, φ(1) = 0, which implies that φ(cH) > 0 for all
cH > 1.

Lemma 3. Assume without loss of generality that cH ≥ cL = 1 and define fh(cH) = c3H+2c2H+cH
4

.
Then, the relation F ∗(1, cH) < fh(cH) does hold for all cH > 1. Furthermore, for cH = 1, it
holds that F ∗(1, cH) = fh(cH).

Proof. From equation (11), we know that x1i

x1j
= cH

cL

CVi(x1k,x1l)
CVj(x1k,x1l)

. Further, equation (13) tells us

that
x∗
1i

x∗
1j

= F ∗(cL, cH). Consequently, using the assumption that cH ≥ cL = 1, it must hold

that

F ∗(1, cH) = cH
CVi(x1k, x1l)

CVj(x1k, x1l)
=

4c3H × x1l

x1k
+ cH(1 + cH)

2

(1 + cH)2 × x1l

x1k
+ 4

.

Note that for cH > 1, we have

∂F ∗(1, cH)

∂ x1l

x1k

= −(cH − 1)2cH(c
2
H + 6cH + 1)

[(1 + cH)2 × x1l

x1k
+ 4]2

< 0.

Further, recall that player l will never drop out in a pairwise competition for any finite
degree of heterogeneity in terms of costs and continuation value, such that x1l > 0 does
hold. Therefore, assuming x1l = 0 (which implies x1l

x1k
= 0) overestimates F ∗(1, cH), since this

expression is decreasing in x1l

x1k
. Since

fh(cH) =
c3H + 2c2H + cH

4

is the expression we derive from F ∗(1, cH) under this assumption, we have proven F ∗(1, cH) <
fh(cH). If we assume cH = 1, all players are perfectly symmetric, such that x1l = x1k does
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hold. When inserting this relation in F ∗(1, cH), we see that the relation F ∗(1, cH) = fh(cH)
does hold for cH = 1.

Proof of Proposition 1

In settings LLLL and HHHH total expenditures are independent from unit costs thus the rent-
dissipation rate is the same in both homogenous interactions. To show that consider the
dissipation rate for each stage of these settings when ci = cj > 0 and T ∈ {LLLL, HHHH}.

DR1(T ) =
1

R
(4 · x∗1i) · ci

Inserting the expressions for equilibrium efforts gives

DR1(T ) =
1

R
(4 · R

16ci
) · ci

And simplifying yields

DR1(T ) = 0.25

The same can be shown for stage 2 of the homogenous settings:

DR2(T ) =
1

R
(2 · x∗2i) · ci

DR2(T ) =
1

R
(2 · R

4ci
) · ci

DR2(T ) = 0.5

Thus, the total rent-dissipation rate across all stages of the homogenous settings is DR(T ) =
0.75 with T ∈ {LLLL, HHHH}.

Proof of Proposition 2

We have to show that the following relations hold

(a) DR(HOM) > DR(LLHH)|cH>cL

(b) DR(HOM) > DR(LHLH)|cH>cL

Consider first part (a). Here the stage 2 interaction in the heterogenous setting is for sure
between a low cost and a high cost type, thus the rent-dissipation rate in equilibrium reads
as follows:

DR(LLHH) =
1

R
[(2x∗1L · cL + 2x∗1H · cH) + (x∗2L · cL + x∗2H · cH)] (17)

Without loss of generality we can set cL = 1. By inserting equilibrium efforts from (4) and
(10) and simplifying we get

DR(LLHH) =
(4cH + c2H + 1)

2(1 + cH)2

This is a quadratic expression in cH with its maximum at cH = 1 which would represent
the homogenous setting where cH = cL = 1. Thus, rent-dissipation rates are always smaller
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whenever cH > cL = 1.

For part (b) we have to show that the rent-dissipation rate of the second heterogenous setting
LHLH is again smaller than in the homogenous settings. We will proceed in two steps. First,
we derive a necessary and sufficient condition in terms of the function F ∗(1, cH) for the relation
DR(LLHH) > DR(LHLH) to hold. Second, we prove that the equilibrium function F ∗(1, cH),
which was derived in (13) indeed satisfies this condition. We start with the relation which
we want to prove:

DR(LLHH) > DR(LHLH)

where DR(LLHH) is defined as in (17) and

DR(LHLH) =
1

R
[2
(
q2L · x2L(LL)cL + (1− qL)2 · x2H(HH)cH + qL(1− qL) · (x2L(LH)cL + x2H(LH)cH)

)
]

Inserting equilibrium expressions and simplifying yields

c2H+4cH+1

2(cH+1)2
>

(
4c3H+c2H+2cH

)
+(cH+1)2F ∗(1, cH)

3+(2c2H+12cH+2)F ∗(1, cH)
2+(c3H+7c2H+11cH)F

∗(1, cH)+F
∗(1, cH)+1

2(cH+1)2(1+F ∗(1, cH))3

Multiplying both sides by 2(cH + 1)2(1 + F ∗(1, cH))
3 and rearranging gives

F ∗(1, cH)
3 · 2cH + F ∗(1, cH)

2 · (c2H + 1) + F ∗(1, cH) · (−c3H − 4c2H + cH + 2) + 2cH − 4c3H > 0. (18)

Solving for F ∗(1, cH) gives us following roots:

r1 =
−1 + c2H −

√
1− 16cH − 2c2H + 32c3H + c4H

4cH

r2 =
−1 + c2H +

√
1− 16cH − 2c2H + 32c3H + c4H

4cH
r3 = −cH

We do only have to consider r2, since r1 and r3 are below 0 for some values of cH, while
F ∗(1, cH) ≥ 1 for all cH ≥ 1.22 Thus we have to show that

F ∗(1, cH) > r2 ≡
−1 + c2H +

√
1− 16cH − 2c2H + 32c3H + c4H

4cH
, (19)

for all cH > 1. From Lemmata 1 and 2 we know that F ∗(1, cH) > f l(cH). Consequently,
a sufficient condition for (19) is given by f l(cH) > r2. Using the expression f l(cH) and
rearranging gives

7c2H − 4cH + 1 >
√

1− 16cH − 2c2H + 32c3H + c4H.

Squaring both sides leaves us with23

2cH(25c3H − 12c2H + 14cH − 12) > 0

This relation is always satisfied if cH > 1, which completes the proof.

22It followes from Lemma 1 that ∂F∗(1,cH)
∂cH

> 0, and F ∗(1, 1) = 1 holds. Therefore, F ∗(1, cH) ≥ 1 for all
cH ≥ 1.

23Note that squaring is without loss of generality here, since we are only interested in solutions for cH > 1.
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We proved the relation DR(LLHH) > DR(LHLH) and from part (a) of the proof of Proposition
2 we know DR(hom) > DR(LLHH) thus DR(hom) > DR(LHLH) is also true.

Proof of Proposition 3

We want to show that following relations hold

(a) DR1(LHLH) < DR1(LLHH) ∀ cH > cL

(b) DR2(LHLH) > DR2(LLHH) ∀ cH > cL

Dissipation Rates in Stage 1

To prove that aggregate effort in the semifinal is higher in seeding LLHH than in seeding
LHLH we start with the relation we want to prove where we use the fact that x∗1L(LHLH) =
x∗1H(LHLH) · F ∗.

DR1(LLHH) > DR1(LHLH)

2 [x∗1L(LLHH) · cL + x∗1H(LLHH) · cH) > 2 (x∗1H(LHLH)F ∗ · cL + x∗1H(LHLH) · cH)

Inserting equilibrium values and simplifying gives

c2H + 1

2(cH + 1)2
− F ∗(cH + F ∗) ((cH + 1)2 + 4F ∗)

2cH(cH + 1)2(F ∗ + 1)3
> 0 (20)

Recall from the derivation of equilibrium investments in Appendix A that the formal ex-
pressions are fairly complicated, in particular due to the F ∗(1, cH)-function. To simplify
the subsequent analysis, we will therefore make use of Lemma 3 and replace F ∗(1, cH) by

fh(cH) = c3H+2c2H+cH
4

.
Since F ∗(1, cH) < fh(cH) we overestimate the rent-dissipation rate in setting LHLH by using
fh.
Inserting fh(cH) in (20) and simplifying leaves us with the sufficient condition

(cH − 1)2(cH + 2) (c2H + cH + 2) (cH(cH + 1)(cH(cH(cH(cH + 4) + 8) + 20) + 23) + 16)

2(cH + 1)2 (cH(cH + 1)2 + 4)3
> 0

which is always fullfilled under the condition cH > cL = 1.

Dissipation Rates in Stage 2

We start again with the condition we want to prove.

DR2(LLHH) < DR2(LHLH)

x∗2L(LH)cL+x
∗
2H(LH)cH < 2

{
q2Lx

∗
2L(LL)cL + (1−qL)2x∗2H(HH)cH + qL(1−qL)[x∗2L(LH)cL+x

∗
2H(LH)cH]

}
Inserting equilibrium values and using the fact that we can rewrite the probability that a low
cost contestant wins in the stage-1 interaction as qL = F ∗

1+F ∗ (see (14)) and simplifying yields

2cH
(1 + cH)2

<
(cH + 1)2F (1, cH)

2 + 8cHF (1, cH) + (1 + cH)
2

2(cH + 1)2(F (1, cH) + 1)2
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Multiplying both sides by 2(1 + cH)
2(F (1, cH) + 1)2 and rearranging gives

(cH − 1)2
(
F (1, cH)

2 + 1
)

> 0

Inserting the expression for F ∗(1, cH) gives the relation

(cH − 1)2(
1

64

(
(cH − 1)(1 + cH)

2 +
√

64c3H + (1− cH)2(1 + cH)4
)2

+ 1) > 0

which is fulfilled under the condition that cH > cL = 1.
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C Experimental Instructions

The experimental instructions consist of three parts: First, experimental subjects receive
some general information about the experimental session. Then, they are informed about
the main treatment (Experiment 1) with homogeneous or heterogeneous participants (both
versions are provided). Finally, subjects receive instructions for the elicitation of risk attitudes
(Experiment 2).

WELCOME TO THIS EXPERIMENT AND THANK YOU FOR YOUR 
PARTICIPATION 

 
 
General Instructions: 
 
You will participate  in 2 different experiments  today. Please stop  talking  to any other participant of 
this experiment from now on until the end of this session.   In each of the two experiments, you will 
have  to make certain decisions and may earn an appreciable amount of money. Your earnings will 
depend upon several factors: on your decisions, on the decisions of other participants, and on random 
components, i.e. chance. The following instructions explain how your earnings will be determined. 
 
The experimental currency is denoted Taler. In addition to your Taler earnings in experiments 1 and 
2, you receive 3 EURO show‐up  fee. You may  increase your Taler earnings  in experiments 1 and 2, 
where 2 Taler equal 1 Euro‐Cent, i.e.  
 

200 Taler correspond to 1 Euro. 
 
At the end of this experimental session your Taler earnings will be converted  into Euro and paid to 
you in cash. 
 
Before  the  experimental  session  starts,  you  receive  a  card with  your  participant  number. All  your 
decisions in this experiment will be entered in a mask on the computer, the same holds for all other 
participants  of  the  experiment.  In  addition,  the  computer will  determine  the  random  components 
which are needed in some of the experiments. All data collected in this experiment will be matched to 
your participant number, not to your name or student number. Your participant number will also be 
used for payment of your earnings at the end of the experimental session. Therefore, your decisions 
and the information provided in the experiments are completely anonymous; neither the experimenter 
nor anybody else can match these data to your identity. 
 
We will start with experiment 1, followed by experiment 2. The instructions for experiment 2 will only 
be distributed right before this experiment starts, i.e. subsequent to experiment 1.  
 
You will receive your earnings in cash at the end of the experimental session. 
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Experiment 1   [Treatments LLLL and HHHH] 
 
Overall, there are 30 decision rounds with two stages each in Experiment 1. The course of events is the 
same in each decision round. You will be randomly and anonymously placed into a group of four 
participants in each round, and the identity of participants in your group changes with each decision 
round.  
 

Course of events in an arbitrary decision round 
All four participants of each group receive an endowment of 240 Taler at the beginning of a decision 
round. The endowment can be used to buy a certain amount of balls in two subsequent stages of a 
decision round. It is important to note that you receive one endowment only which must suffice to 
buy balls in both stages. The costs for the purchase of a ball are the same for all participants: 
Participants have to pay XXX Taler for each ball they buy in stage 1 or stage 2, i.e. 
 

1 ball    costs  XXX Taler 
2 balls  cost    XXX Taler 

               (and so on) 
 

When deciding how many balls you want to buy, you do not know the decision of other participants. 
Also, your decision is not revealed to any other participant.  
 

All interactions in the experiment are pair-wise. Assume that you are in one group with participant A, 
participant B, and participant C. Then, you interact with participant A in stage 1, while participants B 
and C simultaneously meet each other in the second stage 1 interaction. If you reach stage 2, you will 
interact either with participant B or C, depending on the outcome in the second stage 1 interaction. In 
stage 1, there are two ballot boxes: 
 

• all balls bought by you or participant A are placed in ballot box 1 
• all balls bought by participants B and C are placed in ballot box 2 

 

One ball is randomly drawn from each ballot box, and each ball drawn with the same probability. The 
two participants whose balls are drawn from ballot box 1 and 2, respectively, reach stage 2; the 
decision round is over for the other two participants (whose balls were not drawn), i.e. they drop out 
from this decision round. Any participant has to pay the balls he or she bought in stage 1, whether or 
not he/she reached stage 2. The respective amount is deducted from the endowment.  
 

The two participants who reached stage 2 do again buy a certain number of balls, using whatever 
remains from the endowment they received after costs for balls in stage 1 were deducted. The balls are 
then placed into ballot box 3. One ball is randomly drawn from ballot box 3. The participant whose 
ball is drawn receives a prize of 240 Taler. The other participants do not receive any prize in this 
decision round. Independent of whether or not a participant receives the prize, he/she does always 
have to pay for the balls bought in stage 2. 
 

Let's take a closer look at the random draw of balls from ballot boxes. Assume, for example, that all 
balls which you bought are green colored, and that you interact with participant A in stage 1. Then, 
the probability that one of your balls is drawn (such that you make it to stage 2) satisfies 
 

𝐩𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲(𝐠𝐫𝐞𝐞𝐧 𝐛𝐚𝐥𝐥 𝐢𝐬 𝐝𝐫𝐚𝐰𝐧) =
# 𝐠𝐫𝐞𝐞𝐧 𝐛𝐚𝐥𝐥𝐬

# 𝐠𝐫𝐞𝐞𝐧 𝐛𝐚𝐥𝐥𝐬 + # 𝐛𝐚𝐥𝐥𝐬 𝐛𝐲 𝐩𝐚𝐫𝐭𝐢𝐜𝐢𝐩𝐚𝐧𝐭 𝐀
 

 

where # is short for number. The same probability rule does also hold for other participants in your 
group. Consequently, the probability that one of your balls in drawn is higher 

• the more balls you purchased 
• the less balls the other participant with whom you interact purchased. 

 

The random draw is simulated by the computer according to the procedures outlined above. If both 
participants of a pairing choose to buy zero balls, each participant wins with a probability of 50%.  
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Your Payoff 
Assume that you bought "X1" balls in stage 1, and that you buy "X2" balls whenever you reach stage 2. 
Then, there are three possibilities for your payoff: 
 

1) None of your balls is drawn in stage 1 

       𝐘𝐨𝐮𝐫 𝐏𝐚𝐲𝐨𝐟𝐟 = 𝐞𝐧𝐝𝐨𝐰𝐦𝐞𝐧𝐭     −  𝐗𝟏 ∗ 𝐗𝐗𝐗 𝐓𝐚𝐥𝐞𝐫       
                                   = 𝟐𝟒𝟎 𝐓𝐚𝐥𝐞𝐫          − 𝐗𝟏 ∗  𝐗𝐗𝐗 𝐓𝐚𝐥𝐞𝐫        

 

2) one of your balls is drawn from the ballot box in stage 1; in stage 2, none of your balls is drawn 
       𝐘𝐨𝐮𝐫 𝐏𝐚𝐲𝐨𝐟𝐟 = 𝐞𝐧𝐝𝐨𝐰𝐦𝐞𝐧𝐭     −  𝐗𝟏 ∗ 𝐗𝐗𝐗 𝐓𝐚𝐥𝐞𝐫 −  𝐗𝟐 ∗  𝐗𝐗𝐗 𝐓𝐚𝐥𝐞𝐫       
                                   = 𝟐𝟒𝟎 𝐓𝐚𝐥𝐞𝐫          − 𝐗𝟏 ∗  𝐗𝐗𝐗 𝐓𝐚𝐥𝐞𝐫  −  𝐗𝟐 ∗ 𝐗𝐗𝐗 𝐓𝐚𝐥𝐞𝐫      

 
3) one of your balls is drawn from the ballot box in stage 1; also, one of your balls is drawn in stage 2 
       𝐘𝐨𝐮𝐫 𝐏𝐚𝐲𝐨𝐟𝐟 = 𝐞𝐧𝐝𝐨𝐰𝐦𝐞𝐧𝐭     −  𝐗𝟏 ∗ 𝐗𝐗𝐗 𝐓𝐚𝐥𝐞𝐫 −  𝐗𝟐 ∗  𝐗𝐗𝐗 𝐓𝐚𝐥𝐞𝐫  +  𝐩𝐫𝐢𝐳𝐞     
                                   = 𝟐𝟒𝟎 𝐓𝐚𝐥𝐞𝐫          − 𝐗𝟏 ∗  𝐗𝐗𝐗 𝐓𝐚𝐥𝐞𝐫 −  𝐗𝟐 ∗ 𝐗𝐗𝐗 𝐓𝐚𝐥𝐞𝐫   + 𝟐𝟒𝟎 𝐓𝐚𝐥𝐞𝐫 
 

Therefore, your payoff is determined by the following components: by the number of balls you buy in 
stage 1 ("X1"); by the number of balls you buy in stage 2 ("X2") if you reach it; by up to two random 
draws (one of your balls is drawn/not drawn in stage 1 and potentially stage 2). The same holds for 
any other participants of the experiment.  
 
Information:  
 

• After you made your decision in stage 1, you are informed whether or not you can participate 
in stage 2, i.e. whether or not one of your balls was drawn from ballot box 1. 

• If you did not reach stage 2, you are informed about how many balls participant A bought in 
stage 1.  
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• If you reach stage 2, you receive information about the remaining endowment (after costs for 
the purchase in stage 1 are deducted. 

• After you made your decision in stage 2, you learn whether or not one of your balls was 
drawn from ballot box 3 and how many balls the participants who you met in stages 1 and 2, 
respectively, bought. Further, you learn your payoff for the respective decision round. 

 
Decision: In each of the 30 decision rounds you have to decide how many balls you want to buy in 
stage 1. If you reach stage 2, you face a similar decision in stage 2. In both cases, you have to enter a 
number into a field on the computer screen. An example of the decision screen in stage 1 is shown 
below.  
 

 
 

Your Total Payoff: Four out of 30 decision rounds are paid. These rounds are randomly determined, 
i.e., the probability that some decision round is paid is identical ex-ante for all 30 decision rounds. You 
will receive the sum of payoffs for the respective decision rounds. 
 
Remember: 
You receive an endowment of 240 Taler at the beginning of each decision round and have to decide 
how many balls you want to buy in stage 1; if you reach stage 2, you have to decide again. Overall, 
there are three additional participants in each group who face the same problem. The identity of these 
participants is randomly determined in each decision round. Every participant has to pay XXX Taler 
for each ball he/she buys in stage 1 or stage 2. 
 
 
If you have any questions, please raise your hand now! 
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Experiment 1   [Treatments LLHH and LHLH]  
 

Overall, there are 30 decision rounds with two stages each in Experiment 1. The course of events is the 
same in each decision round. You will be randomly and anonymously placed into a group of four 
participants in each round, and the identity of participants in your group changes with each decision 
round.  
 

Course of events in an arbitrary decision round 
All four participants of each group receive an endowment of 240 Taler at the beginning of a decision 
round. The endowment can be used to buy a certain amount of balls in two subsequent stages of a 
decision round. It is important to note that you receive one endowment only which must suffice to 
buy balls in both stages. The costs for the purchase of a ball are not the same for all participants: 
 

In each decision round, there are two participants with high costs (Type H), and two with low costs 
(Type L). You will be informed about your player type on the computer screen right before the start of 
Experiment 1. It holds both for you as well as for all other participants of this experiment that your 
player type does not change across decision rounds! 
 
Participants with high costs (Type H) have to pay 1.50 Taler for each ball they buy on stage 1 or 
stage 2:  

1 ball    costs  1.50 Taler 
2 balls  cost    3.00 Taler 

               (and so on) 
 

Participants with low costs (Type L) have to pay 1.00 Taler for each ball they buy on stage 1 or stage 2: 
i.e.  

1 ball    costs  1.00 Taler 
2 balls  cost    2.00 Taler 

               (and so on) 
 
 

Apart from the aforementioned cost differences, there is no further difference between the two player 
types. 
 

When deciding how many balls you want to buy, you do not know the decision of other participants. 
Also, your decision is not revealed to any other participant.  
 

All interactions in the experiment are pair-wise. Assume that you are in one group with participant A, 
participant B, and participant C. Then, you interact with participant A in stage 1, while participants B 
and C simultaneously meet each other in the second stage 1 interaction. If you reach stage 2, you will 
interact either with participant B or C, depending on the outcome in the second stage 1 interaction. In 
stage 1, there are two ballot boxes: 
 

• all balls bought by you or participant A are placed in ballot box 1 
• all balls bought by participants B and C are placed in ballot box 2 

 

One ball is randomly drawn from each ballot box, and each ball drawn with the same probability. The 
two participants whose balls are drawn from ballot box 1 and 2, respectively, reach stage 2; the 
decision round is over for the other two participants (whose balls were not drawn), i.e. they drop out 
from this decision round. Any participant has to pay the balls he or she bought in stage 1, whether or 
not he/she reached stage 2. The respective amount is deducted from the endowment.  
 

The two participants who reached stage 2 do again buy a certain number of balls, using whatever 
remains from the endowment they received after costs for balls in stage 1 were deducted. The balls are 
then placed into ballot box 3. One ball is randomly drawn from ballot box 3. The participant whose 
ball is drawn receives a prize of 240 Taler. The other participants do not receive any prize in this 
decision round. Independent of whether or not a participant receives the prize, he/she does always 
have to pay for the balls bought in stage 2. 
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Let's take a closer look at the random draw of balls from ballot boxes. Assume, for example, that all 
balls which you bought are green colored, and that you interact with participant A in stage 1. Then, 
the probability that one of your balls is drawn (such that you make it to stage 2) satisfies 
 

𝐩𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲(𝐠𝐫𝐞𝐞𝐧 𝐛𝐚𝐥𝐥 𝐢𝐬 𝐝𝐫𝐚𝐰𝐧) =
# 𝐠𝐫𝐞𝐞𝐧 𝐛𝐚𝐥𝐥𝐬

# 𝐠𝐫𝐞𝐞𝐧 𝐛𝐚𝐥𝐥𝐬 + # 𝐛𝐚𝐥𝐥𝐬 𝐛𝐲 𝐩𝐚𝐫𝐭𝐢𝐜𝐢𝐩𝐚𝐧𝐭 𝐀
 

 

where # is short for number. The same probability rule does also hold for other participants in your 
group. Consequently, the probability that one of your balls in drawn is higher 

• the more balls you purchased 
• the less balls the other participant with whom you interact purchased. 

 

The random draw is simulated by the computer according to the procedures outlined above. If both 
participants of a pairing choose to buy zero balls, each participant wins with a probability of 50%.  
 

 
 
Your Payoff 
Assume that you bought "X1" balls in stage 1, and that you buy "X2" balls whenever you reach stage 2. 
Then, there are three possibilities for your payoff: 
 

1) None of your balls is drawn in stage 1 

       𝐘𝐨𝐮𝐫 𝐏𝐚𝐲𝐨𝐟𝐟 = 𝐞𝐧𝐝𝐨𝐰𝐦𝐞𝐧𝐭     −  𝐗𝟏 ∗ 𝐲𝐨𝐮𝐫 𝐜𝐨𝐬𝐭/𝐛𝐚𝐥𝐥       
                                   = 𝟐𝟒𝟎 𝐓𝐚𝐥𝐞𝐫          − 𝐗𝟏 ∗  𝐲𝐨𝐮𝐫 𝐜𝐨𝐬𝐭/𝐛𝐚𝐥𝐥        

 

2) one of your balls is drawn from the ballot box in stage 1; in stage 2, none of your balls is drawn 
       𝐘𝐨𝐮𝐫 𝐏𝐚𝐲𝐨𝐟𝐟 = 𝐞𝐧𝐝𝐨𝐰𝐦𝐞𝐧𝐭     −  𝐗𝟏 ∗ 𝐲𝐨𝐮𝐫 𝐜𝐨𝐬𝐭/𝐛𝐚𝐥𝐥 −  𝐗𝟐 ∗  𝐲𝐨𝐮𝐫 𝐜𝐨𝐬𝐭/𝐛𝐚𝐥𝐥     
                                  = 𝟐𝟒𝟎 𝐓𝐚𝐥𝐞𝐫           − 𝐗𝟏 ∗  𝐲𝐨𝐮𝐫 𝐜𝐨𝐬𝐭/𝐛𝐚𝐥𝐥  −  𝐗𝟐 ∗ 𝐲𝐨𝐮𝐫 𝐜𝐨𝐬𝐭/𝐛𝐚𝐥𝐥  
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3) one of your balls is drawn from the ballot box in stage 1; also, one of your balls is drawn in stage 2 
       𝐘𝐨𝐮𝐫 𝐏𝐚𝐲𝐨𝐟𝐟 = 𝐞𝐧𝐝𝐨𝐰𝐦𝐞𝐧𝐭     −  𝐗𝟏 ∗ 𝐲𝐨𝐮𝐫 𝐜𝐨𝐬𝐭/𝐛𝐚𝐥𝐥 −  𝐗𝟐 ∗  𝐲𝐨𝐮𝐫 𝐜𝐨𝐬𝐭/𝐛𝐚𝐥𝐥   +    𝐩𝐫𝐢𝐳𝐞     
                                   = 𝟐𝟒𝟎 𝐓𝐚𝐥𝐞𝐫          − 𝐗𝟏 ∗  𝐲𝐨𝐮𝐫 𝐜𝐨𝐬𝐭/𝐛𝐚𝐥𝐥 −  𝐗𝟐 ∗ 𝐲𝐨𝐮𝐫 𝐜𝐨𝐬𝐭/𝐛𝐚𝐥𝐥   +       𝟐𝟒𝟎 𝐓𝐚𝐥𝐞𝐫 
 

 
Therefore, your payoff is determined by the following components: by the number of balls you buy in 
stage 1 ("X1"); by the number of balls you buy in stage 2 ("X2") if you reach it; by your player type, i.e., 
by your cost per ball; by up to two random draws (one of your balls is drawn/not drawn in stage 1 
and potentially stage 2). The same holds for any other participants of the experiment. Note, however, 
that the costs per ball differ across participants 
 
Information: Prior to the first decision round, you are informed about your own type. Your type (your 
cost per ball) remain unchanged in all decision rounds. 
 

• Before you make your first decision in stage 1, you are informed about the type of 
participant A, i.e., you know the type of your opponent. 

• After you made your decision in stage 1, you are informed whether or not you can participate 
in stage 2, i.e. whether or not one of your balls was drawn from ballot box 1. 

• If you did not reach stage 2, you are informed about how many balls participant A bought in 
stage 1.  

• If you reach stage 2, you receive information about the remaining endowment (after costs for 
the purchase in stage 1 are deducted), and you are informed about the type of your opponent 
in stage 2. 

• After you made your decision in stage 2, you learn whether or not one of your balls was 
drawn from ballot box 3 and how many balls the participants who you met in stages 1 and 2, 
respectively, bought. Further, you learn your payoff for the respective decision round. 

 
Decision: In each of the 30 decision rounds you have to decide how many balls you want to buy in 
stage 1. If you reach stage 2, you face a similar decision in stage 2. In both cases, you have to enter a 
number into a field on the computer screen. An example of the decision screen in stage 1 is shown 
below. [same picture as in instructions for homogeneous treatments]  
 

 
Your Total Payoff: Four out of 30 decision rounds are paid. These rounds are randomly determined, 
i.e., the probability that some decision round is paid is identical ex-ante for all 30 decision rounds. You 
will receive the sum of payoffs for the respective decision rounds. 
 
Remember: 
You receive an endowment of 240 Taler at the beginning of each decision round and have to decide 
how many balls you want to buy in stage 1; if you reach stage 2, you have to decide again. Overall, 
there are three additional participants in each group who face the same problem. The identity of these 
participants is randomly determined in each decision round. Two participants are of Type H (cost per 
ball =1.50 Taler), and two participants are of Type L (cost per ball = 1.00 Taler).   
 
If you have any questions, please raise your hand now! 
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Experiment 2  
 
In Experiment 2, you will face 21 decisions. Each decision is a choice between option 1 and option 2. 
Each  choice affects you own payoff, but not  the payoff of any other participant of  the  experiment. 
When choosing option 1, your payoff is affected by chance, while option 2 implies a certain payment. 
You may be asked, for example, whether you prefer option 1, in which you receive either 400 Taler or 
0 Taler with a 50% chance, or if you rather like option 2, which implies a sure payoff of c Taler. In the 
experiment, you will have to choose the option you prefer. This decision problem would be presented 
to you as follows: 
 

Option 1  Option 2    Your Choice 
 

with 50% probability   400 Taler  
with 50% probability       0 Taler 

with certainty c Taler        Option 1                             Option 2 

 
As previously mentioned, you will  encounter  21 decision problems of  this kind. Your payoff  from 
Experiment 2 is determined as follows: 
At the end of all experiments, one of the 21 decision problems will be randomly chosen for each expe‐
rimental participant. The option you chose in this decision problem determines your payoff. Assume, 
for example,  that  the previous example  is chosen  for you, and  that you preferred option 1 over op‐
tion 2. Then, you would receive 400 Taler or 0 Taler, each with a probability of 50%. Whether you re‐
ceive 400 Taler or 0 Taler is determined by a simulated random draw of the computer.  
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