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Abstract

This paper proposes an original three-part sequential testing pro-
cedure (STP), with which to test for contagion using a multivariate
model. First, it identifies structural breaks in the volatility of a given
set of countries. Then a structural break test is applied to the correla-
tion matrix to identify and date the potential contagion mechanism. As
a third element, the STP tests for the distinctiveness of the break dates
previously found. Compared to traditional contagion tests in a bivariate
set-up, the STP has high testing power and is able to locate the dates
of contagion more precisely. Monte Carlo simulations underline the
importance of separating variance and correlation break testing, the en-
dogenous dating of the breakpoints and the usage of multi-dimensional
data. The procedure is applied for the 1997 Asian Financial Crisis,
revealing the chronological order of the crisis events.
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1 Introduction

A vast empirical literature describes the development of tests to evaluate,
whether an unexpected negative shock in a particular country/market is prop-
agating to other countries/markets. Many econometric strategies have been
proposed to test for this feature.1 Among those a popular approach, often
labeled as shift-contagion, consists of testing, whether the correlation between
countries/markets significantly increases during a crisis. A time varying corre-
lation would support the contingent-crisis theory, for which multiple equilibria
based on investor psychology, endogenous liquidity shocks causing a portfolio
recomposition and/or political disturbances affecting the exchange rate regime
lead to sudden increases in the link between countries/markrets during crises.
On the contrary, according to the non-crisis-contingent theories, the propaga-
tion of shocks is exclusively the continuation of existing (trade and/or financial)
linkages. Since the seminal papers of King and Wadhwani (1990), Calvo and
Mendoza (2000) and Baig and Goldfajn (1999), who recursively calculate the
correlation between two countries’ stock market indices and detect structural
break(s), the empirical literature has offered more elaborate methodologies to
test for contagion; see Dungey et al. (2005) for a literature survey. A key con-
tribution to this literature is Forbes and Rigobon (2002) (hereafter FR), where
it is shown that contagion is over-accepted, if one ignore the changes that hap-
pen to the variance when testing for changes in correlation. Consequently, the
authors propose a correlation break test, which controls for potential volatility
changes, and found much less support for shock transmission. Nevertheless,
several shortcomings can be addressed to FR.

First, FR consider crisis dating as exogenous. In other words, the break
date is not obtained using the data but imposed by the authors. Several proce-
dures enable endogenous break date determination: Butler and Joaquin (2002)
analyze extreme left-tail events and their characteristics paving the way for an
extreme value theory approach of contagion (see Hartmann et al., 2004). Alter-
natively, Eichengreen et al. (1995, 1996) consider a dichotomous classification

1Logit models in Bae et al. (2003) and Boyson et al. (2010), cointegration and common
cycles analyses in Garcia Pascual (2003) and Candelon et al. (2005). Rodriguez (2007)
applies different kinds of copulas to capture breaks in the interdependence of financial data.
Extreme value models address the dependence in the tails of a distribution, as in Bae et al.
(2003), Chan-Lau et al. (2004) or Pesaran and Pick (2007).
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between crisis and non crisis periods, including contagion as an explicative
exogenous variable. Favero and Giavazzi (2002) use also dummy variables to
test for contagion. More recently, Candelon and Manner (2010) generalize
the Favero and Giavazzi (2002) dummy approach and rely on structural break
tests for correlation. It is interesting to notice that when the crisis dates are
not imposed, contagion is supported most of the time and the location of the
crisis is somewhat different from FR.

Second, FR assume that volatility and correlation breaks are simultaneous,
occurring both at the beginning of the crisis. Candelon and Manner (2010)
challenge this assumption. Using a copula based approach, they observe that
during the Asian crisis, variance breaks have preceded correlation shifts in
most cases. The economic motivation behind this stylized fact is that the
transmission of the shocks is not immediate and takes place only when mar-
kets are already stressed. Hence, when analyzing the conditional correlation,
purged from variance movements, one may actually observe a decrease in the
dependence between markets/countries at the edge of the crisis. It then takes
a certain amount of time until the conditional correlation increases beyond its
initial value. Assuming simultaneity between volatility and correlation shifts
would lead to a mix up of these two effects and thus to an underestimation
of the presence of contagion. Testing for the distinctiveness between volatility
and correlation breaks is thus crucial.

Third, FR exclusively analyze pairwise correlations. As noticed by Dungey
et al. (2004), a multivariate approach is necessary to correctly apprehend con-
tagion. Indeed a shock that originated in country/market i does not neces-
sarily impact country/market j directly, but may indirectly transit via coun-
try/market k. In such cases, a bivariate analysis would not detect existing
contagion. Furthermore, from a purely econometric perspective, Bai and Per-
ron (1998) proved that the date of a break is more precisely detected and
estimated in a multivariate system rather than in a univariate regression. Ad-
ditional cross-sectional observations provide significant extra information for
the detection of structural breaks (see Bai et al., 1998, Groen et al., 2011 and
Qu and Perron, 2007).

This paper proposes to solve the three previous issues usually encountered
in contagion tests. Relying on the theory developed in Qu and Perron (2007),
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a sequential testing procedure is proposed to test for structural breaks in the
covariance matrix of asset (market) returns. The covariance matrix is decom-
posed in order to separately evaluate variances and correlation coefficients,
and test for breaks in variance and correlation. Furthermore, the procedure
tests whether the inferred breaks are distinct from one another, employing the
methodology developed in Perron and Oka (2011). The sequential procedure
is performed in a multivariate dynamic set-up (of dimension larger than 2) in
order to obtain more precise estimates of the break dates and thus to better
evaluate the presence of contagion.

More precisely, in a first step the Qu and Perron (2007) test is imple-
mented to test for structural changes in the variance within a large set of
countries/market. Then, conditional on the estimated breaks in variance,
structural break tests are applied to the correlation matrix to identify and
date potential contagion. As a third element, we test for distinctiveness of the
identified variance and correlation breaks, finally accepting (or rejecting) the
presence of contagion and describing the chronology of events.

The asymptotic properties of the sequential testing procedure (STP here-
after) are reviewed and Monte-Carlo experiments confirm that considering
large multivariate systems improves the quality of the estimated break dates.
To illustrate our new sequential contagion test, we consider the Asian 1997
crisis. The results of our analysis clearly confirm the presence of contagion in
this period, but they also offer new insights into the timing of the events.

The paper is structured as follows. Section 2 motivates and presents the
procedure of the sequential testing procedure in a multivariate set-up. Sec-
tion 3 presents the associated tests as well as their asymptotic distributions.
The Monte Carlo simulations in Section 4 illustrate some advantages of ap-
plying our procedure, before Section 5 describes the empirical application of
our method for the case of the 1997 Asian financial crisis. Conclusions can be
found in Section 6.
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2 Testing for contagion via Sequential Testing
Procedure (STP)

2.1 The model

Consider a vector Yt of n assets (market) returns for t = 1, . . . , T and its
stationary VAR(r) representation

Γ(L)Yt = εt. (1)

Γ(L) is a lag polynomial with roots lying outside the unit circle to ensure
stationarity. As we consider asset returns on a daily basis one can expect
this simple model to be sufficient to describe the conditional mean. If nec-
essary, exogenous regressors can be added to the conditional mean equation
to encounter for systemic effects. The n-dimensional vector of error term
εt = [ε1,t, ε2,t, . . . , εn,t]′ follows some (unknown) distribution with covariance
matrix Σ. Technically, assumptions A4 and A5 of Qu and Perron (2007) are
assumed to hold for the innovations. They are mild and allow for the typical
features observed in financial returns, in particular conditional heteroscedasti-
city and autocorrelation. The assumptions can also be found in the appendix.

Shift-contagion is detected when the correlation between markets increases
beyond its pre-crisis level. Since contemporaneous dependence is not part of
the conditional mean model, it is captured by the covariance matrix Σ of the
error term εt. Thus, testing for contagion boils down to test for an increase
in the dependence among the residuals ε̂t. However, as noticed by Forbes
and Rigobon (2002), a change in the covariance matrix Σ does not allow for
the identification of contagion. The origin of a shift in a covariance term
σij = σiρijσj would be unclear, as it could result from an increase in the
correlation but as well as from a rise in the variance. Therefore we decompose
the covariance matrix as

Σ = SRS. (2)

R is the matrix of n(n − 1)/2 different correlation coefficients ρij and S is a
diagonal matrix containing n standard deviations σi, for i, j = 1, . . . , n.

A test for contagion consists of detecting an increase in the elements of the
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correlation matrix R, which measure interdependence only. However, during
a financial crisis some elements of the S matrix are likely to increase due to
increased market risk. Besides, there is no a priori reason to believe that
the outbreak of a crisis in multiple countries occurs simultaneously, but that
spillovers occur in a sequential manner. In fact, it is likely that these spillovers
may occur several periods after the initial outbreak of the crisis. Therefore
assuming the concordance between shifts in volatility and dependence is overly
restrictive and can lead to imprecise or even biased estimates of the unknown
time of structural changes. In our approach, breaks in volatility and correlation
are not assumed to be simultaneous, but, instead, we test whether this is
actually that case.

2.2 Contagion in a multivariate model

Given a particular set of countries under study, several scenarios of contagion
can be depicted. For example, there could be a single ground zero country
that initially crashes and there could be subsequent spillovers to countries
that are close (geographically and/or economically). In that case, correlations
between the initial crisis country and other countries would increase. However,
some of the countries under study could remain unaffected by the crisis, so
correlations between the original country and those countries would remain
constant (or may even decrease). Alternatively, contagion could occur between
all countries meaning that the entire correlation matrix changes. Apart from
dependence changes, we also expect structural changes in the volatilities for
some or all countries. Therefore, instability of the components of the covariance
matrix can occur in several forms. Examples include (i) the classic case of a
simultaneous break in all covariance parameters, (ii) a break in all covariance
parameters at distinct times, (iii) the coincidence of break dates for certain
subsets of parameters, or (iv) instability that is partial, i.e., affecting some
parameters while other parameters remain stable. In fact, any combination of
the mentioned examples is possible in financial data and can be detected by
our procedure.

In terms of the model presented above, we assume that its conditional mean
process is stable, but that the error distribution is split into m+ 1 asymptot-
ically distinct regimes. To simplify the presentation, we set the number of
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breaks to at most a single break in each variance σ2
i , at individual dates ki,

and a single break in a set of correlation coefficients, at date kρ.2 This covers
case (ii) above, which is the least restrictive scenario, involving crisis outbreaks
in all markets and a contagion event between all markets or a subset of them.
The ordering of the breaks is not assumed to be known, so that a superscript
(d) identifies the d-th regime and the d-th break date (regime end date) in
the set. With break fractions λ(d) = k(d)/T , λ(0) = 0, λ(m+1) = 1, the error
distribution is then given by εt ∼ (0,Σ(d)), for [λ(d−1)T ] + 1 ≤ t ≤ [λ(d)T ], for
d = 1, . . . ,m + 1. Note that, in our setting, there is a most one break date
in each variance parameter and in the correlation matrix with the possibility
that some break points are common, so the total number of breaks m ≤ n+ 1,
where n is the number of countries under study.

Thus, our aim is to test for multiple breakpoints in distinct (sets of) pa-
rameters in the covariance matrix of the error distribution of a multivariate
regression model. The methodology and theory developed in Qu and Perron
(2007) applies directly to our problem. In fact, their approach is much more
general, in the sense that their results allow testing for multiple breakpoints in
the regression parameters and in the covariance matrix. We suggest perform-
ing the test for structural breaks in the covariance matrix in two steps. In a
first step, we perform univariate tests for a breakpoint in the volatility of each
series, whereas in the second step we test, conditional on the change points
in volatility, for a structural break in some or all correlation coefficients. The
main reason for performing the test in two steps is that it is computationally
very demanding to search for n+1 distinct breakpoints, which, for dimensions
beyond two or three and reasonably large sample sizes can be a difficult task.

Case (ii), the fully unrestricted model, is the initially tested scenario of the
sequential testing procedure (STP). However, if multiple parameters can be
assumed to share a common breakpoint, it is beneficial to use that restriction.
Such co-break restrictions improve the detection of breakpoints because new
sources of instability information enhance the break signal, leading to higher
power of the breakpoint tests and more precise estimation of the break location

2In principle it is straightforward to extend the test for multiple breakpoints in volatility
and in the correlation matrix to allow for the possibility that contagion does not affect all
countries simultaneously, but happens in multiple waves. However, this can also be achieved
by separate contagion tests for a number of subsets of the countries under analysis.
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as shown in Bai et al. (1998) and Groen et al. (2011). Thus, whenever possi-
ble, the tests are performed in multivariate systems. Since no prior knowledge
about the break dates is assumed, the required restrictions have to be inferred
from the data and our sequential procedure will allow for the identification of
common break dates. Initially, the separate estimation of change points may
produce dates that lie very close to each other. Therefore, the test for common
breaks proposed in Perron and Oka (2011) is performed to test for suitable
restrictions, implying scenarios (iii) or (i). Furthermore, the results of Qu and
Perron (2007) show that the precision of the break date estimate can be fur-
ther improved by adding series to the systems whose parameters are invariant
across regimes, as additional stable series provide a further source of contrast
between stability and instability. For this scenario (iv), the parameters must
be restricted from breaking to keep the degrees-of-freedom unchanged.

2.3 The sequential testing procedure

Our STP exploits multidimensional data, potential restrictions, and delivers
estimates of break dates in variances and correlations as follows:

1. Variance break tests: Test for a break in the variance σ2
i in every residual

series ε̂i for i = 1, . . . , n individually. If stability is rejected, obtain
regime-specific variance estimates and a break date estimate k̂i.

2. Distinctiveness tests: Test the distinctiveness of break dates for all cases,
in which break dates ki have been found to lie close together3 assuming a
constant correlation matrix. If the null hypothesis of break coincidence
cannot be rejected, the tested variance breaks are assumed to share the
newly estimated common break date k̂(d). New regime-specific variance
estimates evolve. Assume that m ≤ n distinct break dates in the volatil-
ities are identified.

3. Standardization: Clear each series with a variance break from its uncon-
ditional heteroscedasticity by dividing the residual data by the estimated

3There is no rule which difference in dates makes them lie “close together”, Perron and
Oka (2011), who propose a test for the null that one or more parameters share a common
break, offer no advise. We encourage the testing whenever the confidence intervals for the
estimated breakpoints overlap.
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regime-specific standard deviations. This produces standardized residu-
als ε̃it = ε̂it/σ̂

(−)
i for t = 1, . . . , k̂i, and ε̃it = ε̂it/σ̂

(+)
i for t = k̂i + 1, . . . , T .

4. Correlation break test: Test the whole system of standardized residuals
ε̃ for a break in a selected set of correlations. If stability is rejected,
contagion is inferred to occur at the break date k̂ρ.

5. Distinctiveness test: If the break in correlation coefficients has been esti-
mated to lie close to one or more variance breaks, test the distinctiveness
of the breaks. If coincidence is not rejected, a new common break date
estimate is obtained along with parameter estimates.

The variance break tests of Step 1 evaluate the null hypothesis of stable
unconditional variances against the alternative of an unknown breakpoint, ki,
with resulting pre- and post-break variances σ2(−)

i and σ2(+)
i :

H0 : σ2
i ≡ σ2

i,1 = σ2
i,2 = . . . = σ2

i,T .

HA : σ2(−)
i ≡ σ2

i,1 = . . . = σ2
i,ki
6= σ2

i,ki+1 = . . . = σ2
i,T ≡ σ

2(+)
i .

The correlation break test of Step 4 needs the specification of correla-
tion coefficients allowed to break. The user-given specification is incorporated
through an n × n selection matrix V of logical variables, so that V ◦ R only
contains correlation coefficients that are free to break, i.e., V ◦R = Rf , whereas
Rr = R−Rf defines the set of correlation coefficients restricted from breaking.
Here ◦ denotes the Hadamard product of element-by-element multiplication of
two matrices. For example, if in a system of n = 4 time series the correlations
between series 1-3 are tested for a break, the matrices are given as

V =


0 1 1 0
1 0 1 0
1 1 0 0
0 0 0 0

 , R
f =


0 ρ12 ρ13 0
ρ12 0 ρ23 0
ρ13 ρ23 0 0
0 0 0 0

 , R
r =


1 0 0 ρ14

0 1 0 ρ24

0 0 1 ρ34

ρ14 ρ24 ρ34 1

 .
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With an unknown break date, kρ, the two hypotheses of a break in specified
correlation coefficients are:

H0 : Rf
0 ≡ Rf

1 = Rf
2 = . . . = Rf

T ,

Rr ≡ Rr
1 = Rr

2 = . . . = Rr
T ,

and S(1)
1 = S

(1)
2 = . . . 6= . . . = S

(d)
k(d) 6= S

(d+1)
k(d)+1 = . . . 6= . . . = S

(m)
T .

HA : Rf(−)
A ≡ Rf

1 = Rf
2 = . . . = Rf

kρ
6= Rf

kρ+1 = . . . = Rf
T ≡ R

f(+)
A ,

Rr ≡ Rr
1 = Rr

2 = . . . = Rr
T ,

and S(1)
1 = S

(1)
2 = . . . 6= . . . = S

(d)
k(d) 6= S

(d+1)
k(d)+1 = . . . 6= . . . = S

(m)
T .

Thus, we are testing for a structural break in Rf , conditional on the stability
of Rr and conditional on m ≤ n distinct breakpoints in the matrix of standard
deviations S.

In practice, one usually does not know a priori which elements of the cor-
relation matrix are subject to structural change. We suggest a preliminary
analysis with repeated tests for structural change, possibly based on bivariate
data to identify the final testing specification.

Structural breaks that accompany financial contagion may lie so close to-
gether that they are associated with the same regime d from the set of asymp-
totically distinct regimes d = 1, . . . ,m+1, as studied in Perron and Oka (2011).
For a specified set of at least two break dates k(d) = {ki, kj, . . .}, n(k(d)) ≥ 2,
the two hypotheses involved in testing for local break date distinctiveness are

H0 : k(d)
0 = ki = kj = . . . ,

HA : not H0. (3)

The test statistics used to evaluate the hypotheses stated above and their
asymptotic distributions are introduced in the next section. First, however,
let us provide an illustration of a potential crisis scenario that can be identified
using our procedure, illustrated in Table 1. Scenario (iii) of break coincidence
in a parameter subset is combined with scenario (iv) of partial parameter
instability. The crisis breaks out in market 1 first, which increases the variance
σ2

1. Market 3 enters a high volatility crisis state afterwards and finally market
2. The last variance break occurs together with contagion between the first
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σ
(1)
1 0 0 0
0 σ

(1)
2 0 0

0 0 σ
(1)
3 0

0 0 0 σ4


 1 ρ

(1)
12 ρ

(1)
13 ρ14

ρ
(1)
12 1 ρ

(1)
23 ρ24

ρ
(1)
13 ρ

(1)
23 1 ρ34

ρ14 ρ24 ρ34 1


σ

(1)
1 0 0 0
0 σ

(1)
2 0 0

0 0 σ
(1)
3 0

0 0 0 σ4

=

σ
2(1)
1 σ

(1)
12 σ

(1)
13 σ

(1)
14

σ
(1)
12 σ

2(1)
2 σ

(1)
23 σ

(1)
24

σ
(1)
13 σ

(1)
23 σ

2(1)
3 σ

(1)
34

σ
(1)
14 σ

(1)
24 σ

(1)
34 σ2

4

 = Σ(1)

Variance break in series 1σ
(2)
1 0 0 0
0 σ

(1)
2 0 0

0 0 σ
(1)
3 0

0 0 0 σ4


 1 ρ

(1)
12 ρ

(1)
13 ρ14

ρ
(1)
12 1 ρ

(1)
23 ρ24

ρ
(1)
13 ρ

(1)
23 1 ρ34

ρ14 ρ24 ρ34 1


σ

(2)
1 0 0 0
0 σ

(1)
2 0 0

0 0 σ
(1)
3 0

0 0 0 σ4

=


σ
2(2)
1 σ

(2)
12 σ

(2)
13 σ

(2)
14

σ
(2)
12 σ

2(1)
2 σ

(1)
23 σ

(1)
24

σ
(2)
13 σ

(1)
23 σ

2(1)
3 σ

(1)
34

σ
(2)
14 σ

(1)
24 σ

(1)
34 σ2

4

= Σ(2)

Variance break in series 3σ
(2)
1 0 0 0
0 σ

(1)
2 0 0

0 0 σ
(2)
3 0

0 0 0 σ4


 1 ρ

(1)
12 ρ

(1)
13 ρ14

ρ
(1)
12 1 ρ

(1)
23 ρ24

ρ
(1)
13 ρ

(1)
23 1 ρ34

ρ14 ρ24 ρ34 1


σ

(2)
1 0 0 0
0 σ

(1)
2 0 0

0 0 σ
(2)
3 0

0 0 0 σ4

=

σ

2(2)
1 σ

(2)
12 σ

(3)
13 σ

(2)
14

σ
(2)
12 σ

2(1)
2 σ

(2)
23 σ

(1)
24

σ
(3)
13 σ

(2)
23 σ

2(2)
3 σ

(2)
34

σ
(2)
14 σ

(1)
24 σ

(2)
34 σ2

4

= Σ(3)

Variance break in series 2 and correlation breaks between series 1, 2 and 3σ
(2)
1 0 0 0
0 σ

(2)
2 0 0

0 0 σ
(2)
3 0

0 0 0 σ4


 1 ρ

(2)
12 ρ

(2)
13 ρ14

ρ
(2)
12 1 ρ

(2)
23 ρ24

ρ
(2)
13 ρ

(2)
23 1 ρ34

ρ14 ρ24 ρ34 1


σ

(2)
1 0 0 0
0 σ

(2)
2 0 0

0 0 σ
(2)
3 0

0 0 0 σ4

=

σ

2(2)
1 σ

(3)
12 σ

(4)
13 σ

(2)
14

σ
(3)
12 σ

2(2)
2 σ

(3)
23 σ

(2)
24

σ
(4)
13 σ

(3)
23 σ

2(2)
3 σ

(2)
34

σ
(2)
14 σ

(2)
24 σ

(2)
34 σ2

4

= Σ(4)

Table 1: Example of crisis and contagion events resulting in four covariance matrix regimes Σ(d),
d = 1, . . . , 4. The left side of the term shows the decomposed covariance matrix, SRS = Σ. All
parameter changes are bold. Crisis breaks out in market 1 first, then in market 3 and reaches market
2 the last, while contagion occurs at the same time as the crisis outbreak in market 2. Market 4 stays
completely unaffected.

three markets, which means that the three correlation coefficients ρ12, ρ13 and
ρ23 shift to a higher value. Finally, the fourth market is not affected by the
crisis in any way, but still its covariance with the other markets changes. A test
that sought instability in, e.g., the covariance σ13 = σ1ρ13σ3 would produce a
biased break date estimate in-between the three distinct breaks. Instability of
σ13 may be caused by changes in either standard deviation and by a change in
correlation. A direct test on the covariance would not be able to identify the
source of instability.

Usually, such a scenario could be identified by a sequence of bivariate stabil-
ity tests. However, the presence of simultaneous breaks, and even the inclusion
of market 4, will result in a more powerful test and will lead to a more precise
dating of the break dates. Finally, a test of break date distinctiveness can
determine that the variance of series 2 and the correlations between series 1,
2 and 3 break simultaneously.
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3 Test statistics

All tests are based on (pseudo) likelihood ratio (LR) type statistics relying
on the multivariate normal distribution, as in Qu and Perron (2007). Note
that this does not mean that we assume a normal distribution or iid’ness
for the data. Deviations from normality are accounted for by the asymptotic
distribution of the results test statistics. Ignoring the irrelevant constant term,
the Gaussian log-likelihood for a sample of length T is given by

l(Σ) = −T2 log(|Σ|)− 1
2

T∑
t=1

ε′tΣ−1εt.

Break tests involve the maximization of the restricted log-likelihood func-
tion l0 with respect to a stable covariance matrix Σ0 and the maximization of
an unrestricted log-likelihood function lA with respect to pre- and a post-break
covariance matrices Σ(−) and Σ(+), respectively. The (unknown) break date k
splits the sample into two regimes, and denoting maximized function values
by an asterisk, we obtain:

l∗0 = max
Σ

l(Σ), (4)

l∗A(k) = max
Σ(−),Σ(+)

l(k,Σ(−),Σ(+))

= max
Σ(−),Σ(+)

−k2 log(|Σ(−)|)− 1
2

k∑
t=1

ε′t
(
Σ(−)

)−1
εt

− (T − k)
2 log(|Σ(+)|)− 1

2

T∑
t=k+1

ε′t
(
Σ(+)

)−1
εt. (5)

Break detection tests

The variance break testing of STP Step 1 is univariate, so that equation (2)
becomes Σ = σ2. The log-likelihood functions are thus univariate and are
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maximized with respect to the standard deviations, for i = 1, . . . , n.

l∗0 = max
σi

l(σi)

l∗A(ki) = max
σ

(−)
i ,σ

(+)
i

l(ki, σ(−)
i , σ

(+)
i ).

In Step 4 of the STP we look at the multivariate time series system as a
whole. Following Step 3, the test for a change in the correlcations is based
on the standardized residuals ε̃i that, by construction, have unit variance.
Hence, S = In and, with R = Rf + Rr, equation (2) becomes Σ = R. The
log-likelihood functions are then maximized with respect to the correlation
matrices:

l∗0 = max
R

l(R)

l∗A(kρ) = max
R(−),R(+)

l(kρ, R(−), R(+)).

The log-likelihood ratio statistics for a fixed breakpoint k is given by

LRBR(k) = 2 (l∗A(k)− l∗0) .

For testing a single (known) change point and assuming correct specification
of the model it follows that that LRBR(k) ∼ χ2(d), with the degrees of free-
dom equal to the number of parameters free to break. In our setting we do
not assume a correctly specified model and k is assumed to be unknown, so
the break dating is established endogenously. Consequently, the asymptotic
distribution of LRBR(k) is non-standard. Denote the set of sample dates that
can potentially exhibit the structural break as Tκ. The test statistic is then
given by the supremum of LRBR(k) over Tκ,

supLRBR = sup
k∈Tκ

LRBR(k). (6)

The most likely break date k̂ emerges from the highest LR statistic among Tκ.

k̂ = arg sup
k∈Tκ

LRBR(k). (7)
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In practice, the supremum is replaced by the maximum, in which case the
statistic is usually denoted as maxLRBR. An important manual setting con-
cerns the trimming of data samples with respect to the range of possible break
dates Tκ. Andrews (1993) shows that the maxLRBR statistic diverges to in-
finity at the edges of the sample, making it impossible for the test not to
reject the null hypothesis of stability. We adopt his suggested trimming of
the data by κ = 0.15 and obtain the interval of potential brake date choices
Tκ = [κT, (1− κ)T ].

The maximum LR statistic (6) has critical values according to Andrews
(2003) for normal data. Since we search for breaks in the elements of the
covariance matrix of non-normal data, using these critical values would lead
to size distortions, especially in small samples. Qu and Perron (2007) have
determined the limit distribution of the relevant test statistic under the null
hypothesis for more general data generating processes. In particular, the condi-
tional heteroscedasticity typically encountered in financial data is permitted,
as long as the generating process is of short memory with bounded fourth
moments. For a single breakpoint in the elements of the covariance matrix
selected by H, their results imply that

sup
k∈Tκ

LRBR(k) d−→ sup
π∈Π

Q(π, b), (8)

Q(π, b) = 1
2

(Bb(π)− πBb(1))′HΩH ′(Bb(π)− πBb(1))
π(1− π) .

Here, π = k/T , so that the interval Π denotes the set of possible break dates Tκ
scaled to the interval [0, 1]. Bb is a b-vector of independent Brownian motions
on [0, 1], resulting in the Brownian bridge Bb(π) − πBb(1). In practice, the
Brownian motion vectors must be simulated by partial sums of i.i.d. normal
random variables. The number b gives the total number of elements of the
covariance matrix Σ allowed to break under the alternative hypothesis.

H is a selection matrix that corresponds to those elements in Σ allowed to
change. Specifically, H has to be a full row rank matrix of dimension b × n2,
such that Hvec(Σ) is the b-dimensional vector of covariance elements allowed
to change. When significance of a hypothesized break must be assessed in
our STP, either only variances or only correlation coefficients will be free to
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shift.4 In Step 1 of the STP, when testing for univarite variance breakpoints,
b = 1 and H = 1. In Step 4 of the STP, the data consists of a multivariate
system of standardized residuals with Σ = R. For example, considering n = 4
and a hypothesized break in d = 3 correlation coefficients ρ12, ρ13 and ρ23 in
correspondence with our earlier example, it follows that

vec(R) = (1, ρ12, ρ13, ρ14, ρ21, 1, ρ23, . . . , 1)′,

H =



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0


,

Hvec(R) = (ρ12, ρ13, ρ21, ρ23, ρ31, ρ32)′.

Note that ρij = ρji, which implies that b = 2 · d = 6 equals twice the number
of distinct correlation coefficients allowed to change, as these appear twice on
the off-diagonal in Σ = R.

With the set of standardized residuals ε̃, let ξt = ε̃tε̃
′
t − In be an n × n

matrix for all t = 1, . . . , T . Further, vec(ξ) is a T × n2 matrix, where the
t-th row contains the n2 scaled products and cross-products of standardized
residuals at date t. Then Ω is the n2×n2 matrix Ω = V ar(vec(ξ)). According
to Qu and Perron (2007), the limit distribution (8) can be applied in our
case of conditionally heteroscedastic data and sequential testing, if a robust
estimator is used to estimate Ω. We propose the use of the covariance estimator
presented in Newey and West (1986). The critical values derived from the limit
distribution (8) are substantially larger than the ones described in Andrews
(2003) when applied to financial return series subject to volatility clustering.
The estimate for Ω is larger for leptokurtic residual distributions than under
normality, preventing size distortions due to conditional heteroscedasticity.

Finally, note that the sequential application of our tests is justified by
Theorem 6 in Qu and Perron (2007), which states that the distribution of a

4This is not to say that some breaks may turn out to simultaneously affect variances and
correlations, but the original break significance is analyzed separately.
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sequential break test is the same as given above in equation (8).

Break date distinctiveness tests

Next, the break detection results are processed to further investigate whether
a set of estimated breakpoints can be assumed to results from a common
breakpoint that ends regime d. The test evaluates, whether removing the
restriction of break simultaneity significantly increases the LR statistic

LRDI = max
k(d),Σ(−),Σ(+)

LRBR(k(d),Σ(−),Σ(+))− max
k

(d)
0 ,Σ(−)

0 ,Σ(+)
0

LRBR(k(d)
0 ,Σ(−)

0 ,Σ(+)
0 ).

(9)
The distinct break dates k(d) under the alternative hypothesis have already
been estimated in the break detection tests. The same holds for Σ(−) and Σ(+).
The common break date k(d)

0 under the null hypothesis has to be determined by
using the statistic in (7) under the restriction of a common break. Pre-break
and post-break covariance matrices result from equations (4) and (5).

In order to derive critical values, we perform the bootstrap simulations
suggested in Perron and Oka (2011). The limit distribution of LRDI in (9)
evolves as

CB∞(sg) = trA(sg)ξ(sg) + |sg|2 trA(sg)2, (10)

with

A(sg) =

(Σ0(−))−1/2Φ(Σ0(+))−1(Σ0(−))1/2, sg ≤ 0

(Σ0(+))−1/2Φ(Σ0(+))−1(Σ0(+))1/2, 0 < sg.
(11)

Here, sg is the largest fractional distance between the common break date esti-
mate k̂0 and one of the elements in the set of break date estimates k̂A according
to the alternative. ξ(s) denotes a two-sided Brownian Motion process defined
on [−1, 1], which must be simulated by partial sums of i.i.d. normal random
variables. Σ0(−) and Σ0(+) are true covariance matrices before and after the
common break date, which are estimated from the data in the asymptotically
stable regimes around k̂0. Finally, we have Φ̂ = Σ̂(+) − Σ̂(−).
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4 Monte Carlo study

In order to examine the performance of the presented method in small samples
we ran various Monte Carlo simulations, with s = 1, 000 repetitions each,
and apply the endogenous maximum LR break test based on equation (6).
We concentrate on three aspects of the testing problem; namely, increasing
the dimension n of the tested time series system (Section 4.1), the need for
endogenous break dating (Section 4.2), and the advantages of decomposing the
covariance matrix and testing sequentially (Section 4.3).

The simulated time series have a Gaussian distribution and exhibit breaks
in either variances, correlations, or both. Break tests are specified accordingly
and applied to the data in order to detect the break. The parameters are
set such that the unconditional variance, i.e., under the null hypothesis of
no break, is equal to one, implying a standard normal distribution of the
data. Accordingly, given the choice of a simulated variance shift of ∆σ2 and a
break date kσ, the simulated pre-break variance σ2(−) and post-break variance
σ2(+) = σ2(−) + ∆σ2 satisfy (kσ/T )σ2(−) + ((T − kσ)/T )(σ2(−) + ∆σ2) = 1. The
correlation coefficients of simulations that involve n ≥ 2 time series are positive
numbers, randomly generated in each simulation ensuring a positive-definite
correlation matrix. If specified, a subset of the correlation coefficients exhibit
a shift of ∆ρ, resulting in pre- and post-break correlation matrices R(−), R(+).

If not stated differently, the length of the time series is T = 500 and the
breaks are positioned in the middle the sample at t = 250. All test statistics
assume a trimming of κ = 0.15, following the suggestion of Andrews (1993).
Considering alternative settings (results for which are available upon request),
the findings are robust to changes in the break location. If simulated data
involves longer samples or larger shifts in the tested parameters, the power
and efficiency of the tests improve.

4.1 Dimension of the time series system

The results in Bai et al. (1998) suggest that increasing the dimension n of a
correlated time series system results in higher testing power and more precise
break dating. In this section, we study these effects in the setting of testing
for breakpoints in variances and correlations in small samples. An increase
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in the dimension of the systems with additional correlated data is expected
to increase the detectability of breaks, if they (a) breakpoints occur simulta-
neously in all parameters, since the instability signal is intensified, or if they
(b) introduce additional stable parameters into the system, since the contrast
between instability and stability is intensified. The data generating processes
(DGP’s) cover these two situations. The effects are studied separately for the
cases of variance break tests and correlation break tests. The main question
is whether increasing the dimension n always leads to a better performance of
the test, or whether the increased degrees-of-freedom eventually may result in
a diminishing performance.

For various n, we simulateDGP -1, namely multivariate Gaussian data with
a simultaneous, small shift ∆σ2 = 0.3 in all variances, Xt ∼ N(0, S(−)RS(−))
for t = 1, . . . , 250, and Xt ∼ N(0, S(+)RS(+)) for t = 251, . . . , 500. Recall that
the correlations are positive and random for each draw. The system as a whole
is tested for a break in all variances, as reported in Table 2. We report the
power of the tests for α = 0.1, 0.05, 0.01, as well as the average of the estimated
break location and the width of a 95% confidence interval of the location based
on the 1,000 Monte Carlo simulations. Notably, the most precise and powerful
variance break detection results from testing a co-break in n = 4 series. The
findings support the asymptotic theory, but the positive impact of additional
series in the system vanishes from medium-sized data sets on. The returns to
additional dimensions diminish and turn negative, which suggest a saturation
effect of evidence in variance break testing.

DGP -2 involves multivariate standard normal data of different dimensions,
n, with a simultaneous, pure shift ∆ρ = 0.05 in all correlation coefficients,
Xt ∼ N(0, R(−)) for t = 1, . . . , 250, and Xt ∼ N(0, R(+)) for t = 251, . . . , 500.
Table 3 lists the results of a test that is specified to find a break in all correlation
coefficients at the same date. No concise saturation effect can be observed in
the results. Notably, the dimension of the multivariate system, n, quadratically
increases the number of changing correlation coefficients, dbreak = n(n− 1)/2.
This apparently offsets the saturation effect observed for variance breaks,
where the number of breaking parameters increases linearly in n. It is re-
markable how sensitive the testing becomes to the small correlation shifts in
high dimensions n, which is a very promising result for detecting contagion
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Power
n = nbreak k̂σ/T Width α = 0.10 α = 0.05 α = 0.01

1 0.51 0.660 0.674 0.567 0.297
2 0.51 0.564 0.792 0.706 0.512
3 0.50 0.520 0.908 0.828 0.672
4 0.51 0.384 0.958 0.916 0.720
5 0.51 0.534 0.831 0.804 0.707
6 0.51 0.524 0.774 0.742 0.667
7 0.50 0.590 0.775 0.749 0.700
8 0.51 0.581 0.720 0.688 0.606
9 0.50 0.602 0.683 0.660 0.593
10 0.51 0.610 0.631 0.608 0.575
15 0.51 0.644 0.640 0.618 0.589
20 0.50 0.650 0.480 0.458 0.411

Table 2: DGP -1 of pure break at in all n variances of Gaussian data, Xt ∼ N(0, S(−)RS(−)) for
t = 1, . . . , 250, Xt ∼ N(0, S(+)RS(+)) for t = 251, . . . , 500. Testing is accordingly specified. Shift
in variances is ∆σ2 = 0.3. The table lists point estimate of variance break date kσ , width of 95%
empirical confidence interval of date estimation and testing power of sizes 10%, 5% and 1%.

Power
dbreak dstable n k̂ρ/T Width α = 0.10 α = 0.05 α = 0.01

1 0 2 0.49 0.653 0.716 0.666 0.566
3 0 3 0.50 0.443 0.909 0.869 0.813
6 0 4 0.50 0.186 0.974 0.969 0.935
10 0 5 0.50 0.081 0.994 0.990 0.980
15 0 6 0.50 0.053 1 1 0.999
21 0 7 0.50 0.047 1 1 1
28 0 8 0.50 0.043 1 1 1

Table 3: DGP -2 of pure break in all n(n − 1)/2 correlation coefficients of standard normal data,
Xt ∼ N(0, R(−)) for t = 1, . . . , 250, Xt ∼ N(0, R(+)) for t = 251, . . . , 500. Testing is accordingly
specified. Shift in correlations is ∆ρ = 0.05. The table lists point estimate of correlation break date
kρ, width of 95% empirical confidence interval of date estimation and testing power of sizes 10%, 5%
and 1%.

between a large number of markets. However, non-normal financial data can
be expected to reduce the level of power and efficiency (compare also Candelon
and Manner, 2010).

In DGP -3 a subset of the series exhibits small co-breaks in their variances,
so that we have a combined set of nbreak series with Xt ∼ N(0, S(−)RS(−))
for t = 1, . . . , 250, and Xt ∼ N(0, S(+)RS(+)) for t = 251, . . . , 500, and nstable
stable series Xt ∼ N(0,Σ) for t = 1, . . . , 500. Stable parameters must be
restricted from breaking to avoid excessive degrees-of-freedom in testing and
then a positive impact of additional series in the tested system should be
observed. According to the results in Table 4, this is true for small to moderate
system sizes. The results suggest successful detection of simultaneous crisis
outbreaks, particularly for a balanced number of co- and non-breaking series. It
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Power
nbreak nstable n k̂σ/T Width α = 0.10 α = 0.05 α = 0.01

1 0 1 0.51 0.660 0.674 0.567 0.297
1 1 2 0.50 0.482 0.908 0.862 0.760
1 2 3 0.50 0.288 0.968 0.948 0.924
1 3 4 0.50 0.302 0.977 0.969 0.937
1 4 5 0.51 0.335 0.974 0.956 0.930
2 0 2 0.51 0.564 0.792 0.706 0.512
2 1 3 0.50 0.310 0.976 0.960 0.918
2 2 4 0.50 0.152 0.988 0.982 0.981
2 3 5 0.50 0.181 0.986 0.982 0.976
3 0 3 0.50 0.520 0.908 0.828 0.672
3 1 4 0.50 0.206 0.994 0.981 0.963
3 2 5 0.50 0.189 0.992 0.990 0.981
4 0 4 0.51 0.384 0.958 0.916 0.720
4 1 5 0.50 0.255 0.992 0.981 0.955
5 0 5 0.51 0.534 0.831 0.804 0.707

Table 4: DGP -3, with partial co-break in nbreak variances, Xt ∼ N(0, S(−)RS(−)) for t = 1, . . . , 250,
Xt ∼ N(0, S(+)RS(+)) for t = 251, . . . , 500, while nstable variances stay stable, Xt ∼ N(0,Σ) for
t = 1, . . . , 500. Testing is accordingly specified. Shift in variances is ∆σ2 = 0.3. The table lists point
estimate of variance break date kσ , width of 95% empirical confidence interval of date estimation and
testing power of sizes 10%, 5% and 1%.

is remarkable that the performance of the test in terms of power and estimation
of the location improves greatly when stable series are added to the system.

Since there are several possibilities for contagion transmission, it is conve-
nient and particularly interesting to consider scenarios of partial breaks with
only a selection of correlations breaking. To this end, in DGP -4 we have that
Xt ∼ N(0, R(−)) for t = 1, . . . , 250, and Xt ∼ N(0, R(+)) for t = 251, . . . , 500.
A simultaneous shift ∆ρ = 0.05 is only simulated for those correlations that
are part of the set Rf that is free to break. One plausible scenario involves
a central market that transmits contagion to several others, while the corre-
lation between the rest of the series remains stable. The second concerns two
groups of markets, where contagion occurs within the groups, but not between
them. The tests search for correlation instability in the respective sets accord-
ingly. From Table 5 one can see that notably the scenario of grouped markets
quickly produces promising results for an increase of the dimension n, with
precise estimates of the break location and high power. The recommendation
of a using a high-dimensional system in pure correlation break testing extends
to grouped markets, while testing becomes less powerful and precise in the
scenario of a central market for n > 5.
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Power
dρ,break dρ,stable n k̂ρ/T Width α = 0.10 α = 0.05 α = 0.01

Partial break scenario 1, central market
1 0 2 0.50 0.653 0.918 0.883 0.810
2 1 3 0.50 0.622 0.822 0.793 0.711
3 3 4 0.50 0.593 0.854 0.812 0.764
4 6 5 0.50 0.459 0.894 0.853 0.804
5 10 6 0.50 0.491 0.915 0.895 0.826
6 15 7 0.50 0.514 0.897 0.870 0.840
7 21 8 0.50 0.508 0.887 0.869 0.827

Partial break scenario 2, grouped markets
1 0 2 0.50 0.404 0.918 0.883 0.810
1 2 3 0.50 0.166 0.836 0.788 0.700
2 4 4 0.50 0.030 0.961 0.953 0.936
4 6 5 0.50 0.022 0.999 0.996 0.988
6 9 6 0.50 0.015 1 1 1
9 12 7 0.50 0.014 1 1 0.999
12 16 8 0.50 0.012 1 1 1

Table 5: Data follows DGP -4, Xt ∼ N(0, R(−)) for t = 1, . . . , 250, Xt ∼ N(0, R(+)) for
t = 251, . . . , 500. First scenario: Central break involves only the dρ,break correlation coefficients
between series 1 and the rest of the series. Second scenario: Break affects the dρ,break correlation
coefficients between the series of group one and those between the series of group two. Testing is
accordingly specified. Shift in correlations is ∆ρ = 0.05. The table lists point estimate of correlation
break date kρ, width of 95% empirical confidence interval of date estimation and testing power of sizes
10%, 5% and 1%.

4.2 Endogenous break dating

The simulations described in the following underline the choice of an endoge-
nous break test sequence that determines breaks in variances and correlations
separately. Intuition suggests that test inference is stronger, if a break date is
endogenously determined and not arbitrarily chosen (except one has a priori
knowledge about the break dates).

In DGP -5 we simulate univariate and bivariate Gaussian data with a mod-
erate shift ∆σ2 = 0.5 in the variance(s) at date kσ. Xt ∼ N(0, S(−)RS(−))
for t = 1, . . . , kσ, and Xt ∼ N(0, S(+)RS(+)) for t = kσ + 1, . . . , 500. The
true values of the breakpoint kσ lie close, but are mostly not identical, to date
kex = 250, which is the hypothesized break date of an exogenous LR break test
using equation (6). The results are compared to the usual endogenous break
testing in Table 6. The power of the exogenous testing decreases with distance
kex− kσ, but that happens only slowly. We conclude that pre-determining the
break dates is likely to date the breakpoint wrongly, even though statistical
tests suggest the presence of a break. Consequently, endogenous break testing
is superior as it does not suffer from this drawback. Furthermore, even if ex-
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Power
n kσ/T k̂σ/T α = 0.10 α = 0.05 α = 0.01

Exogenous break determination
1 0.4 0.5 0.939 0.890 0.724

0.45 0.5 0.983 0.956 0.861
0.49 0.5 0.988 0.975 0.925
0.5 0.5 0.992 0.981 0.922

2 [0.4, 0.4] 0.5 0.992 0.982 0.942
[0.4, 0.6] 0.5 0.945 0.917 0.851
[0.5, 0.5] 0.5 1 0.999 0.996

Endogenous break determination
1 0.4 0.41 0.954 0.910 0.784

0.5 0.51 0.972 0.944 0.824
2 0.4 0.41 1 1 1

0.5 0.50 1 1 1

Table 6: Break in all n variances at varying date kσ in DGP -5, Xt ∼ N(0, S(−)RS(−)) for t =
1, . . . , kσ , Xt ∼ N(0, S(+)RS(+)) for t = kσ + 1, . . . , 500. Exogenous LR break testing assumes date
kex = 250, whereas endogenous testing estimates kσ/T . Variance shift is ∆σ2 = 0.5. Listed is the
testing power with sizes 10%, 5% and 1% according to the χ2(n) distribution and according to a
bootstrap, respectively.

ogenous break testing happens to identify the correct break date ex ante, the
power of endogenous break test is only slightly lower than for the case of a
known break date.

4.3 Sequential testing

Here, we demonstrate that the instability in a specified parameter (like cor-
relation) is more efficiently detected by evaluations of precisely that param-
eter, and not of a compound parameter (like covariance). To this end, con-
sider DGP -6 of bivariate normal data that exhibits breaks in both variances
at kσ = 150, before the correlation coefficient breaks at kρ = 250, so that
Xt ∼ N(0, S(−)R(−)S(−)) for t = 1, . . . , 150, and Xt ∼ N(0, S(+)R(−)S(+)) for
t = 151, . . . , 250, and Xt ∼ N(0, S(+)R(+)S(+)) for t = 251, . . . , 500. Three
tests of endogenous break detection to detect a change in the dependence,
i.e. contagion, are compared in Table 7. The first method searches for a
break in the covariance without decomposition, the second for a break in the
correlation (ignoring changes in the variance), whereas the third method is a
sequential testing of a variance co-break followed by a correlation break in the
standardized data.

The covariance test has high power , but produces a severe estimation
bias concerning the location of the break. This could be expected, as the
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Power
∆ρ ∆σ2 t̂/T Width α = 0.10 α = 0.05 α = 0.01

Method 1: Covariance break detection
0.55 0.9 0.42 0.216 1 1 1
0.35 0.9 0.41 0.328 1 1 1
0.35 0.5 0.48 0.262 1 1 0.996
0.15 0.5 0.43 0.302 0.996 0.994 0.962
0.05 0.5 0.38 0.372 0.858 0.796 0.710

Method 2: Correlation break detection
0.55 0.9 0.49 0.236 1 0.998 0.994
0.35 0.9 0.47 0.328 0.996 0.992 0.918
0.35 0.5 0.50 0.108 0.994 0.984 0.960
0.15 0.5 0.48 0.552 0.812 0.772 0.712
0.05 0.5 0.45 0.688 0.601 0.511 0.389

Method 3: Sequential break detection
0.55 0.9 0.50 0.060 1 1 1
0.35 0.9 0.50 0.130 1 1 1
0.35 0.5 0.50 0.092 1 1 1
0.15 0.5 0.49 0.362 1 1 1
0.05 0.5 0.49 0.663 0.714 0.656 0.544

Table 7: DGP -6 of bivariate data, Xt ∼ N(0, S(−)R(−)S(−)) for t = 1, . . . , 150, Xt ∼
N(0, S(+)R(−)S(+)) for t = 151, . . . , 250, Xt ∼ N(0, S(+)R(+)S(+)) for t = 251, . . . , 500. One break
occurs in both variances at kσ = 150, second break in correlation coefficient at kρ = 250. Method
1: Testing for a break in the covariance. Method 2: Testing for a break in the correlation coefficient.
Method 3: Testing for breaks in the variances and then for a break in the correlation. The table lists
point estimate of interdependence break date k, width of 95% empirical confidence interval of date
estimation and testing power of sizes 10%, 5% and 1%.

signals from the changes in volatility and correlation are mixed in this case.
Ignoring the variances altogether produces the results of method 2. The power
is slightly worse, but the bias in the estimates of the location are significantly
smaller. Finally, the sequential approach reliably detects the correct location
with great precision, especially for strong correlation shifts. The results are
notably alike to unreported simulations in the case correlation shifts alone,
i.e. with stable variances.5 This indicates that the estimation of variance
breaks does not interfere with the later correlation break detection, as long
as the variance breaks are handled in an appropriate way. This supports the
asymptotic result in Theorem 6 of Qu and Perron (2007) that justifies the
sequential testing approach, in contrast to a joint test for multiple breakpoint.

All the simulation results taken jointly motivate the implementation of our
STP procedure, as it is robust to a number of potential situations without
losing much efficiency when its full flexibility is not needed.

5Compare the last row of Table 7 with the first row of Table 3.
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Variance break
Japan 12-04-96*** [11-27-96,01-23-97]

Hong Kong 08-13-97*** [07-31-97,08-27-97]
Thailand 05-12-97*** [04-03-97,07-02-97]
Indonesia 08-13-97*** [07-31-97,08-27-97]
Taiwan 07-21-97* [08-06-96,01-27-98]

Malaysia 08-01-97*** [07-23-97,08-11-97]
Korea 10-14-97*** [10-13-97,10-31-97]

Philippines 04-21-97*** [04-08-97,06-18-97]

Table 8: Break date point estimates and 95% confidence intervals for variance breaks in the residuals
of a VARX(1,1) model for the return series of eight East Asian countries according to the STP. ***
denotes 99%, ** 95% and * 90% significance.

5 Contagion during the Asian crisis

The east Asian markets in 1997 constitute a well-known and much disputed
example of financial contagion. The results from previous studies are mixed.
Bae et al. (2003) finds only little evidence for contagion within Asia or from
Asia to other world regions in 1997, and Dungey et al. (2005) report inconsis-
tent findings for contagion within the region. Contagious events are identified
by Bekaert et al. (2005), Corsetti et al. (2005), Rodriguez (2007) and Cho and
Parhizgari (2008), whereas Candelon et al. (2005) can only find shock trans-
mission via the continuation of preexisting transmission channels. Dungey
et al. (2004) find no contagion from East Asia to the Pacific Region.

We apply the STP to eight series of daily stock index returns between
January 07, 1996 and June 30, 1998 of Japan (JA), Hong Kong (HK), Thailand
(TH), Indonesia (IN), Taiwan (TA), Malaysia (MA), Korea (KO) and the
Philippines (PH). The data is taken from Datastream, labeled in US$ and
has been estimated by a VARX(1,1) model, with the BIC determining the
optimal lag structure. U.S. stock index returns from the previous period serve
as an exogenous input Xt−1 that introduces a common shock factor into the
regression, which is why the model deviates from a simple VAR(r) regression.
The STP results contain variance break dates and correlation break date point
estimates along with confidence intervals. The confidence intervals have been
determined by a block bootstrap of 1,000 repetitions with blocks of 20 days in
order to preserve the volatility clustering in the data.

The first results from the STP are the univariate variance break dates,
listed in Table 8. The significant results indicate that all countries were af-
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Scenario Correlation break
(sc1) simultaneous contagion between all countries 02-11-98 n.s. -
(sc2) simultaneous contagion between those country pairs that
indicated contagion between 01-30-98 and 02-12-98 in bivari-
ate testing

02-05-98*** [10-15-97,02-12-98]

(sc3) simultaneous contagion between those country pairs that
indicated contagion between 01-30-98 and 02-05-98 in bivari-
ate testing

02-02-98*** [12-02-97,02-02-98]

(sc4) simultaneous contagion between those country pairs that
indicated contagion between 02-10-98 and 02-12-98 in bivari-
ate testing

02-11-98*** [12-08-97,02-12-98]

(sc5) simultaneous contagion in pairings HK-TH and HK-TA 12-02-97*** [10-28-97,12-30-97]
(sc6) simultaneous contagion between central market TW and
IN, MA, TH, PH respectively

10-23-97*** [09-19-97,01-27-98]

Table 10: Break date point estimates and 95% confidence intervals for important scenarios of simul-
taneous correlation breaks in the residuals of a VARX(1,1) model for the return series of eight East
Asian countries according to the STP. *** denotes 99%, ** 95% and * 90% significance.

fected by crisis. Applying the tests for breakpoint distinctiveness, we found
that the variance breaks of Hong Kong and Indonesia occur at the same time.
Continuing the steps of the STP, correlation coefficients are examined next in
order to detect contagion. Initially, correlation breaks are studied individually,
hence in bivariate time series systems, with results listed in Table 9. Comple-
menting the results of Candelon and Manner (2010), we find that financial
contagion between several East Asian countries is significant. Notably, the
very first countries affected by contagion are Thailand and the Philippines, on
September 25, 1997. This fits the widely accepted notion of Thailand’s role
in the initial spillover after the devaluation of the Thai Bath on July 2, 1997
(see, for example, Dungey et al., 2006). We further confirm that contagion
occurred later than the outbreak of crisis in the individual countries. This is
evident, as hardly any confidence intervals of the date estimates for variance
breaks overlap with those of correlation coefficients.

Clearly, however, several correlation breaks are dated within a few days
of one another, with overlapping confidence intervals. For example, contagion
is significantly inferred in 5 pairs of countries between February 2, 1998 and
February 5, 1998 and in another 6 pairs between February 10, 1998 and Febru-
ary 12, 1998. Other contagion clusters are detected in October and December
of the previous year. This is an indication that correlation breaks are simul-
taneous in many cases, which motivates a multivariate testing of correlation
breaks to improve the precision of the break date estimation. Table 10 reports
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the correlation break results when using multivariate systems. Each of the
selected scenarios investigates a set of at least n = 3 series, in which some
correlations can be restricted from breaking, while others may break simul-
taneously. In the previous bivariate testing Taiwan appeared in several early
correlation break dates at the end of October 1997. Thus, Taiwan, but also
Malaysia or Indonesia, appear to contribute to the early diffusion of the Asian
crisis according to bivariate testing. Scenario (sc6), a multivariate correlation
break with central spillover country Taiwan between Malaysia and Indonesia,
results in a contagion date on October 23, 1997.

When in scenario (sc5) Hong Kong is considered as a central contagion
market to Thailand and Taiwan, contagion is detected on December 2, 1997.
The confidence intervals of bivariate testing suggest a possibility of overlapping
contagion between country pairs of the (sc5) set with pairs of early February
countries from scenario (sc3), for example when looking at the pair of Hong
Kong and Thailand and at the pair of Japan and Thailand. Again, distinctive-
ness tests were employed and reject the null hypothesis of simultaneous breaks.
Even the pair Japan and Taiwan, estimated to have a correlation break on De-
cember 9 1997, cannot be assumed to share a common break with the (sc5)
set earlier in December.

If all correlation coefficients are allowed to break in scenario (sc1), then the
most likely contagion date is on February 11 1998, although the test statistic
is not significant. The number of non-significant bivariate results indicates
that this scenario may have too many degrees of freedom. Also, the variety
in break dates found in smaller systems encourages the splitting of the group.
The results in scenarios (sc3) and (sc4) best capture the contagion diffusion in
the countries affected last. The outcome is an early February 1998 group and
one affected one week later. Allowing for this time lag between the two sets
of scenarios (sc3) and (sc4) as opposed to the common break hypothesis of
scenario (sc2) results in a significant distinctiveness result at 99% confidence.
In contrast, splitting countries into groups within the scenarios(sc3) and (sc4)
groups does not yield significant distinctiveness results, which reinforces the
cluster choice.

Summarizing the results, the application of the STP along with the vari-
ety of grouping possibilities enables a differentiated contagion analysis in the
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Date Pairs of affected countries
September 25 1997 Thailand-Philippines

October 23 1997 Taiwan-Thailand, Taiwan-Malaysia, Taiwan-Philippines, Taiwan-Indonesia
December 2 1997 Hong Kong-Thailand, Hong Kong-Taiwan
December 9 1997 Taiwan-Japan
January 8 1998 Korea-Philippines
February 2 1998 Japan-Hong Kong, Japan-Thailand, Japan-Indonesia, Hong Kong-Korea,

Hong Kong-Philippines, Thailand-Indonesia, Thailand-Malaysia, Indonesia-
Malaysia

February 11 1998 Japan-Malaysia, Japan-Korea, Japan-Philippines, Hong-Kong-Indonesia,
Hong Kong-Malaysia, Thailand-Korea, Indonesia-Korea, Indonesia-
Philippines, Taiwan-Korea, Malaysia-Korea, Malaysia-Philippines

Table 11: Time line of correlation break date estimates, which indicate the existence of contagion
events between the stock markets of the listed countries.

Asian Financial Crisis case. The findings of Candelon and Manner (2010) are
confirmed: The crisis has hit South East Asian countries first, before con-
tagion affected the countries of the region several months later. The dating
of the contagion events is different from the findings of Candelon and Man-
ner (2010), possibly because of the changed VARX modeling, and certainly
because larger sets of correlation coefficients were clustered. The results are
collected in Table 11. First, increases in the interdependence between stock re-
turns can be detected between Thailand and the Philippines on September 25,
1997, followed by spillovers on October 23, 1997 between central Taiwan and
Thailand, Malaysia, the Philippines and Indonesia, respectively. The event
precedes the news of a more global crisis impact, as evidenced by the drop
of the Dow Jones industrial average by 7.2 percent on October 27, 1997, see
Walsh (1998). A wave of contagion events occurred in early December affect-
ing the countries of Hong Kong, Thailand, Taiwan and Japan. This result
is somehow in line with the focus on Thailand and Hong Kong as contagion
transfer countries in previous Asian crisis studies. Finally a large group of mar-
kets experienced increase interdependence in early February, up to 99 trading
days after the first contagion episode. This lateness indicates that contagion
may have been preventable between these countries, if policy action had been
differently conducted after the first crisis and spillover impacts.
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6 Conclusions and outlook

In this paper we propose a new approach to test for shift-contagion in financial
markets. The approach has two distinct features. First of all, it separates the
outbreak of a crisis, represented by structural break in volatility, and contagion,
an increase in the interdependence between markets measured by correlation.
This is done in a sequential way, simplifying the computations, but also the
interpretation of the results. Second, the approach makes use of multivariate
data, instead of relying on bivariate tests for all country pairs. This leads to
very good power of the test and results in more precise estimates of the break
dates. The tests are valid under mild assumptions, in particular heterosce-
dasticity and autocorrelation, and rely on the asymptotic theory developed in
Qu and Perron (2007). Furthermore, while in general structural breaks are
assumed to occur at distinct dates, we test whether some parameters share a
common breakpoint using the test proposed in Perron and Oka (2011). This
can lead to a simpler model and to more reliable testing results.

Monte Carlo simulations show favorable properties of our approach. First
of all, using multivariate systems when testing for contagion will lead to higher
power and a more reliable identification of the break dates. However, it is also
found that beyond a certain number of time series, somewhere around 5-10,
increasing the size of the system will not necessarily lead to better results.
Second, our simulations illustrate that separately treating variance and corre-
lation breaks will prevent biased estimation of the contagion date when the
two do not break simultaneously, while the procedure is still valid without any
drawbacks when the increased generality is not needed.

Our application to the Asian crisis in 1997 offers some new insight into
the way the crisis spread over the region. First, we confirm the occurrence
of contagion in general. We also find clear evidence that changes in volatility
took place before changes in correlation, justifying the separate treatment of
the two and the sequential approach to contagion testing. Next, subsequent
episodes of contagion are evidenced in the winter months of 1997/1998, each
efficiently dated by multivariate testing, since a number correlation coefficients
can be assumed to break at common dates.

The question of determining the origin and causality of contagion events

29



is one aspect that our presented approach does not directly regard. In con-
trast, Khalid and Kawai (2003) employ the concept of Granger causality and
the frequency domain approach of Bodart and Candelon (2009) recognizes a
directional dimension as well. A test that distinguishes between sudden con-
tagion as opposed to slow mutation can further be considered, see Candelon
et al. (2008) and their analysis of structural changes in the synchronization of
financial bear and bull markets or Brière et al. (2012) and their discrimination
between contagion and globalization. Such issues could further be addressed
in future research.
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A Appendix

Assumptions

We make the following assumptions about the error term. They are formu-
lated with respect to regimes, as εt ∼ (0,Σj), for [λj−1T ] + 1 ≤ t ≤ [λjT ], with
the break fractions λj = tj/T , λ0 = 0, λm+1 = 1, for j = 1, . . . ,m + 1,. The
assumptions cover the typical features observed in financial returns. In partic-
ular, the presence of conditional heteroscedasticity is allowed. Assumption A3
guarantees asymptotic distinctiveness of stability regimes.

• Assumption A1: Let Ft = σ − field{. . . , εt−2, εt−1}. εt is weakly sta-
tionary within each segment and (a) {εt,Ft} forms a strongly mixing
(α-mixing) sequence with size −4r/(r − 2) for some 8 > r > 2, (b)
E(εt) = 0 and supt ||εt||2r+δ < M < ∞ for some δ > 0 and M > 0,
where ||X||r = (∑i

∑
j E|Xi,j|r)1/r, for r ≥ 1, is the Lr-norm of a ran-

dom matrixX, (c) let Sk,j(l) = ∑T 0
j−1+l+k
t0j−1+l+1 (εtε′t), j = 1, . . . ,m+1, for each

e ∈ Rn of length 1, var(〈e, Sk,l(0)〉) ≥ v(k) for some function v(k)→∞
as k →∞ (with 〈·〉, the usual inner product).

• Assumption A2: {εtε′t − Σ0
j} satisfies the conditions stated for εt in As-

sumption A1.
• Assumption A3: 0 < λ0

1 < . . . < λ0
m < 1, where t0j = [Tλ0

j ], j =
1, . . . ,m+ 1.
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