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Optimal Income Taxation with Asset Accumulation

/[rpcid /[bmhcim,*Sebastz’an Koehne,'and Nicola Pavonit

February 15, 2014

Abstract

Several frictions restrict the government’s ability to tax assets. First of all, it is very
costly to monitor trades on international asset markets. Moreover, agents can resort
to non-observable low-return assets such as cash, gold or foreign currencies if taxes on
observable assets become too high. This paper shows that limitations in asset observability
have important consequences for the taxation of labor income. Using a dynamic moral
hazard model of social insurance, we find that optimal labor income taxes typically become
less progressive when assets are imperfectly observed. We evaluate the effect quantitatively

in a model calibrated to U.S. data.

Keywords: Optimal Income Taxation, Capital Taxation, Asset Accumulation, Pro-
gressivity.

JEL: D82, D86, E21, H21.

1 Introduction

The existence of international asset markets implies that taxation authorities do not have
perfect (or low cost) control over agents’ wealth and consumption. This creates an important

obstacle for tax policy:

“In a world of high and growing capital mobility there is a limit to the amount of
tax that can be levied without inducing investors to hide their wealth in foreign tax

havens.” (Mirrlees Review 2010, p.916)
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According to a study by the Tax Justice Network, in 2010 more than $21 trillion of global
private financial wealth was invested in offshore accounts and not reported to the tax authorities.
Moreover, even when agents choose not to hide their wealth abroad, they have access to number
of non-observable storage technologies at home. For example, agents can accumulate cash,
gold, or durable goods. These assets bring lower returns, but nonetheless impose limits for the
collection of taxes on assets that are more easily observed.

Motivated by these considerations, this paper explores optimal tax systems in a framework
where assets are imperfectly observable. We contrast two stylized environments. In the first
one, consumption and assets are observable (and contractable) for the government. In the
second environment, these choices are private information. We compare the constrained efficient
allocations of the two scenarios. When absolute risk-aversion is convex, we find that in the
scenario with hidden assets optimal consumption moves in a less concave (or more convex)
way with labor income. In this sense, the optimal allocation becomes less progressive in that
scenario. This finding can be easily rephrased in terms of the progressivity of labor income
taxes, since our model allows for a straightforward decentralization: optimal allocations can be
implemented by letting agents pay nonlinear taxes on labor income and linear taxes on assets
(Gottardi and Pavoni 2011)." Our results show that marginal labor income taxes should become
less progressive when the government’s ability to tax/observe asset holdings is imperfect.

We derive our results in a tractable dynamic model of social insurance. A continuum
of ex-ante identical agents influence their labor incomes by exerting effort. Labor income
realizations are not perfectly controllable and effort is private information. This creates a
moral hazard problem. The social planner thus faces a trade-off between insuring agents against
idiosyncratic income uncertainty on the one hand and the associated disincentive effects on the
other hand. In addition, agents have access to a risk-free asset, which gives them limited means
for self-insurance. In this model, the planner wants to distort agents’ asset decisions, because
asset accumulation provides insurance against the labor income shocks and thereby reduces the
incentives to exert effort.?

Using the first-order approach (Abraham, Koehne and Pavoni 2011), we can switch from
the observable asset case to the scenario with hidden asset accumulation by adding the agent’s

Euler equation as a constraint to the principal’s optimization problem. This constraint crucially

'In the scenario with hidden assets, the tax rate on assets is zero, of course.
2See Diamond and Mirrlees (1978), Rogerson (1985), and Golosov, Kocherlakota and Tsyvinski (2003).



changes the allocation of consumption across income states. Efficiency requires that for each
income state the costs of increasing the agent’s utility by a marginal unit equal the benefits of
doing so. Due to the Euler equation, it becomes important how such changes in utility affect
the agent’s marginal utility. One can show that a marginal increase of utility in a state with
consumption ¢ reduces the agent’s marginal utility in that state by —u”(c)/u/(c).> This relaxes
the Fuler equation and thereby modifies the cross-sectional gains of allocating utility. Unless
absolute risk aversion is constant (or linear), the agent’s Euler equation has direct implications
for the curvature/progressivity of optimal consumption. In particular, whenever absolute risk
aversion is convex, the planner’s optimality condition implies additional convexity /regressivity
of consumption due to hidden asset accumulation.

In a quantitative exercise, we estimate some of the key parameters of the model. We use
consumption and income data from the PSID (Panel Study of Income Dynamics) as adapted
by Blundell, Pistaferri and Preston (2008) and postulate that the data is generated by a tax
system in which labor income taxes are set optimally given an asset income tax rate of 40%.%
Using the implied parameters, we compute the optimal allocation when asset income taxation
is unrestricted and compare it to the data. Under unrestricted asset taxation, the progressivity
of the optimal allocation increases sizably. The welfare gain of unrestricted asset taxation varies
with the coefficient of relative risk aversion and amounts to 1.3% in consumption equivalent
terms for our benchmark calibration. The required asset income tax rates are implausibly high,
however, being close to one hundred per cent or above for all specifications. This suggests that
imperfect asset observability /taxability is the empirically relevant case for the United States.

To the best of our knowledge, this is the first paper that explores optimal income taxation
in a framework where assets are imperfectly observable. Recent work on dynamic Mirrleesian
economies analyzes optimal income taxes when assets are observable/taxable without frictions;
see Golosov, Troshkin, and Tsyvinski (2011), and Farhi and Werning (2011). In those works,
the reason for asset taxation is very similar to our model and stems from disincentive effects
associated with the accumulation of wealth. While the Mirrlees (1971) framework focuses on
redistribution in a population with heterogeneous skills that are exogenously distributed, our

approach highlights the social insurance (or ex-post redistribution) aspect of income taxation.

3To increase u(c) by ¢, ¢ has to be increased by e/u/(c). Using a first-order approximation, this changes the
agent’s marginal utility by u'(c) — u/(c +¢/u/(¢)) = —eu'(c) /u'(¢).

4This rate is in line with U.S. effective tax rates on capital income calculated by Mendoza, Razin and Tesar
(1994), and Domeij and Heathcote (2004).



In spirit, our model is therefore closer to the works by Varian (1980) and Eaton and Rosen
(1980). With respect to the nonobservability of assets, our model is related to Golosov and
Tsyvinski (2007), who analyze capital subsidies/distortions in a dynamic Mirrleesian economy
with private insurance markets and hidden asset trades.

An entirely different link between labor income and capital income taxation is explored by
Conesa, Kitao and Krueger (2009). Using a life-cycle model with time-varying labor supply
elasticities and borrowing constraints, they argue that capital income taxes and progressive la-
bor income taxes are two alternative ways of mimicking age-dependent taxation. They then use
numerical methods to determine the efficient relation between the two instruments. Interest-
ingly, in the present environment capital taxes play an entirely different role and we obtain very
different conclusions. While in Conesa, Kitao and Krueger (2009) capital income taxes and pro-
gressive labor income taxes are substitutable instruments, in our model they are complements.
Laroque (2010) derives analytically a similar substitutability between labor income and capital
income taxes, restricting labor taxation to be nonlinear but homogenous across age groups. In
both these cases, the substitutability arises because exogenously restricted labor income taxes
are in general imperfect instruments to perform redistribution. In our (fully-optimal taxation)
environment, labor income taxes can achieve any feasible re-distributional target. The role of
capital taxes is to facilitate the use of such re-distributional instrument in the presence of in-
formational asymmetries. Hence we obtain a complementarity between capital taxes and labor
income tax progressivity.

Finally, our paper is related to the literature on optimal tax progressivity in static models.
This literature highlights the roles of the skill distribution (Mirrlees, 1971), the welfare criterion
(Sadka, 1976), and earnings elasticities (Saez, 2001), among other things (for a recent survey
on the issue, see Diamond and Saez, 2011). However, dynamic considerations and in particular
asset decisions are absent in those works. The present paper emphasizes the link between
income tax progressivity and the availability of savings technologies.

The paper proceeds as follows: Section 2 describes the setup of the model. Section 3 presents
the main result of the paper: hidden asset accumulation makes optimal consumption schemes
less progressive. In Section 4, we explore alternative concepts of concavity /progressivity. Sec-
tion 5 explores the quantitative importance of our results, while Section 6 concludes and con-

siders a couple of extensions to the model.



2 Model

Consider a benevolent social planner (the principal) whose objective is to maximize the welfare
of its citizens. The (small open) economy consists of a continuum of ex-ante identical agents
who live for two periods, t = 0,1, and can influence their date-1 labor income realizations by
exerting effort. The planner designs an allocation to insure them against idiosyncratic risk
and provide them appropriate incentives for exerting effort. The planner’s budget must be

(intertemporally) balanced.

Preferences The agent derives utility from consumption ¢; > ¢ > —oo and effort e, > 0
according to u(c,e;), where u is a concave, twice continuously differentiable function which
is strictly increasing and strictly concave in ¢, strictly decreasing and (weakly) concave in e;.
We assume that consumption and effort are complements: u.(c;, e;) > 0. This specification of
preferences includes both the additively separable case, u (c,e) = u(c) — v (e), and the case
with monetary costs of effort, u(c — v (e)), assuming v is strictly increasing and convex. The

agent’s discount factor is denoted by > 0.

Technology and endowments The technological process can be seen as the production
of human capital through costly effort, where human capital represents any characteristic that
determines the agent’s productivity. At date t = 0, the agent has a fized endowment y,. At
date t = 1, the agent has a stochastic income y € Y := [y,7]. The realization of y is publicly
observable, while the probability distribution over Y is affected by the agent’s unobservable
effort level ey that is exerted at ¢ = 0. The probability density of this distribution is given by
the smooth function f(y,ep). As in most of the the optimal contracting literature, we assume
full support, that is f(y,eq) > 0 for all y € Y, and eg > 0. There is no production or any other
action at ¢t > 2. Since utility is strictly decreasing in effort, the agent exerts effort e; = 0 at
date 1. In what follows, we therefore use the notation u;(c) := u(c, 0) for date-1 utility.

The agent has access to a linear savings technology that allows him to transfer gby units of
date-0 consumption into by units of date-1 consumption. The savings technology is observable

for the planner.

Allocations An allocation (c,ey) consists of a consumption scheme ¢ = (¢, ¢(+)) and a

recommended effort level eg. The consumption scheme has two components: ¢y denotes the



agent’s consumption in period ¢ = 0, and ¢(y), y € Y, denotes the agent’s consumption in
period ¢ = 1 conditional on income realization y. An allocation (cg, c(-), €g) is called feasible if

it satisfies the planner’s budget constraint

Yo—co+4 / "y = )y, eo) dy — G > 0, 1)

where GG denotes government consumption and ¢ is the rate at which planner and agent transfer

resources over time.

Second best The agent’s savings technology is observable (and contractable) for the
planner. Hence, without loss of generality, we can assume that the planner directly controls

consumption. A second best allocation is an allocation that maximizes ex-ante welfare®

max u(co,e0) + / s () (9, e0) dy

(c,eo)

subject to ¢y > ¢, c(y) > ¢, g > 0, the planner’s budget constraint

Yo— o+ 4 / "y = ) f (g, e0) dy — G > 0, 2)

and the incentive compatibility constraint for effort
Y
€y € argmax u(co, €) + ﬂ/ ui(e(y)) fy,e)dy. (3)
y

2.1 Decentralization and the first-order approach

Any second best allocation can be generated as an equilibrium outcome of a competitive envi-
ronment where agents exert effort and save/borrow subject to appropriate taxes on income and
assets. To simplify the analysis, we assume throughout this paper that the first-order approach
(FOA) is valid. This enables us to characterize the agent’s choice of effort ey and assets by
based on the associated first-order conditions (in inequality or equality form).

Sufficient conditions for the validity of the FOA in this setup are given in Abraham, Koehne,
and Pavoni (2011). Specifically, the FOA is valid if the agent has nonincreasing absolute risk

% Although for pure notational simplicity we consider the case with a continuum of output levels, we do not
discuss the technicalities related to the existence of a solution in infinite dimensional spaces. We can provide

details; alternatively, the reader can read the model as one with a large but finite number of output levels.



aversion and the cumulative distribution function of income is log-convex in effort. As discussed
by Abraham, Koehne, and Pavoni (2011), both conditions have quite broad empirical support.
First, virtually all estimations of u reveal NIARA; see Guiso and Paiella (2008) for example.
The condition on the distribution function essentially restricts the agent’s Frisch elasticity of
labor supply. This restriction is satisfied as long as the Frisch elasticity is smaller than unity.
In fact, most empirical studies find values for this elasticity between 0 and 0.5; see Domeij and
Floden (2006), for instance.

When the FOA holds, second best allocations can be decentralized by imposing a linear tax

on assets, complemented by suitably defined nonlinear labor income taxes.

Proposition 1 (Decentralization) Suppose that the FOA is valid and let (co,c(-),eq) be a
second best allocation that is interior: ¢y > ¢, c(y) > ¢, y €Y, eg > 0. Then there exists
a tax system consisting of income transfers (1o, 7(+)) and an after-tax asset price § (> q)

such that

Co = Yo+ 7o,
cly) = y+7(y), yey,

(c0,0) € argmax ul+ro—dbe)+ 7 [ wly+7) + D dy (@
o y

In other words, there exists a tax system (7¢,7(:),q) that decentralizes the allocation

(COvC<')7 60)'

Notice that we have normalized asset holdings to by = 0 in the above proposition. This
is without loss of generality, since there is an indeterminacy between 7o and by. The planner
can generate the same allocation with a system (79,7(:),q) and by = 0 or with a system
(10 — G, 7(:) +&,q) and by = e for any value of €. This indeterminacy is not surprising,
because the timing of tax collection is irrelevant by Ricardian equivalence.

Proposition 1 is intuitive and the proof is omitted (compare Gottardi and Pavoni (2011)).
It is efficient to tax the savings technology, because savings provide intertemporal insurance
when the agent plans to shirk. The reason why a linear tax on assets is sufficient to obtain the

second best becomes apparent once we replace the incentive constraint (4) by the associated



first-order conditions

(3o + To,c0) + / Culy ) o) dy > 0, (5)

G (3o + 7o, o) — B / iy ) fyeo)dy = 0. (6)

The second first-order condition (6) determines the agent’s asset decision exclusively based on
consumption levels and the after-tax asset price ¢. This means that the planner can essentially
ignore the problem of joint deviations when taxing asset trades. It is now clear that by choosing
a sufficiently large value for ¢, the planner can in fact ignore this last constraint and obtain the
second best allocation.

Besides allowing for a very natural decentralization, the FOA also generates a sharp char-
acterization of second best consumption schemes. Assuming that consumption is interior, the

first-order conditions of the Lagrangian with respect to consumption are:

A uee(co; o)

u/c(cm 60) =1 u/c(Co, 60) ’ (7)
M fely, e0) _

Baew) e VERT ®

where A and p are the (nonnegative) Lagrange multipliers associated with the budget constraint
(2) and the first-order version of the incentive constraint (3), respectively.
Finally, we note that an after-tax asset price ¢ is equivalent to a linear tax t = (1—¢/q)/(1—q)

(constant across agents) on capital income.

2.2 Hidden assets and third best allocations

While savings technologies such as domestic bank accounts, pension funds, or houses may be
observable at moderate costs, there are many alternative ways of transferring resources over
time that are more difficult to monitor. For instance, agents may open accounts at foreign
banks, or they may accumulate cash, gold, or durable goods. These technologies typically
bring low returns (or involve transaction costs of various sorts), but are prohibitively costly to

observe for tax authorities. Hence, if the after-tax return of the observable savings technology,

6 A sufficient condition for interiority is, for example, u’,(c,0) = 0 for all ¢ > ¢ in combination with the Inada

e ) _
condition lim._,. u. (¢, 0) = .



1/q, becomes too low, agents have a strong incentive to use nonobservable assets to run away
from taxation.

Notice that, even though we focus on a particular decentralization mechanism in this paper,
the above problem is general. Decentralizations that allow asset taxes to depend on the agent’s
period-1 income realization (Kocherlakota 2005), for instance, can generate zero asset taxes on
average, but generally require high tax rates for a sizable part of the population.”

This motivates the study of optimal allocations and decentralizations when agents have
access to a nonobservable savings technology. We assume that the nonobservable technology is
linear and transfers ¢" > ¢ units of date-0 consumption into one unit of date-1 consumption.

Using the FOA, we define a third best allocation as an allocation (co, c(+), €p) that maximizes

ex-ante welfare

max u Co,e(] +ﬁ/ ul yan) dy

(c,eo0

subject to ¢y > ¢, c(y) > ¢, g > 0, the planner’s budget constraint

zm—%+q/§y—dwv@m@@ww;zo (9)

and the first-order incentive conditions for effort and nonobservable savings

eore0) + B / wr(cly)) oy, eo) dy > 0, (10)
q%ﬁ%ﬂﬁ—ﬁ/lﬂdWVwﬁdw >0 (11)

Obviously, in our terminology the notion ‘second best” refers to allocations that are con-
strained efficient given the nonobservability of effort, while the term ‘third best’ refers to alloca-
tions that are constrained efficient given the nonobservability of effort and assets/consumption.
Note moreover that we have written the agent’s Euler equation (11) in inequality form. Propo-
sition 2 below shows that this inequality is binding as long as the nonobservable asset is not

too expensive compared to the observable asset.

"For example, assuming additively separable preferences and CRRA consumption utility, the tax rate on
asset holdings in such a decentralization would be 1 — % (%j))a, where o is the coefficient of relative risk
aversion. For incentive reasons, ¢(y) tends to be significantly below c¢q for a range of income levels y, which
results in tax rates on assets close to 1 at those income levels. In other words, almost their entire wealth (not

just asset income) would be taxed away for those agents.



To decentralize a third best allocation (cg,c(+),eg), we define taxes/transfers (79, 7(:)) on

labor income and an after-tax price ¢ of the observable asset as follows:

To = Co— Yo,
(y) = cly)—y, yey,
qg = q"

If agents face this tax system and have access to the nonobservable savings technologies at rate
q", the resulting allocation will obviously be (¢, ¢(+), e).
Again we can use the FOA to characterize the consumption scheme. Assuming interiority,

the first-order conditions of the Lagrangian with respect to consumption are now:

A ull.(co, €p) ull.(co, €o)
— 1 ec ? n _—-cc 7 12
uy(co, €o) s uy(co, €0) u(co, €0) (12)
= el o), yelya) (13
Pur(e(y)) f(y. eo) -
where a(c) := —uf{(c)/u}(c) denotes absolute risk aversion, and A, p and £ are the (nonnegative)

Lagrange multipliers associated with the budget constraint (9), the first-order condition for

effort (10), and the Euler equation (11), respectively.

Proposition 2 Suppose that the FOA is valid and let (co,c(-),e9) be a third best allocation
that is interior. Then there ezists a number § > q such thal equations (12) and (13)

characterizing the consumption scheme are satisfied with & > 0 whenever q™ < q.

Proof. Fix ¢". From the Kuhn-Tucker theorem we have £ > 0. If £ > 0, we are done. If
¢ = 0, then the first-order conditions of the Lagrangian read

A B ug.(co, €o)
ul(co, €0) b ul(co, €)

)‘q _ fe<y7 60) —
By e VT

Since f(y, e) is a density, integration of the last line yields

Yy )\q B
/g B ey’ W)=t

Using p > 0 and the assumption u., > 0, we obtain

h v\ Aq
_— > 1 = — 760 d Z — 9
! (co, €9) /g ﬁu’l(C(y))ﬂy )y B J, ui(c()) f(y eo) dy

10



where the last inequality follows from Jensen’s inequality. This inequality is in fact strict,
since the agent cannot be fully insured when effort is interior. Hence - since from the previous

condition we have A\ > 0 - we conclude
Y
5 [ el (w.co)dy > auifen, o) (14
y

Clearly, exactly the same allocation delivering condition (14) is obtainable for all ¢" by ignoring

the agent’s Fuler equation. If we now define ¢ > ¢ such that
Y , ,
8 [ ) tv.eo) dy = quifen.eo)
y

it is immediate to see that whenever ¢" < ¢ the allocation we obtained above ignoring the

agent’s Euler equation is, in fact, incompatible with (11), hence we must have £ > 0. Q.E.D.

Proposition 2 states that if the return on the nonobservable savings technology 1/¢" is
sufficiently high (although possibly lower than the return on observable savings), the agent’s
Euler equation will be binding in the planner’s problem. To simplify the exposition, we set ¢" :=
g from now on, so that the returns of the nonobservable and observable savings technologies
coincide. All our results will be independent of this particular choice of ¢" and rely only on the
fact the Euler equation is binding for the planner in that case.

Comparing the characterization of third best consumption schemes, (12), (13), to the char-
acterization of second best consumption schemes, (7), (8), we notice that the difference between
the two environments is closely related to the effect of the agent’s Euler equation (11) and the
associated Lagrange multiplier £. We discuss the implications of this finding in detail in the

next section.

3 Theoretical results on progressivity

We are interested in the shape of second best and third best consumption schemes c(y). As
we saw above, this shape is related one-to-one to the curvature of labor income taxes in the

associated decentralizations.

Definition 1 We say that an allocation (co, (), eg) is progressive if ¢/(y) is decreasing in y.

We call the allocation regressive if ¢/(y) is increasing in y.

11



Recall that 7(y) = ¢(y) — y denotes the agent’s transfer in labor income state y, hence
—7(y) represents the labor income tax. Definition 1 implies that whenever a consumption
scheme is progressive (regressive), we have a tax system with increasing (decreasing) marginal
taxes —7'(y) on labor income supporting it.

In a progressive system, taxes are increasing more quickly than income does. At the same
time, for the states when the agent is receiving a transfer, transfers are increasing more slowly
than income is decreasing. The opposite happens when we have a regressive scheme. Intuitively,
if the scheme is progressive, incentives are provided more by imposing ‘large penalties’ for low
income realizations, since consumption decreases relatively quickly when income decreases.
Regressive schemes, by contrast, put more emphasis on rewards for high income levels than

punishments for low income levels.

3.1 Absolute progressivity

The next proposition provides sufficient conditions for progressivity and regressivity of efficient

allocations.

Proposition 3 (Sufficient conditions for progressivity /regressivity) Assume that the FOA

18 Justified and that second best and third best allocations are interior.

(i) If the likelihood ratio function l(y,e) := % is concave in y and ﬁ is convez in

¢, then second best allocations are progressive. If, in addition, absolute risk aversion

a(c) is decreasing and concave, then third best allocations are progressive as well.

(ii) On the other hand, if 1 (y,e) is convex in y and %(c) is concave in ¢, then second best
1

allocations are regressive. If, in addition, absolute risk aversion a(c) is decreasing

and convex, then third best allocations are regressive as well.

Proof. We only show (i), since statement (ii) can be seen analogously. Define

By concavity of u, ﬁ is always increasing. Therefore, if ﬁ is convex and £ = 0 (or £ > 0 and

a(+) decreasing and concave), then g(+) is increasing and convex. Given the validity of the FOA,

12



equation (8) (or equation (13), respectively) shows that second best (third best) consumption

schemes are characterized as follows:

glcly)) =1+ ul(y,eo),

where, by assumption, the right-hand side is a positive affine transformation of a concave
function. By applying the inverse function of g(-) to both sides, we see that c¢(-) is concave

since it is an increasing and concave transformation of a concave function. Q.E.D.

Note that in the previous proposition, since the function ¢ is increasing, consumption is
increasing as long as the likelihood ratio function [ (y, e) is increasing in y.
Proposition 3 implies that CARA utilities with concave likelihood ratios lead to progressive

schemes, both in the second best and the third best.® In the second best, progressive schemes

1
uy(e)
convex in this case. For logarithmic utility with linear likelihood ratios we obtain second best

are also induced by concave likelihood ratios and CRRA utilities with o > 1, since =7 is

schemes that are proportional, since = c is both concave and convex. Interestingly, since

9

1
ui(c)
absolute risk aversion a(c) = % is convex, third best schemes are regressive in this case.

3.2 Rankings of progressivity

Proposition 3 above sheds light on a more general pattern under convex absolute risk aversion:
when assets are observable (second best), the allocation has a ‘more concave’ relationship
between labor income and consumption. In other words, observability of assets calls for more
progressivity in the labor income tax system.

In order to formalize this insight, we note that consumption patterns in moral hazard models
are generally obtained as functions of the likelihood ratio [(-, ), see e.g. Holmstrom (1979). The
most common way to measure concavity/progressivity is however to study how consumption
changes as a function of income. If likelihood ratios are linear in income, then the curvature
of consumption as a function of the likelihood ratio (the natural outcome of a moral hazard

model) is identical to the curvature of consumption as a function of income (the typical way

80ther cases where progressivity /regressivity does not differ between second best and third best are when a

has the same shape as ui, (quadratic utility) and when a is linear (and hence increasing).
1
9More precisely, consumption is characterized by %c(y) —£ %y) = 1+pul(y, e) in this case. Since the left-hand

side is concave in ¢ and the right-hand side is linear in y, the consumption scheme ¢(y) must be convex in y.

13



of measuring progressivity in the applied literature). In other cases, the curvatures are related
monotonically, but they are not exactly identical. Linear likelihood ratios are thus a rather

natural assumption for studying progressivity in moral hazard models.

Proposition 4 (Ranking of progressivity) Assume that the FOA is justified and that the
second best allocation and the third best allocation are interior. Suppose that uy has convex
absolute risk aversion and that the likelihood ratio | (y,e) is increasing and linear in y.
Under these conditions, if the third best allocation is progressive, then the second best
allocation is progressive as well (but not vice versa). On the other hand, if the second
best allocation is regressive, then the third best allocation is regressive as well (but not vice

versa,).

Proof. Given validity of the FOA, by equations (8) and (13) the consumption schemes

c*®(y) and ' (y) are characterized as follows:

S S S S S Aqu
g b (c b(y)) = 1+u b1 (y, eob) , where g b (c) := Bl () (15)
)\tb
9 (W) = 1 ) where g () = 22— €0a(e) with € > 0. (10
1

Since I (y, €ff) is linear in y by assumption, concavity of ¢ is equivalent to convexity of g'.
Moreover, since a(c) is convex in ¢ by assumption, convexity of ¢ implies convexity of ¢g** =
(gtb + ftba) AP / AP (but not vice versa). Finally, notice that convexity of ¢ is equivalent to
concavity of ¢*, since [ (y, egb) is linear in y. This establishes the first part of the proposition.

The second part can be seen analogously. Q.E.D.

Many well-known probability distributions generate linear likelihood ratio functions as as-
sumed in Proposition 4. One example is the exponential distribution with mean ¢(e), or more
generally the Gamma distribution with mean @(e) for any shape parameter & > 0 and any
increasing function ¢. Another example is the normal distribution with mean ¢(e) and fixed
variance (truncated to the compact interval [y,7])."® Moreover, we note that the linear likeli-
hood property is unrelated to the validity of the first-order approach, since the latter imposes
conditions on the curvature of ¢, or equivalently on the convexity of u(c,e) as a function of

effort e. The joint restriction on the utility function and on the probability distribution can

10An example for discrete output spaces is the Poisson distribution with mean e.
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be interpreted as an assumption on the Frisch elasticity of labor supply. This assumption is
satisfied as long as the Frisch elasticity is smaller than unity, see Abraham, Koehne, and Pavoni
(2011).

In order to obtain a clearer intuition of Propostion 4, we further examine the planner’s

first-order condition (13), namely

)‘q o fe(yue(J) alc
Bl T e WD)

This expression equates the discounted present value (normalized by f (y,eg)) of the costs and
benefits of increasing the agent’s utility by one unit in state y. The increase in utility costs
the planner m units in consumption terms. Multiplied by the shadow price of resources
A, we obtain the left-hand side of the above expression. In terms of benefits, first of all, since
the agent’s utility is increased by one unit, there is a return of 1. Furthermore, increasing the
agent’s utility also relaxes the incentive constraint for effort, generating a return of u%.”
Finally, by increasing u;(c(y)) the planner alleviates the saving motive of the agent. Since
the return to one unit of saving in state y is given by u/(c¢(y)), the gain of a unit increase in
ui(c(y)) is measured by Ea(c (y)), where £ is the multiplier of the agent’s Euler equation and
a = —uf /u}. That is, absolute risk aversion is the appropriate measure for the gains of relaxing
the Euler equation.

The novel term £a in the planner’s first-order condition captures the impact of nonobservable
savings. Holding all other parameters fixed, this term has three implications for the shape
of optimal consumption. The three implications are due to the sign, slope and curvature
of absolute risk aversion a, respectively. First of all, since a is positive, marginal utility in
the second period will ceteris paribus be lower in the hidden savings case. Consumption is
thus more backloaded in the third best allocation compared to the second best. Backloading
lowers the agent’s expected marginal utility in the second period and ensures that the agent’s
savings constraint is satisfied. Secondly, for NIARA preferences absolute risk aversion a falls
with consumption. The gains of relaxing the Euler equation are thus higher in low income
states than in high income states. As a consequence, the slope of consumption (consumption

dispersion) is ceteris paribus lower in the third best allocation compared to the second best.

Finally, and this is the focus of our paper, the curvature of a affects the progressivity of optimal

Of course, if the increase in consumption is done in a state with a negative likelihood ratio, this represents

a cost since the incentive constraint is in fact tightened.
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consumption.

For CARA utility, or generally whenever absolute risk aversion is linear, the relative reduc-
tion of the agent’s marginal utility per unit of utility, measured by u”/u’, changes linearly with
consumption. Other things equal, with CARA utility then hidden saving affects the level and
slope, but not the curvature of consumption. For the widespread case of convex absolute risk
aversion, however, the convexity of a raises the convexity of optimal consumption. In this case,
it cannot happen that the second best allocation is regressive while the third best allocation
is not (Proposition 4). This provides a clear sense in which third best allocations are less
progressive than second best allocations.

Another common approach to compare the progressivity/concavity of functions is to explore

concave transformations (e.g., Gollier 2001).

Definition 2 We say that a function f; is a concave (convex) transformation of a function fo

if there is an increasing and concave (convex) function v such that f; = vo f.

For the case of logarithmic utility, we are able to rank the progressivity of the second and

third best allocation in the sense of concave transformations.

Proposition 5 (Logarithmic utility) In addition to the assumptions from Proposition 4,
suppose that uy is logarithmic. Then second best consumption is a concave transformation

of third best consumption.

Proof. For logarithmic utility, we have u}(c) = a(c¢) = 1/c. By equations (15) and (16),

we can link second best and third best consumption as follows:

)\qu , , , )\tbq é-tb
s — 5] ’es 4 tbl 76tb — _Ctb o
3 (y) = 11 (y,e8’) + 1l (y, ) 3 () b (y)

Since [ (y, eg) is linear in y by assumption, equation (15) shows that ¢**(y) is linear in y. Hence

(17)

all expressions on the left-hand side of (17) are linear in y, and hence linear in ¢**(y). Since the

right-hand side of (17) is concave in ¢®(y), the result follows immediately. Q.E.D.

3.3 Nonlinear likelihood ratios

For nonlinear likelihood ratios, progressivity changes come through two separate channels. First

of all, as pointed out in the analysis of the planner’s first-order conditions for consumption,
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the efficient way of relaxing the agent’s Euler equation generates state dependent returns in
the third best that are proportional to the coefficient of absolute risk aversion. If absolute
risk aversion is nonlinear, this has a direct influence on optimal progressivity. Secondly, the
implemented effort level may change from the second best to the third best, which means that
the role of income as an effort signal can differ between the two scenarios. This can indirectly
affect progressivity. The remainder of this section will mainly focus on the first channel. That
is, in the spirit of Grossman and Hart (1983), we will analyze how the implementation of a given
effort level eq depends on the economic environment. We will return to the case of endogenous
effort briefly towards the end of the section.

With slight abuse of notation, we denote the consumption allocation that optimally imple-
ments a given effort e by (c5?, ¢*®(+)) for the scenario with observable saving and by (cf’, ¢®(+))
for the case of hidden saving.'? As usual, we assume that the FOA is justified and that second
best and third best consumption levels are interior.

For nonlinear likelihood ratios, we can rank the progressivity of allocations in a way that is

very similar to Proposition 4.

Proposition 6 Assume that u, has convex absolute risk aversion. Then, if c'® is a concave

b

transformation of (-, ep), then ¢ is a concave transformation of (-, ey). On the other

hand, if c¢*® is a convex transformation of (-, e), then c®

I(, e0).

s a convex transformation of

Proof. The first-order conditions for consumption imply

g () = 1+l (y.e), (18)
9" ("(y) = 1+p"(y.eq). (19)
where the functions ¢** and g% are defined as in (15) and (16), respectively. First, suppose
that ¢ is a concave transformation of [ (y,e). Since the right-hand side of (19) is a positive
affine transformation of [ (, €), this is equivalent to the condition that ¢ is convex. Now, since
a(c) is convex by assumption, convexity of g% is sufficient (but not necessary) for g** (c) =
(9"(c) + £™a(c)) A" /A" being convex as well. Finally, using (18) we note that g** is convex if

and only if ¢* is a concave transformation of [ (y, e).

2The statements we make below are hence valid for all fixed effort levels ey > 0.

17



The second part of the proposition follows from similar arguments by exploiting the fact
that concavity of g** is sufficient (but not necessary) for concavity of ¢ if absolute risk aversion

is convex. Q.E.D.

The previous result generates a sense in which the consumption scheme implementing eq in
the case of observable assets is ‘more progressive’ than the scheme in the case of hidden assets.
For fixed effort, this result generalizes Proposition 4 to the case of nonlinear likelihood ratios.

We can also derive an analogue to Proposition 5. To this end, let us consider the class of
HARA (or linear risk tolerance) utility functions, namely

s ) =p<n+§)1ﬂ

1—
Withp—7>0, andn+£>0.
Y Y

For this class, we have a(c) = (77 + 5) . Hence, absolute risk aversion is convex. Special cases

of the HARA class are CRRA, CARA, and quadratic utility (e.g., see Gollier 2001).

Lemma 1 Given a strictly increasing, differentiable function uy : [c,00) — R, consider the

two functions defined as follows:

()= —24 1
S pbui(c) p’
j\q 1 é
gs ,:\C) 1= ~a N ~ — =alc).
it () TR

If uy belongs to the HARA class with v > —1, then g5 , ¢ is a concave transformation of
Gage for all A€ >0, A, 1, ju >0

Proof. See Appendix.

The restriction v > —1 in the above result is innocuous to most applications as it allows
for all HARA functions with nonincreasing absolute risk aversion as well as quadratic utility,
for instance. Recall that second best and third best consumption schemes are characterized as

follows:

Gt e ((y)) = 1y, e0), (20)
Gar v e ((y)) = 1y, e). (21)
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For logarithmic utility, the function gy, is linear. Lemma 1 therefore has the following conse-

quence.
Proposition 7 Suppose that u, is logarithmic. Then ¢ is a concave transformation of c'.

Proof. By Lemma 1 and equations (20) and (21), there exists a concave function h such

that ¢*® and ¢ are related as follows:

(y) =g ohog(cy)),

where g := g,s . 18 Increasing. For logarithmic utility, g is an affine function, which implies

that the composition g~! o h o g is concave whenever h is concave. Q.E.D.

To state the consequences of Lemma 1 for general HARA functions, we introduce the concept
of G-convexity (e.g., see Avriel et al., 1988), which is widely used in optimization. A function

f is G-convex if once we transform f with G we get a convex function. More formally:

Definition 3 Let f be a function and G an increasing function mapping from the image of f
to the real numbers. The function f is called G-conver (G-concave) if G o f is a convex

(concave) function.

This concept generalizes the standard notion of convexity. It is easy to see that a function
f is convex if and only if it is G-convex for any increasing affine function GG. Moreover, it can
be shown that if GG is concave and f is G-convex then f must be convex, but the converse is

false. 13

Proposition 8 Assume uy belongs to the HARA class with v > —1. If ¢'® is 1/u)-concave then

c*? is 1/u}-concave. On the other hand, if ¢*® is 1/u}-convex then ¢ is 1/u)-convex.

Proof. We only show the first statement, since the second one can be seen analo-
gously. Let ¢ be 1/uj-concave. Equivalently, ¢ be gy . (c)-concave, where gy u(c) =
Nq/ (Bl (c)) — 1/ is a positive affine transformation of 1/u}. By Lemma 1, ¢ must then

also be gyw ¢ (c)-concave. Exploiting the identity

Gt tb gtb (Ctb (y)),

13For example, suppose f () = 2% and G (-) = log () , then G(f(z)) = 2log(x), which is obviously not convex.
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we conclude that ¢ is g, sv-concave and therefore 1/uj-concave. Q.E.D.

Proposition 8 shows that whenever ¢ satisfies the 1/u)-concavity property, then c** satisfies
this property. In this sense, we note again that ¢*® is ‘more progressive’ than c.

All our results for nonlinear likelihood ratios generalize to the case of endogenous effort
provided that [ (l_l (y, egb) , egb) is concave. The last condition is satisfied if the likelihood ratio
in the third best is a convex transformation of the likelihood ratio in the second best. In fact, a
weaker condition is sufficient. As the line of proof of Propositions 7 and 8 shows, it is sufficient
that [ (-, ef’) o I7 (-, efl) o h is concave, where h is a strictly concave function. This condition
is satisfied whenever [ (y, ef’) is not ‘too concave’ relative to [ (y, ef’).

How much the curvature of the likelihood ratio differs between the two scenario is impossible

to predict without detailed knowledge of density function f(y,e). We will try to make progress

on this issue in our quantitative analysis.

4 Quantitative analysis

This quantitative exercise serves two purposes. First, we extend our theoretical results. For
example, recall that the theoretical results compare two allocations that implement the same
effort level. In a calibrated/estimated framework we show that the key result of complementarity
between capital taxation and labor income tax progressivity extends to the case where effort is
allowed to change between the two scenarios.

The second target of this exercise is to evaluate quantitatively how the limited possibility
of observing/taxing capital affects optimal labor income taxes. In order to do this, we use
consumption and income data and postulate that the data is generated by a specification of the
model where capital income is taxed at an exogenous rate of 40%. Equivalently, the distorted

asset price is given by ¢ = Note that the capital income tax of 40% is in line with

U.S. effective tax rates on capital income as calculated by Mendoza, Razin and Tesar (1994)
and Domeij and Heathcote (2004). We estimate some of the key parameters of the model by
matching joint moments of consumption and income in an appropriately cleaned cross-sectional
data. Then, we use the estimated (and postulated) parameters and also solve the model with
optimal capital taxes, assuming perfect observability/taxability of capital. The final outcome

is a comparison of the optimal labor income taxes between the two scenarios.
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4.1 Data

We use PSID (Panel Study of Income Dynamics) data for 1992 as adapted by Blundell, Pistaferri
and Preston (2008). This data source contains consumption data and income data at the
household level. The consumption data is imputed using food consumption (measured at the
PSID) and household characteristics using the CEX (Survey of Consumption Expenditure) as a
basis for the imputation procedure. Household data is useful for two reasons: (i) Consumption
can be credibly measured at the household level only. (ii) Taxation is mostly determined at
the family level (which is typically equivalent to the household level) in the United States.
We will use two measures of consumption: non-durable consumption expenditure and total
consumption expenditure, the latter being our benchmark case.

In our model, we have ex-ante identical individuals who face the same (partially endogenous)
process of income shocks. In the data, however, income is influenced by observable factors such
as age, education and race. We want to control for these characteristics to make income shocks

comparable across individuals. To do this, we postulate the following process for income:
y' =X,

where 1" is household i’s income, X are observable household characteristics (a constant, age,
education and race of the household head), and 7' is our measure of the cleaned income shock.
In order to isolate n°, we regress log(y’) on X*. The residual of this equation 7 is our estimate
of the income shock.

The next objective is to find the consumption function. To be able to relate it to the cleaned
income measure 7°, we postulate that the consumption function is multiplicatively separable as
well:

¢ =9g"(2"g" (6(X)) c(n')
where Z° are household characteristics that affect consumption, but (by assumption) do not
affect income, such as number of kids and beginning of period household assets. Our target is
to identify ¢ (n), the pure response of consumption to the income shock. To isolate this effect,
we first run separate regression of log(¢’) on X* and Z*. The residual of this equation is &
We then use a flexible functional form to obtain ¢ (-). In particular, we estimate the following

regression:
4

log(2') = Y7, (log (i)’ .

j=0
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Figure 1: Estimated Consumption Functions

Hence, in our model’s notation, the estimate of the consumption function is given by

¢(y) = exp (Z A, (log(y))]) -

Figure 1 displays the estimated consumption function for both of our measures of consumption.
Note that our estimate based on total consumption expenditure displays both significantly more

dispersion and a higher overall level.

4.2 The empirical specification of the model

For the quantitative exploration of our model, we move to a formulation with discrete income
levels. We assume that we have N levels of second-period income, denoted by ys, s =1,..., N,

with ys > ys_1. This implies that the density function of income, f(y,e), is replaced by
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probability weights p,(e), with Zivzl ps(e) = 1 for all e. For the estimation of the parameters,

we impose further structure. We assume

ps(e) = exp(—pe), + (1 — exp(—pe))y,

where 7 and 7! are probability distributions on the set {y1,...,yn} and p is a positive scalar.
In addition to tractability, this formulation has the advantage that it satisfies the requirements
for the applicability of first-order approach given by Abraham, Koehne and Pavoni (2011).4
In order to account for (multiplicative) heterogeneity in the data, we allow for heterogeneity
in the initial endowments, specify a unit root process for income shocks, and choose preferences
to be homothetic. In particular, we assume:
() (T = e))*]"

ule,e) = a(l—o) ’

where v is a concave function, a € (0,1) and o > 0.1
Proposition 9 Consider the following family of homothetic models with heterogeneous agents:

l1—0o

o 3 ()" (0 (T = i)™

chcheh & a(l—o)

b 83 (et L )]

a(l—o)

s.t.
> (v —ch) +QZZPS (e0) [vi —¢] = G;
1—0o

[(Cé)a (U (T _ eé))l_a] _ ﬁzp; (eé) [(Cls)a (U (T))l_a] ;

a(l—o)

7
CS

g i _ szs (66) [(Cls) (U (T)) } ] :

Note that we do not need to impose the stochastic dominance condition - which, in our environment, is
virtually equivalent to monotone likelihood ratios (MLR) - as in the proof of the validity of the first order
approach we only need monotone consumption (see Abraham, Koehne and Pavoni (2011) for details). And as
Figure 1 shows this is delivered to us from the data. Note that MLR is a sufficient but not necessary condition
for monotone consumption. Nevertheless, as expected, our estimated likelihood ratios will exhibit MLR, that

is the estimated probability distributions satisfy: 7" /7! increasing in s.
15Where, obviously, when o = 1 we assume preferences take a logarithmic form.
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with 8 € (0,1), and q,q > 0. Moreover, assume income follows: y: = yin,. For each
given vector of income levels in period zero (yj), > 0 and any scalar v > 0, let the
Pareto weights (1*); be such that the solution to the above problem delivers period zero
consumption ¢’ = yyi for all i. Then there exists t* € R and individual specific transfers

t' = t*y} such that G =", t" and the solution to the above problem is

¢y = vy for all 4
e, = e forall g
c,' = cye, for all i

where e and £ are a solution to the following ‘normalized’ problem

I (I il N 53 pa ey 12 O]

a(l—o) a(l—o)

1—0

s.t

1
;_1+qus<60) [%—es] >t

1—0

et L (1E P I R ) SO Sl

a  v(T—e) a(l—o) ;

l1—0o

q[(v (T—eo))l_a}l_a = B> psleo) [(e0)" (1)) ]

Es
Proof. See Appendix.

A few remarks are now in order. It should typically be possible to find a vector of Pareto
weights (¢"); such that the postulated individual specific transfers t* = t*y, are indeed optimal.
However, because of potential non-concavitites in the Pareto frontier, it is difficult to establish
such a result formally. We abstract from this subtlety and simply take the existence of such
Pareto weights as given for our analysis. Intuitively, the Pareto weights ¢° are determined by
income at time 0. This dependence can be seen as coming from past incentive constraints or
due to type-dependent participation constraints in period zero.

Proposition 9 is useful for our empirical strategy for at least two main reasons. First, the
proposition suggests that within our empirical model, we are entitled to use the income and con-

sumption residuals as computed in the previous section as inputs in our estimation/calibration
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exercise. More precisely, the proposition suggests that we can use the values &' and 7’ as
consumption inputs regardless of the actual value of ¢! and y‘. In principle, according this
proposition, we could go even further and use residual income and consumption growth in our
analysis to identify shocks. We have decided not to follow that approach for two reasons. First,
it requires imposing further structure on the consumption functions and on the income process.
Second, and more importantly, measurement error is known to be large for both income and
consumption. This would be largely exacerbated by taking growth rates.

The other key advantage of the homothetic model is that we can estimate the probability
distribution and all other parameters assuming that effort does not change across agents, hence

the first-order conditions and expectations are evaluated at the same level of effort .16

4.3 Estimation of model parameters

As a first step, we fix some parameters. First of all, we set ¢ = .96 to match a yearly real
interest rate of 4%, which is the historical average of return on real assets in the USA. We then
set the coefficient of relative risk-aversion for consumption to 3, that is 1 — (1 — o) a = 3, in line
with recent estimation results by Paravisini, Rappoport, and Ravina (2010).1" We normalize
total time endowment to one (7" = 1) and choose v to be the identity function. For the income
process, we set N = 20 and choose the medians of the 20 percentile groups of cleaned income
for the income levels 74, ...,15,. To be consistent with this choice and with Proposition 9 we
set yo = 1. For expositional simplicity we will assume v = 1 and hence ¢ = yy. Note that
Proposition 9 implies that for any level of v we can obtain the optimal consumption allocation
by simply rescaling the consumption allocation of this benchmark. The only parameter we need
to adjust is t* or equivalently government consumption G*.

Given this choice of parameters, the remaining parameters are chosen to match specific
empirical moments coming from the data. We use the optimality conditions to design a method
of moments estimator for these parameters. We use the identity matrix as a weighting matrix

in the estimation.!®

160f course, this also implies that we will partially rely on functional forms for identification.
IT"We have made some sensitivity analysis with respect to the risk aversion parameter. Our results are qual-

itatively the same for the range of risk aversions between one and four, but the differences between the two

scenarios are more pronounced if risk aversion is larger.
8This choice turned out to be irrelevant, because we obtained a practically perfect fit for all cases we have

considered.
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The first group of remaining parameters of the model are the effort technology parameter
p and the probability weights {ﬂ?,ﬂé}i\le that determine the likelihood ratios. Our target

moments for these parameters are p,(ef) = 1/20 for all s, where e is the optimal effort, and

*

e¥ = ¢(n,), where €% is the optimal consumption innovation in the model with an exogenous

capital income tax rate of 40 per cent, i.e., with ¢ = (mfw.
Since the probabilities 7! and 7" each sum up to one, we have N — 1 parameters each.
Moreover, we have to estimate the parameter p. To summarize, we have to estimate 2N — 1

parameters and use the following 2N — 1 model restrictions for these parameters:

pulet) = exp(—pegyt + (1 — exp(—pef))a for s = 1,.., N — 1, (22)
exp(—pet) (nh — =t 1—(1-—

g)\*<€:)17(170)a — 1+M*p p( P O)(* s s) +§* ( O')Oé for s = 1’“.7]\]—7 (23)
ﬁ ps<€0> 8:

where (23) is the necessary first-order condition for the optimality of second period consumption.
Notice that these equations also include ef, A", p* and &£, moreover we have not yet set
parameters « and [ either. The parameter « is chosen such that the equilibrium level of
effort e equals 1/3, which is roughly the average fraction of working time over total disposable
time in the United States. Also notice that, given ps(ef) = 1/20 and €% = ¢ (n,) for all s, if we

sum equation (23) across income levels using weights as ps(ef) = 1/20 we obtain

20 20

g1 . 1-(1-0)a {'(1+a0—a) 1
e =1 24
> ) v > (24)

5 20 £ 20 2~ (n,)

Consequently, the data implies a further restriction between the parameters and endogenous

variables (3, a, A", £"), which we impose directly.
For the remaining variables/parameters, we use the following four optimality conditions,
which we require to be satisfied exactly. First, we have the normalized Euler equation (¢ =1

is substituted in all subsequent equations):

r N (o [
Q[0—e) ™) =53 p () L (25)
s=1 S
Then, we can use the first-order incentive compatibility constraint for effort,
—_a1l-0o N arl—co
[(1 - 68)1 ] * h 0 [(€9)7]
- (]' - a) 1— 68 = Bpexp(_pBO) Szl (ﬂ-s - ﬂ-s) Wa (26)
and the normalized first-order conditions for ¢,
A* l—a)(l—0
iy = L €20+ ag ) 20 @

(1—ep) (1—ep)
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Figure 2: Estimated Likelihood Ratio

together with the planner’s first-order optimality condition for effort

gr)i-o)a —a)(a —a)o
DA IR <5Zp;’(68)(as()1_0) ool >><1_eg>—a—<1—a>a—1>+

+£' (—ﬁ D_Pleg)ell ™ = (1= a)(1 = o) (1) (1 - eé)“‘“’“‘“)‘1>

Finally we obtain from the government’s budget constraint the implied government consump-

tion as a function of aggregate income as

G =g (Z wé) > palep)(n, — <2). (29)

Here we have used yy — ¢ = 0, the unit root process of income and Proposition 9.
We plot the estimated likelihood ratio on Figure 2. As expected (because of the same

properties of the estimated consumption function) the likelihood ratio is monotone and concave.
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4.4 Results

We use the preset and estimated/calibrated parameters of the above model (exogenous capital
taxes) to determine the optimal allocation for the scenario where capital taxes are chosen
optimally—assuming perfect observability /taxability of capital. Figure 3 displays second-period
consumption for this scenario together with the consumption function of the benchmark.

It is obvious from the picture that the average level of second-period consumption is higher in
the case with exogenous capital taxes (tax rate on capital income of 40%). This is of course not
surprising, given that optimal capital taxes in general imply frontloaded consumption (Rogerson
1985, Golosov et al. 2003).

We also observe that, since consumption is concave for the two cases, optimal labor income
taxes are progressive in both scenarios. Note that we can invoke the first part of Proposition
8. For relative risk aversion of 3, the function 1/u} is convex, hence 1/u}-concavity implies
concavity. However, recall that for the current computations we did not fix effort to be the
same across the two allocations, which was a requirement for Proposition 8. On the one hand,
this result shows that the endogenous response of effort to imperfect capital taxes does not affect
the qualitative results (at least for this set of parameters). On the other hand, we will also show
below that the changes in effort (and consequently the likelihood ratio) have a non-negligible
quantitative effect.

To compare progressivity across the two scenarios quantitatively, we use —c”’(y)/c(y) as
a measure of progressivity. In addition to the obvious analogy to ‘absolute risk aversion’,
the advantage compared to ¢’(y) is that it makes functions with different slopes ¢(y) more
comparable. A higher value of this measure obviously indicates a higher degree of progressivity.
On Figure 4, we have plotted this measure of progressivity for the optimal consumption plan for
the case when capital taxes are restricted and for the case when they are optimal. The pattern
is clear. The model with optimal capital taxes results in a uniformly more concave (progressive)
consumption function compared to the case when capital taxes are restricted. The differences
are particularly large for lower levels of income (and consumption).

We have quantified these graphical observations and have checked robustness to alternative
levels of risk aversion in Table 1. The results are qualitatively the same for all risk aversion levels,
but there are significant quantitative differences. In particular, the difference between the two
models is increasing in the level of risk aversion. The difference between the two progressivity

measures is negligible for log utility, but quite large for the other three cases (ranging between
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20 and 100 percent). Note that the change in measured progressivity is coming from two sources.
First, as Figure 3 shows, the concavity of the optimal consumption function (c(y)) is changing.
Second, the distribution of income changes, as effort is different under optimal capital taxes
compared to the benchmark case. For this reason, we calculate the measure of progressivity
both with and without this second effect (endogenous vs. exogenous weights). Comparing the
first and second rows of Table 1, we notice that the changing effort mitigates the increase in
progressivity in a non-negligible way only for higher risk aversion levels. This also implies that
effort is indeed higher when optimal capital taxes are levied. In turn, higher effort implies
a higher weight on high income realizations where the progressivity differences are lower (see
Figure 4). In any case, this second indirect effect through effort is small and hence the difference
in the progressivity measure is still increasing in risk aversion.

We obtain a similar message if we consider the welfare losses due to restricted capital
taxation in consumption equivalent terms (presented in the last row of Table 1). The losses
are negligible for the log case, considerable for the intermediate cases, and very large for high
values of risk aversion.

We have also displayed the optimal capital taxes, calculated as 7% = §/q — 1. Notice that 7%
is indeed the tax rate on capital, not on capital income. The 40 percent tax on capital income
in the benchmark model is equivalent to a 1.6% tax on capital. It turns out that optimal
taxes are much higher than this number for all risk aversion levels, including log utility. The
tax rates are actually implausibly high. Even in the log case, they imply a tax rate on capital
income of around 90 percent. For our benchmark case, the implied tax rate on capital income
would be around 1000 percent, or equivalently the after-tax return on savings is -37 percent.’
It is difficult to imagine how such distortionary taxes can be ever implemented in a world
where alternative savings opportunities (potentially with lower return) are available that are

not observable and/or not taxable by the government.

9Recall that the after-tax return on capital is given by 1/G — 1. This is equivalent to a tax rate on capital
income defined ast =1—(1/g—1)/(1/q—1).
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Table 1: Quantitative Measures of Progressivity, Welfare Losses and Capital

Taxes
Risk aversion 1 2 3 4

Average measure of progressivity (—c”(y)/c (y))
Optimal K tax (endog. weights) 0.670 0.800 0.963 1.102
Optimal K tax (exog. weights) 0.670 0.804 0.978 1.141
K tax=1.56 (40% on K income) 0.644 0.644 0.644 0.644

Welfare losses from not taxing capital optimally (%)
0.035 0.295 1.309 3.372
Optimal capital tax (%)
= /g —1 3.80 2515 65.82 123.1

We can get some intuition why the differences are increasing in the risk aversion of the agent
0:=1—(1—0)a) by examining equation (23) for our specification:
Y g
TRV exp(—peg) (4 — )
AT = =1+u'p :
B €% ps(€)

The direct effect of restricted capital taxation is driven by £*a(e?). Note that the higher is 7,

~

fori=1,...,N.

the higher is the discrepancy between the Euler equation characterizing the restricted capital
taxation case and the inverse Euler characterizing the optimal capital taxation case. This will
imply that £ is increasing with . Moreover, absolute risk aversion is given by &/e¥, which
is also increasing in ¢. Hence the effect of hidden asset accumulation (or suboptimal capital
taxes) is increasing in risk aversion for both of these reasons. The larger discrepancy between
the Euler and inverse Euler equations also explains that optimal capital taxes must rise with
risk aversion in order to make these two optimality conditions compatible. The same argument
also explains why the welfare costs of restricted capital taxation are increasing in risk aversion.

As another robustness check, we examined how the results would change if we use only
non-durable consumption as our measure of consumption. As we have seen on Figure 1, the
main difference between the two consumption measures is that non-durable consumption is less
dispersed (the average slope is significantly lower). Table 2 contains the average measures of
progressivity, optimal capital taxes and the welfare losses of restricted capital taxation for the
benchmark risk aversion case. First of all, note that our normalized measure of progressivity
shows that, although non-durable consumption is flatter, the progressivity is very similar (recall

that the model with restricted capital taxation replicates perfectly the consumption allocation
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for both cases). Second, notice that, with non-durable consumption, we again have a significant
increase in progressivity when we impose optimal capital taxes. This once more implies a
sizeable welfare gain and a highly implausible tax rate on capital. The only difference is
quantitative: all these properties are somewhat less pronounced: for example the increase in
progressivity here is 25 percent while it is around 50 percent in the benchmark case. The general
message is that whenever the overall level of insurance is higher (consumption responds less to

income shocks), imperfect observability /taxability of capital tends to have a smaller effect.

Table 2: Different Consumption Measures

Risk aversion =3 mnon-durable total expenditure

Average measure of progressivity (—c”(y)/c (y))

Optimal K tax (endog. weights) 0.849 0.963
Optimal K tax (equal weights) 0.853 0.978
K tax=1.56 (40% on K income) 0.687 0.644

Welfare losses from not taxing capital optimally (%)

0.434 1.309

Optimal capital tax (%)
*—dlg—1 37.05 65.82

Hence, we can conclude that the following three main points of our analysis are robust to
different levels of risk aversion (as far as the coefficient of relative risk aversion is not to low) and
to different measures of consumption: (i) Restricted (as opposed to optimal) capital taxation
leads to less progressive optimal income taxes. (ii) There are significant welfare losses due to
this restriction on capital taxation. (iii) The implied optimal capital taxes are implausibly high.

Finally, we would like to relate the quantitative results to our theoretical ones. In the pre-
vious section, we have shown that under convex absolute risk aversion, whenever consumption
is concave function of the likelihood ratio in the restricted capital tax case, the same must
hold in the model with optimal capital taxes. Recall that this result was obtained assuming
constant effort levels across the two scenarios. Therefore we compute the optimal allocation
for the scenario with 40 percent capital income taxation given the effort level from the optimal
capital tax case. Intuitively, we disregard the planner’s optimality condition regarding effort
in this case. Figure 5 displays the results of these calculations as a function of the likelihood

ratio, which is (by construction) the optimal likelihood ratio under optimal capital taxes.
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This figure is clearly in line with the theoretical results. First of all, consumption is a concave
function of the likelihood ratio in both scenarios. Moreover, consumption under optimal capital

taxation is a concave transformation of consumption under restricted capital taxation.

5 Concluding remarks

This paper analyzed how restrictions to capital taxation change the optimal tax code on labor
income. Assuming preferences with convex absolute risk aversion, we found that optimal con-
sumption moves in a more convex way with labor income when asset accumulation cannot be
controlled by the planner. In terms of our decentralization, this implies that marginal taxes on
labor income become less progressive when restrictions to capital income taxation are binding.
We complemented our theoretical results with a quantitative analysis based on individual level
U.S. data on consumption and income.

The model we presented here is one of action moral hazard, similar to Varian (1980) and
Eaton and Rosen (1980). The framework has the important advantage of tractability. Although
a more common interpretation of this model is that of insurance, we believe that it conveys a
number of general principles for optimal taxation that also apply to models of ex-ante redistri-
bution.

While the standard Mirrlees model focuses on the intensive margin (with notable excep-
tions, e.g., Chone’ and Laroque, 2010), the model we consider here focuses on the extensive
margin. The periodic income y is the result of previously supplied effort and is subject to
some uncertainty. Natural interpretations for the outcome y include the result of job search
activities, the monetary consequences of a promotion or a demotion, i.e., of a better or worse
match (within the same firm or into a new firm); or again - for self-employed individuals - y
can be seen as earnings from the entrepreneurial activity. It would not be difficult to include
an intensive margin into our model in ¢ = 1. Suppose, for simplicity, the utility function takes
an additive separable form u; (¢) —v (n), where n represents hours of work. If we now interpret
y as productivity, total income becomes I = yn. Clearly, our analysis would not change a bit if
both y and I were observable, while the case where the government can only observe I is that

of Mirrlees (1971).%°

20In this case, the intensive-margin incentive-constraints would take the familiar form: dil(;’) uy (e(y)) =

wd;—(yy). The analysis of the intensive margin is standard. If we assume no-bunching, the validity of the
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A Simple Dynastic Model: We conclude by proposing a simple extension of our model
that allows for multi-periods with ‘dynastic’ considerations through ‘warm glow’ motives for
bequests. Assume that in the last period preferences are u;(c*k'™), with w € (0,1). Here,
¢ is consumption as above, while k represents bequest transfers to future generations. Given
the net income y + 7 (y) in the last period, the agent solves (note that there are no reasons to
impose capital taxes in £ = 1, at least not in order to alleviate incentives):

wil—w
max ur (k)

s.t. ctk=y+71(y).

The chosen functional form implies that expenditures on ¢ and k will be fixed proportions of
the disposable income, namely: ¢ (y) = w(y+7(y)), and k (y) = (1 —w)(y + 7 (y)). This model
with bequest is hence equivalent to our original model with utility a(y + 7) = w1 (A (y + 7))

where u; is our original utility function and A = w*(1—w)'~¥

is a constant. Clearly, none of our
theoretical results changes, since properties such as the convexity of the absolute risk aversion
are invariant to this modification. We did not find any sizable quantitative difference either.?!
Since we are interested in the curvature of the consumption function and its changes due to
restrictions to capital income taxation, it is intuitive that such extension has little impact on
our results.

It is not difficult to see how such model can be embedded into a fully dynastic framework.
When y is observed, k is easily computable as a (deterministic) function of y + 7 since the

warm glow mechanics does not leave space for strategic considerations in the inter-generational

FOA for effort, and use the envelope theorem, it is not difficult to derive the formula for third-best allocations

as:

g\ e
m:“rul(y;e)ﬂLfa(C(y))*mv (30)

where the multiplier associated to the intensive-margin incentive-constraint ¢ (y) is - as usual - related to the
Spence-Mirrlees condition and the labor supply distortion,and it satisfies ¢ (g) = ¢ (y) = 0. The comparison
between the case with restricted and unrestricted capital taxation amounts again to considering the cases with
& > 0 and £ = 0 respectively. Although the forces at play are the same as above, an analytic analysis with

intensive margin (and private information on y) is complicated by the fact that both X, u, and the whole schedule

¢ (+) change.
21Details are available upon request. In our robustness computations, w has been calibrated to match the

top bracket. Alternatively, one could set this parameter so that to match the average marginal propensity to

consume in the population.
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transfer of wealth. Then k would play the role of yq for the next generation. Of course, this
framework generates heterogeneity in the initial endowments. However, the link between ¢y and
yo would be dictated by distributional motives alone (i.e., no incentive constraint would play

any role here), along the lines of the quantitative section. Details are available upon request.

A  Proof of Lemma 1.

Simple algebra shows

D) 1 1 ¢
95 ,elC) = =g ulc) + — — = — —alc).
A,mf() )\M P«() L [ M()

If u belongs to the HARA class, we obtain

B qYA v
afc) = <5(1 —y)p(1+ ug,\,u(c))> .

Defining  := (q7)Y7(8(1 — v)p)~Y7 > 0, this implies

~ ~

) 1 IS 1/ —1/
G5 :(0) = —=agulc) + — — = = X TR(1 4 pgy u(c kS
3ind(€) = Jronnl(e) + 2= 2= ZATTA( u(€))

Equivalently, we have g5 , :(c) = h (gx,(c)), where the function % is defined as

A1 o1
hig)="g+~— - - §A1/m(1 +pg) ™7,
A N

The second derivative of h with respect to g equals —&(1-+7)kAY 720ty 2(1+ pg)? /7, which
is negative whenever v > —1. Q.E.D.

B Proof of Proposition 9.

The linear separability of the planner’s problem implies that, given individual transfers t’, the optimal

allocation must solve the following individual contracting problem:

l1—0o

| @ wa =]
V' = max "

chucliel a(l—o)

+szs (BZO) [(Cé) (’U (T)) - ]

a(l—o)
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s.t.

with ' > 0. Because preferences are homothetic, the incentive constraints depend only on gl =cl/cl

and 66. We can hence change the choice variables and rewrite the individual contracting problem as

| oy oy e em ™)

| vt | [T =)
V'= max o' (c) (=) [ all=o)

ci.eled Q (1 - U) s

s.t.

Yo — o+ a ) _ps (o) [yoms — coes] = 1

s

—a) v (T — €} iy 1-a]l™? s [EDT (D)
(1) (T )[(U(T_eo)) |77 = 58 (e [()" (v (7)) ]

a  v(T—eh) a(l — o)

[0 —a) ] = 5 (e LSO

£

l1—0o

l1—0o

Now fix some individual j. By continuity we can find a transfer #/ such that the solution (C’é*, e%*, S
to the associated individual problem satisfies C’é* = ’yyg. By non-satiation of preferences, #/ is given

by

=yl — i+ > ps () [0, — ey =yt

We claim that transfers defined as ¢ := yét* imply that for all 7 the contract

ik 7

Co = 7YYo

ey = €, and
i J*

gs - 88 )
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solves the individual contracting problem. Suppose the claim is false for some 7. By the construction
of transfers, the contract (yyg, 66*, £7*) is incentive-feasible. Hence if the claim is false the value V"

must be strictly higher than the one generated by (”yyé, eé*, 5@*). This implies

a(l—0) [(v (T _ 66*))17(1 -0

a(l—o)

l-0o

Vs (wi) oY ) B D]

a(l—o)
wi (796)(1((10)) Vi

; ina(l—o :
W (v93)

On the other hand, the contract (cg*yg/yé, e, e

D%

) is incentive-feasible for the individual contracting

problem V7. Hence we get

i, 7\ 20179 v (T —ef e (e 1—a7l-o
Vis g <_y> =] 53 (o) [E @)

Y a(l—o)

V" (vo)

Taken together, the two inequalities imply V¢ > V', a contradiction. Q.E.D.
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