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Garbade and Silber (1979) demonstrate that an asset will be liquid if it has (1) low
price volatility and (2) a large number of public investors who trade it. Although
these results match nicely with common notions of liquidity, one key element is
missing: liquidity also depends on (3) an asset’s correlation with other securities.
For example, if an illiquid asset is highly correlated with a liquid asset, then specu-
lators will naturally step in and “make it liquid”. In this paper, we update Garbade
and Silber’s model to include an infinitely liquid market security. We show that
when the market security is added, the liquidity of the non-market asset is still a
decreasing function of volatility and an increasing function of investor participa-
tion, but it is now also an increasing function of its correlation with the market.
Furthermore, we show that at a critical correlation value of ρc ≈

√
3/4, it is op-

timal for the asset to continuously clear, i.e., for orders to transact immediately
when placed in the market. This low-latency result holds regardless of the other
properties of the asset. The updated model can help answer several questions
relevant to current financial markets: “How and why do short-term speculators
provide liquidity in markets?”, “How much benefit do these speculators add?”,
and “Can extremely low-latency in markets be beneficial?”
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I Introduction

An asset is commonly considered liquid if it can be traded quickly at a price

close to its equilibrium value. As Garbade and Silber (1979) point out, there are two

fundamental factors that can disrupt the trading prices of investors, and therefore,

that affect liquidity. The first factor is price volatility. All other things equal, an

investor will find it more difficult to trade an asset at an agreeable price if it has

high volatility. Therefore, we should expect liquidity to be a decreasing function of

volatility. The second factor is market size, i.e., the number of public investors who

trade the asset. All other things equal, an investor will find it difficult to trade an asset

at an agreeable price if there are few counterparties to trade with. Liquidity, therefore,

is affected by market participation, and we should expect liquidity to increase with

market size.

There is, however, a third fundamental factor that affects liquidity: the correlation

of an asset’s value with the values of other assets.1 Indeed, when an otherwise illiquid

asset is correlated with a liquid asset, speculators will naturally step in and thereby

increase the asset’s liquidity. The process itself is not zero-sum – speculators do not

take liquidity from one asset and shift it to the other. Liquidity is actually enhanced

for both assets; the proportional effect is just much greater for the illiquid asset.2

To analyze this process of cross-asset liquidity enhancement, we update the model

of Garbade and Silber (1979). We add an infinitely liquid “market security” and study

its influence on the liquidity of the non-market asset. As we show below, the market

security positively affects the liquidity of the non-market asset in all cases except

when the asset’s value is completely uncorrelated with the market. Furthermore, we

show that when the correlation exceeds a critical threshold of ρc =
√

3/4 ≈ 0.87, that

1Asymmetric information is another factor that can affect liquidity. Most models produce a
negative relationship between asymmetric information and liquidity (e.g., Glosten and Milgrom,
1985, and Kyle, 1985). The dynamics are complicated, however, and in fact, liquidity can also
increase with asymmetric information (see Vayanos and Wang, 2012). Finally, it should be noted
that all of these factors, although more fundamental than variables such as the bid-ask spread or
market depth, should, in part, be determined endogenously.

2See Myers and Gerig (2013) for a primitive analysis that demonstrates the liquidity enhancing
effect in both assets. In their analysis, the assets are identical but traded in two markets.
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it is optimal (from the investors’ perspective) for the asset to trade continuously, i.e.,

with zero latency.

The framework of Garbade and Silber is extremely useful for studying liquidity

– it abstracts from microstructure variables such as bid-ask spreads and order book

volumes and grounds liquidity in more primitive economic variables: the volatility of

assets and the aggregate activity of investors within these assets. Furthermore, it sets

the target price of an investor to the equilibrium price that held when the investor

first decided to trade rather than to a future end-of-period price, which is commonly

assumed in other microstructure models (e.g., Glosten and Milgrom, 1985, and Kyle,

1985). Direct adverse selection, therefore, is not of concern to the investors. Instead,

it is important to transact at a price that minimizes what Garbade and Silber call

liquidity risk – the variance of the difference between the equilibrium value of an

asset at the time a market participant decides to trade and the transaction price the

investor ultimately realizes. Such a definition captures well the concerns of many

large investors in the market and is the metric we adopt in this paper to measure

liquidity.

There are further attributes of Garbade and Silber’s model that make it especially

relevant to current financial markets. Liquidity provision in their model is a compet-

itive enterprise based on arbitrage and signal extraction from previous orderflow, and

it naturally arises out of speculative activity. More important, their model does not

fall apart when liquidity providers are removed from the market (in contrast to many

other models in market microstructure). This feature allows direct analysis of the

benefits of speculative trade. Such an analysis is of utmost importance for current

financial markets, where designated dealers and market makers serve a secondary role

to proprietary, automated, high-frequency, and low-latency speculators (see Gerig and

Michayluk, 2013). Although there is evidence that some high-frequency traders do

not provide liquidity (cf. Hirschey, 2013), the vast majority appears to actually do

so by conditioning their strategies on price movements in correlated securities just as

in our model (cf. Gerig, 2012, Gerig and Michayluk, 2013, and references therein).
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Finally, Garbade and Silber’s framework can be used to study the optimal latency

of financial markets. In their model, liquidity risk is directly affected by the interval

between market clearings, i.e., latency. Because latency is not a fundamental economic

variable, Garbade and Silber treat it as a control variable and determine the optimal

latency of the market from an investor’s perspective. Although many others have

described the low-latency environment in current financial markets as an “arms race”

(e.g., Haldane, 2011, Farmer and Skouras, 2012, and Budish et al., 2013), our model

is the first to quantify the benefits of low-latency trade.

The rest of the paper is organized as follows. Section II reviews the relevant

literature, Section III presents the baseline model, Section IV analyzes the model with

a competitive, risk-neutral liquidity provider, Section V further adds an additional

market security, and Section VI concludes.

II Literature Review

Our paper is particularly related to three research strands: (1) the impact of tech-

nological innovations on market quality and the optimal structure of market clearing,

(2) the private and social benefits of liquidity provision, and (3) the relationship be-

tween the liquidity of an asset and its correlation with the overall market. Below we

provide a brief overview of the literature on the these three topics.

Our paper is related to the literature focusing on the impact of technological

innovations on market quality (e.g. Garbade and Silber, 1978, and Easley et al.,

2013)3 and the optimal structure of markets (e.g. Garbade and Silber, 1979, Amihud

et al., 1997, Kalay et al., 2002). Garbade and Silber (1978) examine the effects of

the introduction of two major innovations in the information transmission of financial

markets, namely the establishment of the telegraph (starting around 1840) and the

establishment of the consolidated tape at the New York Stock Exchange (NYSE) in

1975. With the telegraph inter-market price differentials quickly narrowed, whereas

3An excellent overview of empirical studies on financial innovation can be found in Frame and
White (2004).
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the introduction of the consolidated tape did not have a discernable effect.4 In a

similar fashion, Easley et al. (2013) investigate the effects of an upgrade of the posts

on NYSE in 1980. This particular technological change provided off-floor traders

with lower latency across different dimensions, i.e., faster order submission and more

recent information on trades and quotes. The authors show that this innovation had

significant positive impacts on liquidity, turnover, and returns. The main explanation

is that slower off-floor traders could reduce their exposure to adverse selection by

conditioning their activity on more recent information.

Amihud et al. (1997) and Kalay et al. (2002) investigate a major change in

the trading mechanism of stocks on the Tel Aviv Stock Exchange (TASE). In 1987,

trading of large cap stocks on TASE was moved from once-a-day call auctions to an

opening call auction followed by iterated continuous trading. As explained in Garbade

and Silber (1979), an increase in the clearing frequency has two counteracting effects

on liquidity risk: while it allows investors to act on more timely information, trading

volume is inter-temporally fragmented. Both studies conclude that the former effect

exceeded the latter: market quality, liquidity, and trading volumes increased for large

stocks. In contrast, smaller stocks that still traded by call auctions experienced a

significant loss in volume relative to the overall market volume. Kalay et al. (2002)

conclude that investors prefer continuous to periodic trading, i.e., there is a demand

for immediacy. In contrast, Hendershott and Moulton (2011) study a more recent

change in the introduction of the NYSE Hybrid Market, which increased automation

and significantly reduced the execution time for market orders (from 10 seconds to less

than one second). While bid-ask spreads increased, prices became more efficient. In

this way, technological change did not increase market quality among all dimensions.

The theoretical literature on the optimal clearing frequency of markets is relatively

sparse. To the best of our knowledge, Garbade and Silber (1979) were the first to

show that the liquidity risk of the average investor is minimized for intermediate

clearing frequencies, i.e., most markets should neither operate in a truly continuous

4The authors speculate that the consolidated tape added little value due to rather efficient
pre-existing telecommunication links.
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fashion nor be cleared very infrequently. Later on, most studies were less concerned

with determining the optimal speed of markets, but rather compared continuous and

periodic market clearings in general. For example, Madhavan (1992) investigates the

performance of order- and quote-driven systems in the different clearing scenarios.

The main finding is that a quote-driven system provides greater price efficiency than

a continuous auction system, highlighting the importance of dealers in quote-driven

markets. However, with free entry into market making, the equilibria of the two

mechanisms coincide. Moreover, the periodic trading mechanism can function when

a continuous market fails. More recently, Farmer and Skouras (2012) and Budish

et al. (2013) proposed periodic market clearings as a market design response to the

high-frequency trading arms race, however, without proposing a model that allows to

solve for the optimal clearing frequency.

Our paper is also related to the literature focusing on the nature and effects

of liquidity provision (see for example Stoll, 1978, Ho and Stoll, 1980,1981, Pithy-

achariyakul, 1986, and Grossman and Miller, 1988). While showing that liquidity

provision, i.e. market-making, improves market quality in many cases, the nature of

the underlying models used in these papers makes it difficult to directly quantify its

effects. In this paper, we can quantify the value of a liquidity provider. Contrary

to the standard literature, the liquidity provider in our model has no designated role

in the market apart from being able to observe the order flow, and the market still

clears without her presence. Therefore, the increased liquidity in the presence of the

liquidity provider is directly attributable to her.

In this way, our study is also related to recent discussions about the effects of high-

frequency traders in markets. Many empirical studies indicate that market quality

has improved across many dimensions with the arrival of high-frequency traders (see

e.g. Hendershott et al., 2011, and Riordan and Storkenmaier, 2012), and this is likely

due to their liquidity providing activities as modeled here.

In our model, we deliberately ignore issues of adverse selection and differentials

in speed between investors. Other theory papers have focused on the effects of dif-
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ferential access to speed and how this can increase adverse selection in markets (cf.

Bias et al., 2013, and Budish et al., 2013). However, empirical evidence suggests

that low-latency trading has exactly the opposite affect on adverse selection and even

more so when investors have differential access to speed (see Brogaard et al., 2013,

Hasbrouck and Saar, 2013). Low-latencies in markets, therefore, seem to aide the

kind of speculative activity that provides liquidity (i.e., the kind we model here and

that is directly modeled as liquidity provision in Gerig and Michayluk, 2013) rather

than the bad kind of activity that inhibits the work of liquidity providers.5

Lastly, our paper highlights the relationship between the liquidity of an asset

and its correlation with the overall market. In a recent empirical study, Chan et al.

(2013) show that the liquidity of a security increases with the fraction of volatility

due to systematic risk, exactly as predicted in our model. Furthermore, they find

that improvement in liquidity following the addition of a stock to the S&P 500 Index

is directly related to the stocks increase in correlation with the market.

The only other paper we are aware of that directly models the relationship be-

tween the liquidity of an asset and its correlation to other securities is Baruch and

Saar (2009). In their model, as in our model, the liquidity provider can form a better

estimate of prices when observing order flow from correlated assets. However, they

use a multi-asset framework in the spirit of Kyle (1985) and their results are due to

reductions in adverse selection costs for the liquidity provider. Because our liquidity

provider is a speculator, our results are due to the profit motives of the speculator,

i.e., using signals in one security to trade in another, rather than lower adverse selec-

tion costs (which we believe to be a more accurate description for modern financial

markets).

5We leave the interaction between “good” and “bad” high-frequency trading algorithms as an
interesting avenue of future research.
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III Baseline Model

As in Garbade and Silber (1979), we consider a single security that is traded by

public investors in a market with periodic clearings. (In later sections, we consider the

addition of liquidity providers and also a second security.) The time interval between

clearings is denoted by τ , and ultimately, we will be interested in determining the

optimal τ from an investor’s perspective.6

Between two subsequent clearings, investors (indexed in each interval by i) arrive

at a constant rate ω and submit excess demand schedules to the market. These

demand schedules are unobservable to other investors and remain in the market until

the next market clearing. At each clearing, the transaction price is set to the value

that clears the market, i.e., to the value that produces zero aggregate excess demand.

The excess demand schedule of the ith investor is a linearly increasing function of the

reservation price of the investor, ri, and a linear decreasing function of the clearing

price, p,

D(p) = a(ri − p), (1)

where a is a positive constant assumed the same for all investors.7 Note that the ith

investor will be a net seller of the security if ri < p and will be a net buyer if ri > p.

Between any two clearings, a total number K = ωτ investors will submit excess

demand schedules to the market. The market clearing price is the unique price that

sets aggregate excess demand to zero,

0 =
K∑
i=1

a(ri − p). (2)

Rearranging the equation reveals that the clearing price is the average reservation

6Note that we attempt to keep our notation as consistent as possible with Garbade and Silber’s
original paper.

7In order to keep the notation simple, we drop time-indices whenever there is no potential for
confusion.

7



price of the arriving investors,

p =
K∑
i=1

ri/K. (3)

We assume there exists an unobservable equilibrium price for the security, mt, at

all times and that the reservation price of investor i is normally distributed around the

prevailing equilibrium price, mt−1+i/τ (which we denote mi for short), at the instant

the investor decides to trade,8

ri = mi + gi, (4)

gi ∼ N(0, σ2), (5)

where gi is assumed to be uncorrelated across investors. We denote by r̄t the average

reservation price of the investors at market clearing t (which is the market clearing

price when the market does not contain liquidity providers),

r̄t =
K∑
i=1

(mi + gi)/K. (6)

We denote by m̄t the average equilibrium price over the interval, m̄t =
∑

imi/K, and

we denote by ft the average of gi, i.e., ft =
∑

i gi/K. Note that,

r̄t = m̄t + ft, (7)

ft ∼ N(0, σ2/(ωτ)). (8)

We assume that the instantaneous equilibrium price mt evolves as a driftless Brow-

nian motion with variance (3/2)ψ2, i.e., mt = (3/2)ψ2Bt (the prefactor 3/2 is used for

convenience and its purpose will become apparent in the following equation). There-

8In Garbade and Silber (1979), the investor decides to trade at time t−1/2 but has a reservation
price that is normally distributed around the future equilibrium price at time t. We have chosen
a different setup (which we believe is more natural) where the reservation price of an investor
is normally distributed around the instantaneous equilibrium price at the time he/she decides to
trade. This departure means that much of our analysis will be based on average equilibrium prices
over the interval τ rather than on instantaneous equilibrium prices as in Garbade and Silber (1979).
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fore, the average equilibrium price for investors at clearing t evolves according to the

following equation,

m̄t = m̄t−1 + et, (9)

et ∼ N(0, τψ2), (10)

where we have used the result that the variance of the difference between two con-

secutive averaged points (each over an interval τ) of a standard Brownian motion

is,

Var

[
(1/τ)

∫ 2τ

τ

Bt dt− (1/τ)

∫ τ

0

Bt dt

]
= (2/3)τ. (11)

We assume that et is serially uncorrelated and also uncorrelated with gi and therefore

ft.

A Liquidity Risk

As in Garbade and Silber (1979), we define liquidity risk as the variance of the

difference between the equilibrium value of the security when an investor arrives at

the market, mi, and the transaction price ultimately realized for the investor’s trade,

in this case r̄t.
9 The liquidity risk for investor i in a market without liquidity providers

is therefore,

VP = Var[(r̄t − m̄t) + (m̄t −mi)], (12)

= Var[r̄t − m̄t] + Var[m̄t −mi], (13)

where the two expressions in parentheses separate because there is no covariance

between them. The variance of the first term, Var[(r̄t − m̄t)], is just the variance of

ft. For the second term, the variance depends on the arrival time of the investor. If

the investor arrives at a point in time that is a fraction φ of the total interval τ from

9Grossman and Miller (1988) use a very similar definition of liquidity risk.
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the previous clearing (i.e. φ ∈ [0, 1]), then the variance of the second term will be,

Var [(m̄t −mi)] = Var

[(∫ φτ

0

(3/2)ψ2Bt dt+

∫ τ−φτ

0

(3/2)ψ2Bt dt

)/
τ

]
, (14)

= (1/2)
[
φ3 + (1− φ)3

]
τψ2. (15)

If the investor arrives at the beginning or end of the interval (φ = 0 or φ = 1), then

the variance is at its maximum value, (1/2)τψ2, and if the investor arrives in the

middle of the interval (φ = 1/2), the variance is at its minimum value, (1/8)τψ2. The

final equation for liquidity risk in a market of public investors is therefore,

VP = Var[(r̄t − m̄t) + (m̄t −mi)], (16)

= Var[r̄t − m̄t] + Var[m̄t −mi], (17)

= σ2/(ωτ) + (1/2)
[
φ3 + (1− φ)3

]
τψ2. (18)

If we assume that the timing of an investor’s trading decision is uncorrelated with

the timing of market clearings, we can average over all φ in the interval [0, 1], which

gives
∫ 1

0
(φ3 + (1− φ)3) = 1/2. Liquidity risk is therefore,

VP = σ2/(ωτ) + τψ2/4. (19)

Because our setup is different than Garbade and Silber (1979), our equation for

liquidity risk is slightly different (specifically, the denominator of the second term in

their paper is 2 instead of 4). Notice that liquidity risk is increasing in the volatility of

the security, increasing in the variance of investor reservation prices, and decreasing in

the frequency of investor arrival. The effect of the clearing frequency (1/τ) on liquidity

risk is nonlinear. When market clearings are frequent, this decreases the difference

between the clearing price and the average equilibrium price of the security, but it also

increases the difference between the average equilibrium price of the security and the

specific equilibrium price used as a reference by the investor. There is a “Goldilocks”
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Figure 1: Liquidity risk, VP , as a function of the time between market clearings, τ , in
a public market without a liquidity provider. Parameters used in the plot are ψ = 1,
σ = 1, and ω = 10. The optimal point (V ∗

P , τ
∗
P ) is shown with an asterisk. Also shown

are the components of liquidity risk σ2/(ωτ) and τψ2/4.

value for τ that optimizes the tradeoff between these two effects, and we determine

this value below.

The optimal trading interval τ ∗P from an investor’s perspective is just the value of

τ that minimizes liquidity risk. This value can be found by taking the derivative of

liquidity risk with respect to τ and setting to zero,

τ ∗P = 2
σ/ω1/2

ψ
. (20)

The minimum value of liquidity risk, VP∗ = VP (τ ∗P ), is,

V ∗
P =

(
σ/ω1/2

)
ψ. (21)

In Fig. 1, we show liquidity risk as a function of the time between market clearings,
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τ , when ψ = 1, σ = 1, and ω = 10.10 We also show the optimal point (V ∗
P , τ

∗
P ).

IV Model with a Liquidity Provider

As discussed in Garbade and Silber (1979), enterprising individuals (i.e., specula-

tors) can devise a better estimate for the equilibrium price than is contained in the

market clearing price rt and can profit by buying and selling according to this esti-

mate. In fact, Garbade and Silber (1979) show that the rt’s will be mean-reverting,

which opens up profit opportunities for liquidity providing speculators who trade on

order-flow information.

Here, we assume that a single competitive and risk-neutral liquidity provider (or

speculator) exists, that she observes the aggregate excess demand of the market di-

rectly before the market is cleared, and that she submits an excess demand schedule

at each market clearing such that the clearing price always equals her estimate of the

equilibrium price. Many of the seminal market microstructure papers published after

Garbade and Silber (1979) (such as Glosten and Milgrom, 1985, and Kyle, 1985) as-

sume the same type of competitive, risk-neutral liquidity provider. While the benefit

of the liquidity provider cannot be analyzed in these other models, it can actually

be quantified in Garbade and Silber’s framework. Below we show that the liquidity

provider reduces the minimum liquidity risk of public investors by a factor of 1.5. In

the next section, we show that when the liquidity provider can reduce liquidity risk

even is further when she is enabled to observe the price of the “market”, an infinitely

liquid asset that has some correlation with the non-market asset.

A Liquidity Risk

The liquidity provider will form an estimate of the average equilibrium price over

the interval, which we denote by m̂t, and will submit a demand schedule that forces

10Here we use the parameter values of Garbade and Silber (1979). An important advantage of
the model, however, is that we can calculate the optimal clearing frequency based on empirical
parameter estimates.
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the clearing price to this value. Therefore, in the equation for liquidity risk, the

clearing price is m̂t instead of r̄t.

The model with a liquidity provider is a special case of the model presented in the

next section. Here, we just present results for liquidity risk and leave details of the

derivation to the next section and the Appendix.

VL = Var[(m̂t − m̄t) + (m̄t −mi)], (22)

= Var[m̂t − m̄t] + Var[m̄t −mi] + 2 Cov[m̂t − m̄t, m̄t −mi], (23)

=
2 [φ1 + (φ2 − 1/2)] τψ2 + 2(φ1 − 2φ2)τψ2

√
1 + 4σ2/ω

τ2ψ2 + 4σ2/(ωτ)

2
(

1 +
√

1 + 4σ2/ω
τ2ψ2

) , (24)

where,

φ1 ≡ (1/2)
[
φ3 + (1− φ)3

]
, (25)

φ2 ≡ (1/4)
[
φ3 + 2(1− φ)3 + 3(1− φ)φ2

]
. (26)

If the investor’s arrival time is not correlated with the timing of market clearings,

then liquidity risk is the expectation over φ,

VL =
(1/2+) τψ2 + (1/2)τψ2

√
1 + 4σ2/ω

τ2ψ2 + 4σ2/(ωτ)

2
(

1 +
√

1 + 4σ2/ω
τ2ψ2

) . (27)

A plot of VL(τ) is shown later in Fig. 4. The optimal trading interval τ ∗L is,

τ ∗L =

(
2√
3

)
σ/ω1/2

ψ
, (28)

and the value of minimum value of liquidity risk is,

V ∗
L =

(
7

6
√

3

) (
σ/ω1/2

)
ψ. (29)
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Notice that with the liquidity provider, the optimal clearing frequency (1/τ ∗L) in-

creases by a factor of
√

3 ≈ 1.7 from the public market case (regardless of the other

parameters). In addition, the liquidity provider reduces liquidity risk by a factor of

6
√

3/7 ≈ 1.5, again regardless of the values of other parameters in the model.

V Model with a Liquidity Provider and Market Information

In general, for a market of N securities, the average reservation price of the dif-

ferent securities at market clearing t can be written as

r̄t = m̄t + ft, (30)

ft ∼ N(0,Σ), (31)

and the average equilibrium price over the market clearing interval equals

m̄t = m̄t−1 + et, (32)

et ∼ N(0,Ψ), (33)

where r̄, m̄, f̄ , and ē are N × 1 vectors and Σ and Ψ are N ×N matrices.

For a market of relatively few securities, it is not too difficult to calculate estimates

of m̄t (we denote this estimate by m̂t) and to determine liquidity risk when Σ and Ψ

are fully specified. The process involves numerically solving the appropriate discrete

time algebraic Riccati equation (see the Appendix) and then using this solution in

straightforward equations. Analytic results, however, are often extremely messy –

even for just two securities.

In order to present analytic results, we treat the model with a liquidity provider

in a large market as a special case of a two security market where the second security
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is the “market security”,

r̄t =

 r̄t

r̄M,t

 m̄t =

 m̄t

m̄M,t

 (34)

ft =

 ft

fM,t

 Σ =

 σ2/(ωτ) %σσM/(
√
ωωMτ)

%σσM/(
√
ωωMτ) σ2

M/(ωMτ)

 (35)

et =

 et

eM,t

 Ψ =

 τψ2 ρτψψM

ρτψψM τψ2
M

 , (36)

where % is the correlation of investor order flow across the two securities and ρ is the

correlation of equilibrium price returns across the two securities. We make an idealized

assumption that order flow for the market security is so frequent that ωM � 1 and,

Σ ≈

σ2/(ωτ) 0

0 0

 (37)

The liquidity provider, therefore, has perfect information about the average equilib-

rium price of the market security at each clearing.

A Liquidity Risk

In this setup, liquidity risk can be written as

VM = Var[(m̂t − m̄t) + (m̄t −mi)], (38)

= Var[m̂t − m̄t] + Var[m̄t −mi] + 2 Cov[m̂t − m̄t, m̄t −mi], (39)

= S(1,1) + φ1τψ
2 + 2(G(1,1) − 1)φ2τψ

2 + 2G(1,2)φ2ρτψψM , (40)

where S(1,1), G(1,1), and G(1,2) are the respective elements of the matrices used in

the Kalman filter when solving for m̂t. A derivation of this equation is given in the

Appendix.
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Figure 2: Liquidity risk, VM , as a function of the time between market clearings, τ ,
in a market with a liquidity provider and market information. Curves are shown for
parameters ψ = 1, σ = 1, ω = 10, and with Θ = 0 to Θ = 1 in increments of 0.1.

Solving the Riccati equation and plugging into Eq. 40 (see the Appendix),

VM =
2 [φ1 + (φ2 − 1/2)Θ] τψ2 + 2(φ1 − 2φ2Θ)τψ2

√
1 + 4σ2/ω

Θτ2ψ2 + 4σ2/(ωτ)

2
(

1 +
√

1 + 4σ2/ω
Θτ2ψ2

) , (41)

where Θ ≡ 1−ρ2. Again, if we assume that the investor’s arrival time is not correlated

with the timing of market clearings, then liquidity risk is the expectation over φ,

VM =
(1/2 + Θ) τψ2 + (1/2−Θ)τψ2

√
1 + 4σ2/ω

Θτ2ψ2 + 4σ2/(ωτ)

2
(

1 +
√

1 + 4σ2/ω
Θτ2ψ2

) (42)

In Fig. 2, we show liquidity risk, VM , as a function of the time between market

clearings, τ , when ψ = 1, σ = 1, ω = 10, and with Θ = 0 to Θ = 1 in increments of
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0.1. Liquidity risk decreases as the correlation of the asset with the market increases

(i.e., as Θ increases). When the asset is perfectly correlated with the market (Θ = 0),

liquidity risk becomes a linearly increasing function of τ (namely τψ2/4). In this case,

liquidity risk can be completely eliminated by allowing markets to clear continuously,

i.e. setting τ = 0. At the other extreme, when the asset is uncorrelated with the

market (Θ = 1) liquidity risk is the same as if the market security was absent,

VM = VL.

The optimal trading interval τ ∗M is,

τ ∗M = h1(Θ)
σ/ω1/2

ψ
, (43)

where,

h1(Θ) =

√
1− 32Θ + 12Θ2 +

√
1 + 20Θ + 4Θ2 + 6Θ

√
1 + 20Θ + 4Θ2

2
√

3Θ
. (44)

This equation goes to zero at the critical value Θc = 1/4, i.e., when ρc =
√

3/4 ≈ 0.87.

From then on, it is optimal for markets to clear continuously.

For Θ > Θc, the minimum liquidity risk is,

V ∗+
M = h2(Θ)/ω1/2 + h3(Θ)

(
σ/ω1/2

)
ψ, (45)

where h2(Θ) and h3(Θ) are rather complicated functions. For Θ ≤ Θc, liquidity risk

is minimized when markets clear continuously, i.e., when τ = 0. When Θ ≤ Θc, the

equation for liquidity risk becomes

V ∗−
M =

√
Θ
(
σ/ω1/2

)
ψ, (46)

In Fig. 3, we compare liquidity risk for the three models studied in the text.

Parameters used in the plot are ψ = 1, σ = 1, ω = 10, and Θ = 0.3. We also

show the optimal points (V ∗
P , τ

∗
P ), (V ∗

L , τ
∗
L), and (V ∗

M , τ
∗
M). Notice how liquidity risk
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Figure 3: A comparison of liquidity risk, V , for the three models studied in the text.
Parameters used in the plot are ψ = 1, σ = 1, ω = 10, and Θ = 0.3. The optimal
points (V ∗

P , τ
∗
P ), (V ∗

L , τ
∗
L), and (V ∗

M , τ
∗
M) are shown with asterisks.

decreases with the addition of the liquidity provider and reduces even further when

the market security is added.

VI Conclusions

Although the paper by Garbade and Silber (1979) is more than 30 years old, it

provides an excellent framework to study liquidity. Their model is especially rele-

vant for current financial markets, where most liquidity provision occurs through the

speculative activity of low-latency/high-frequency traders rather than through the

activity of designated liquidity providers. These speculators make trading decision

based on estimates of prices and investor order flow across thousands of continuously

traded securities, often using a very similar form of the Kalman filter presented here.

We have demonstrated that including a market security in Garbade and Silber’s
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framework can significantly increase the liquidity of the non-market asset. Our results,

therefore, bring attention to an additional fundamental economic factor that affects

the liquidity of assets – the correlation structure of the market. The implications of

this relationship for asset pricing and other areas of economics and finance are an

interesting unexplored area of future research.

In addition to analyzing this liquidity/correlation relationship, we demonstrate

that at a critical threshold value of correlation, it is optimal from an investor’s per-

spective for markets to clear continously, i.e. have zero latency in markets. Although

many others have described the low-latency environment in current financial markets

as an “arms race”, our model demonstrates exactly how low-latency trade can be

beneficial. A full analysis would involve quantitifying this benefit in relation to the

cost, which is an important question to be addressed in future research.
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APPENDIX

The Kalman Filter

The following is a straightforward application of the Kalman filter for the es-

timation of m̄t using contemporaneous and lagged values of r̄t (see Meinhold and

Singpurwalla, 1983). The observation equation is,

r̄t = m̄t + ft, (47)

ft ∼ N(0,Σ). (48)

and the system equation is,

m̄t = m̄t−1 + et, (49)

et ∼ N(0,Ψ). (50)

Denote by m̂t the estimate of m̄t based on {r̄t, r̄t−1, r̄t−2, . . . }. It can be shown that,

P (m̄t|̄rt, r̄t−1, . . . ) ∼ N(m̂t−1 + Gt [̄rt − m̂t−1], St), (51)

P (m̄t+1|̄rt, r̄t−1, . . . ) ∼ N(m̂t,Rt+1). (52)

where Gt is known as the Kalman gain and,

Gt = Rt(Rt + Σ)−1, (53)

Rt+1 = St + Ψ, (54)

St = Rt −GtRt. (55)

The best estimate of m̄t based on {r̄t, r̄t−1, r̄t−2, . . . } is just the mean of the distribu-

tion P (m̄t|̄rt, r̄t−1, . . . ),

m̂t = m̂t−1 + Gt(r̄t − m̂t−1). (56)
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The estimation variance is

Var[m̂t − m̄t] = St. (57)

In general, the above equations are solved iteratively, starting at time zero. Here,

we search for convergence of the estimation variance to a limiting value, i.e., we

search for a solution when Rt+1 = Rt. Rearranging the above equations and setting

R = Rt+1 = Rt produces the following equation,

R(R + Σ)−1R−Ψ = 0, (58)

which is a version of the discrete time algebraic Riccati equation. The conditions

required for a solution to exist are discussed in Anderson and Moore (2005). Note

that when R has reached its steady state, that G and S will also be steady. Once R

is determined, then G and S can be calculated as follows,

G = ΨR−1, (59)

S = R−Ψ. (60)

Solving the Riccati Equation

In the model with a liquidity provider who does not have access to market infor-

mation, all variables in the Kalman filter are scalars. Furthermore,

Σ = σ2/(ωτ), (61)

Ψ = τψ2. (62)

The Riccati equation is therefore,

R2/(R + σ2/(ωτ))− τψ2 = 0, (63)
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Solving for R and the rest of the variables in the Kalman filter,

R = (1/2)
[
τψ2 +

√
τ 2ψ4 + 4ψ2σ2/ω

]
, (64)

G =
2τψ2

τψ2 +
√
τ 2ψ4 + 4ψ2σ2/ω

, (65)

S = (1/2)
[√

τ 2ψ4 + 4ψ2σ2/ω − τψ2
]
, (66)

In the model with a liquidity provider who has access to market information, we have,

Σ =

σ2/(ωτ) 0

0 0

 Ψ =

 τψ2 ρτψψM

ρτψψM τψ2
M

 . (67)

Solving the Riccati equation,

R =

(1/2)
[
(2−Θ)τψ2 + Θτψ2

√
1 + 4σ2/ω

Θτ2ψ2

]
ρτψψM

ρτψψM τψ2
M

 , (68)

G =


2

−1+

√
1+

4σ2/ω

Θτ2ψ2

(
−1+

√
1+

4σ2/ω

Θτ2ψ2

)
ρτψψM(

1+

√
1+

4σ2/ω

Θτ2ψ2

)
τψ2

M

0 1

 , (69)

S =

(1/2)
[
Θτψ2

(
−1 +

√
1 + 4σ2/ω

Θτ2ψ2

)]
0

0 0

 (70)

where Θ ≡ 1− ρ2. Note that when the security is uncorrelated with the market, i.e.,

Θ = 1, that the elements R(1,1), G(1,1), and S(1,1) all reduce to the values found in

the case when the liquidity provider has no market information (Eqs. 64-66).
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Liquidity Risk

The equation for the liquidity risk of an investor trading the security when a

liquidity provider is present can be written as,

VL,M = Var[(m̂t − m̄t) + (m̄t −mi)], (71)

= Var[m̂t − m̄t] + Var[m̄t −mi] + 2 Cov[m̂t − m̄t, m̄t −mi]. (72)

We will start with the first term, Var[(m̂t − m̄t)]. The estimation variance of m̄t is

just S (see Eq. 57). For the security, the variance is reported at position (1, 1),

Var[m̂t − m̄t] = S(1,1). (73)

The second term is derived in the text (Eq. 15),

Var [m̄t −mi] = (1/2)
[
φ3 + (1− φ)3

]
τψ2, (74)

= φ1τψ
2. (75)

where φ1 ≡ (1/2) [φ3 + (1− φ)3].

The third term, 2Cov[m̂t − m̄t, m̄t −mi], can be derived as follows. Subtracting

m̄t from both sides of Eq. 56 and rearranging,

m̂t − m̄t = (I−Gt) (m̂t−1 − m̄t−1) + Gt (r̄t − m̄t) + (Gt − I) (m̄t − m̄t−1) , (76)

where I is the identity matrix. The elements in the vectors (I −Gt)(m̂t−1 − m̄t−1)

and Gt (r̄t − m̄t) are uncorrelated with (m̄t −mi) so we can disregard them. In the

last vector, (Gt − I) (m̄t − m̄t−1), the relevant contribution to m̂t − m̄t is the first

element,

(G(1,1) − 1)(m̄t − m̄t−1) + G(2,1)(m̄M,t − m̄M,t−1). (77)
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The covariance of the random terms in this equation with (m̄t −mi) are,

Cov[m̄t − m̄t−1, m̄t −mi] = φ2τψ
2, (78)

Cov[m̄M,t − m̄M,t−1, m̄t −mi] = φ2ρτψψM . (79)

where φ2 ≡ (1/4) [φ3 + 2(1− φ)3 + 3(1− φ)φ2]. The structure of φ2 can be derived

by noting the covariance of the difference of averaged points of a Brownian motion

with the difference of an averaged point and a particular point of the same Brownian

motion. The result is left for the reader to verify.

Putting everything together, we have,

VL,M = Var[(m̂t − m̄t) + (m̄t −mi)], (80)

= Var[m̂t − m̄t] + Var[m̄t −mi] + 2 Cov[m̂t − m̄t, m̄t −mi], (81)

= S(1,1) + φ1τψ
2 + 2(G(1,1) − 1)φ2τψ

2 + 2G(1,2)φ2ρτψψM , (82)
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