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Abstract

This paper suggests a new approach for centrality measures for general (weighted)
networks taking into account the importance for cohesion and relative power of con-
nections. While existing literature either ignores the importance for cohesion or
measures it by analyzing consequences arising from the failure of whole nodes, this
approach analyzes consequences of tie failures. Using cooperative game theory, we
assign weights to every tie of the network where the cooperative game accounts for
the cohesion of the network. These weights are combined with the weights of the
original network where emphasis for the latter and for cohesion can be regulated
individually. Then, the degree measure and Eigenvector measure are applied. This
provides the first centrality approach accounting for cohesion and relative impor-
tance/power of connections. We provide axiomatic characterizations for the degree-
based measures in the case of binary networks and discuss computational complexity.
Furthermore, we give examples discussing the drawbacks of existing measures in con-
trast to our suggested one and as a political application, we show how our approach
can be used to forcast government formation by the case of the state parliament
election in Hamburg, Germany.
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1. Introduction
There is a large literature on centrality measures, mostly applied for social networks,
economic networks or also political networks. Centrality is often used to identify top
key nodes, those nodes in the network being most important for the network. But what
means important? Mostly, we mean importance for cohesion of either the whole network
or a set of essential nodes. A reasonable and convincing approach for the analysis of
importance for cohesion is the analysis of consequences of failure. Application domains
are for example energy networks or political networks: consequenses of failure are ca-
pacity overloads or blackouts for energy networks or a (partly or complete) breakdown
of trading routes/networks or an Economic and Monetary Union. These example are of
recent importance considering increasing blackout probabilities due to outdated reactors
as for example in France or the recent nuclear phaseout in Germany. However, while
existing literature only analyzes failure consequences of whole nodes, already the failure
of a certain connection can seperate a whole network into pieces. The application of
analyzing failure consequences of connections seems even more relevant for political or
economic networks: oil pipelines can break (connection failure) without a breakdown
of the whole gas province (node failure), a bilateral trading agreement can be broken
without a whole country leaving the trading union, political parties can stop bilateral
coalitional negotiations due to imcompatibilities without leaving the political spectrum
or a country might stop monetary flows for bail-out packages without leaving the Eu-
ropean Union. Hence, consequences of connection failure should be taken into account
for a measure for identifying top key nodes or (relative) coalitional power by means of
relative importance for cohesion of the whole.
Existing centrality measures either generally ignore the importance of cohesion or

bear other drawbacks. As an example, consider the following communication network:
Imagine there are three chairholders (3, 3′ and 3′′), each having two phd students (1/2,
1′/2′ and 1′′/2′′). The three chairholders do not know each other personally, but have a
common friend (4) through which they can get in contact to each other. The communi-
cation network is presented in Figure 1.

Figure 1: Communication Network
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Now, we are interested in the relative power of each participant in the network. The
most popular centrality measures are Freeman (1978)’s degree, closeness and between-
ness measures or Bonacich (1972)’s eigenvector centrality. Centrality accoring to these
approaches (normalized for comparability issues) is presented in Table 1.

Table 1: Normalized Centralities

Participant 1,2 3 4
Degree 8.33 12.50 12.50
Closeness 8.45 11.56 14.64
Betweenness 0 21.21 36.36
Eigenvector 8.10 12.26 14.63

While having the advantage of very low computational complexity, the degree measure
only takes into account the direct links of a node and not the whole network, that is,
generally lacks to take into account importance for cohesion. In the example we see,
that there is no difference between the centrality of the chairholders and the common
friend, who is connecting the whole network, as they all have the same number of con-
nections. The closeness measure, which counts the lenght of shortest paths, does account
for cohesion of the whole network, but provides an unreasonable allocation in terms of
failure: in the example, the relative distance of centrality between the chairholders and
the common friend is very small and the boundary nodes (phd students) still obtain a
letaively high centrality. Furthermore, the closeneness measure bears some problems for
weighted networks as ”lenght” of a shortest path is difficult to measure correctly in this
case. For a further discussion on drawbacks of closeness, also see Gómez et al. (2003).
Usually, the betweenness measure is suggested to be the most suitable measure for

cohesion. However, there are examples showing that the betweenness measure might
distribute unreasonable payoffs, most likely in smaller networks or large networks with a
small number of connections: In the example, the boundary nodes obtain a betweenness-
centrality of zero. One could argue that these nodes should obtain some centrality
greater than zero as their existence actually ”creates” the centrality of the other nodes:
if a boundary node fails, the betweenness measure of the corresponding chairholder
decrases.
As an alternative to the original betweenness measure, Freeman et al. (1991) suggest

a betweenness measure based on network flow. Still, in the example, all boundary nodes
would obtain a centrality of zero. Another approach is Eigenvector centrality (Bonacich,
1972) which aims to measure the influence of a node on the network (this idea is for
example the basis of Google’s PageRank). However, for the example above, this approach
yields (as the closeness approach) relatively small distances between the centralities of
the nodes.
Beside the above mentioned ”classic” centrality measures, there exist game theoretic
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approaches that use the Shapley (for example Gómez et al., 2003 or Suri and Narahari,
2008) or the Banzhaf value (for example Grofman and Owen, 1982). These measures
take into account consequences of failure by analyzing marginal contributions, that is,
the surplus a certain node creates when entering a coalition (which could be seen as
the negative of the failure of this node for each coalition). The network structure is
taken into account by using functions for the underlying game which consider (shortest)
paths present in the network depending on the presence or absence of a node. However,
this only accounts for the failure of a whole node with all its connections while already
the failure of one connection influences (shortest) paths and even might split the whole
network. In the paper, we will present a political example which shows, that these game
theoretic approaches are not always suitable while the analysis of connection failure solves
the problem. Furthermore, these approaches have no extension for weighted networks.
In this paper, we suggest a new approach for centrality measures accounting for im-

portance of cohesion of a node by the relative importance of its connections. For this,
we analyze consequences of link failure using two approaches from cooperative game
theory, the Shapley value and the Banzhaf value, generalized for a game which accounts
for the links of a network, the so-called arc game. We assign the corresponding Shapley
or Banzhaf values to all links of the network to capture consequences of failure, that is,
the importance for cohesion of connections. We generalize the approach for weighted
networks by combining these values with the existing weights of the network in place
where we implement an emphasis parameter which allows us to regulate emphasis for
importance of cohesion or centrality by means of political, economic or social weights
individually. Then, we apply Freeman (1978)’s degree measure and Bonacich (1972)’s
Eigenvector measure. This is what we call Cohesion Indices.
Considering the example from above again, centrality according to the new approach

using the Shapley value is represented in Table 2. Here, relative distances are more
plausible and also, boundary nodes do not obtain a centrality of zero.

Table 2: Normalized Cohesion-Centralities

Participant 1,2 3 4
Cohesion-Shapley-Degree 4.24 14.55 30.91
Cohesion-Shapley-Eigenvector 2.41 18.19 30.99

We provide axiomatic characterizations for the degree-based measures in the case of
binary networks and analyze computational complexity. Furthermore, we give an ex-
ample which discusses exclusiveness of links and as a political application, we apply
our approach in the case of the state parliament elections (Bürgerschaftswahl) 2001 in
Hamburg, Germany.
The paper is organized as follows: the following section gives definitions and notations.

Section 3 provides our new approach: the Cohesion-Indices. In section 4 we discuss
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computational complexity and properties, section 5, provides an example where we also
compare our approach to existing measures and discuss the difference in the use of
the Shapley or Banzhaf value with respect to exclusiveness of links. Finally, section 6
concludes.

2. Preliminaries
2.1. Cooperative games
A cooperative game with transferable utility (TU-game) (N, v) consists of a (non-empty
and finite) player set N = {1, ..., n} (individuals, political parties, countries, firms,...)
and a characteristic function v ∈ VN := {v : 2N −→ R|v(∅) = 0} where v(K) describes
the social, economic or political possibilities of K ⊆ N . A TU-game is called simple if
v(K) ∈ {0, 1} for all K ⊆ N .
A binary (social, economic or political) network is a binary graph g(N, x) consisting

of nodes N = {1, ..., n} and edges (or links or ties) between the nodes, where xij denotes
the indicator whether a link between node i and j exists or not, that is, xij = 1 if link ij
exists in network g and xij = 0 otherwise. Let Gb

N denote the set of all binary networks
g(N, x). We say that nodes i and j are connected in the network g if there exists a
path ih1, ..., hkj ∈ g, h1, ..., hk ∈ N . Connected nodes form components of a network
g and these components build a partition on the node/player set N . We denote this
partition by G(N, g); Gi := Gi(N, g) ∈ G(N, g) is the component of all players connected
with player i ∈ N . A TU-game is called zero-normalized if v({i}) = 0 for all i ∈ N .
Note that every game can be zero-normalized, hence, without loss of generality, we can
restrict ourselves to the set of zero-normalized games, denoted by V0

N . Meessen (1988)
and Borm et al. (1992) assign to every zero-normalized cooperative game with a network
structure (N, v, g) the link-game (or arc game) in which the links in the network are the
players:

vN : {λ ∈ g} −→ R, vN (g′) := vg
′(N) =

∑
S∈G(N,g′)

v(S)∀g′ ⊆ g

where vg is the graph-restricted game introduced by Myerson (1977). Note that if v were
not zero-normalized, vN might not be a value function as vN (∅) = v∅(N) =

∑
i∈N

v({i}) 6=
0.
An allocation rule for cooperative games with network structures is a function Y : N ×

VN ×Gb
N −→ Rn, assgning a payoff Yi(N, v, g) to player i ∈ N for every TU-game (N, v)

with network structure g. An allocation rule Y is called feasible if
∑
i∈N

Yi ≤
∑

G∈G(N,g)
v(G).

In the commonly used definition of feasiblity, literature uses v(N) instead of instead of∑
G∈G(N,g)

v(G). The use of v(N) is suitable if the cooperative game has no inner structure

or if g is connected, because then
∑

G∈G(N,g)
v(G) = v(N) holds.

Two of the most popular allocation rules for cooperative games without a network
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structure are the Shapley value (Shapley, 1953) Sh and the Banzhaf value Ba, introduced
by Banzhaf (1952) for simple games and extended to general games by Owen (1975):

Shi(N, v) =
∑

K⊆N\{i}

|K|!(|N | − 1− |K|)!
|N |! [v(K ∪ {i})− v(K)]

Bai(N, v) =
∑

K⊆N\{i}

1
2|N |−1 [v(K ∪ {i})− v(K)]

As the Banzhaf value might not be feasible, we will often refer to the normalized Banzhaf
value

Bai(N, v) = Bai(N, v)· v(N)∑
j∈N

Baj(N, v)

Note that we use v(N) here as the Banzhaf value is designed for games without inner
structure.

2.2. Weighted graphs and Freeman (1978)’s centrality measures
To model differences between the links, weighted graphs are used: A weighted (social,
economic or political) network g(N,w) is a binary network endowed with a weight wij
for every link ij. If wij = 0, we say that link ij does not exist in network g. Hence, a
binary network is a weighted network with weights being 0 or 1. Let GN denote the set
of all weighted networks g(N,w). Note that Gb

N ⊂ GN .
A centrality measure is a function C : GN −→ Rn which assigns an index to every

node depending on how ”central” this node is in network g. The most popular centrality
measures for binary networks are Freeman’s 1978 degree, closeness and betweenness.
The degree measure counts the number of direct connections. This has been extended
for weighted networks by Barrat et al. (2004), Newman (2004) and Opsahl et al. (2008):

Cdi (g(N,w)) =
∑

j∈N\{i}
wij

Closeness and Betweenness are designed by shortest paths. Closeness is measured by
the lenghs of the shortest paths from a node to all other nodes (closeness to other nodes)
while betweenness counts how often a node is on a shortest paths between two other
nodes (betweenness of nodes) relative to all shortest paths.
A binary shortest path between node i and j is defined by d(i, j) := min(xih1 +...+xhkj)

where h1, ..., hk are the intermediate nodes that have to passed between i and j. Dijkstra
(1959) suggested an algorithm to find shortest paths in weighted networks where weights
are transmission costs. To implement this in a general weighted network (where a ”good”
link usually has a high weight instead of low costs), Brandes (2001) and Newman (2001)
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invert weights to interpret them as costs, that is,

dw(i, j) = min( 1
wih1

+ ...+ 1
whkj

),

which can also be interpreted as the fastest path between two nodes if weights represent
the speed of for example information flow or passing speed in road networks. They use
this to extent the closeness and betweenness measures for weighted networks:

Cci (g(N,w)) =

 ∑
j∈N\{i}

dw(i, j)

−1

Cbi (g(N,w)) =
∑

(j,k)∈N\{i}×N\{i},j 6=k

|dw(j, k)(i)|
|dw(j, k)|

where |dw(j, k)| is the number of shortest paths between j and k and |dw(j, k)(i)| the
number of those of them going through i. For notational reasons we will write

N∑
j 6=i 6=k

:=
∑

(j,k)∈N\{i}×N\{i},j 6=k

Beside Freeman (1978)’s centrality measures, Bonacich (1972) introduces the eigenve-
tor centrality. The idea of this approach is, that the centrality of a node should be
proportional to the centralities of the node’s neighbors. Consider the adjacency matrix
A(g)ij := (wij)ij corresonding to network g. Then, the eigenvector centrality CEVi (g)
of node i in network g is given by the ith entry of the eigenvector corresonding to the
largest eigenvalue of A, that is, the (unique) nonnegative solution of

A · CEV = λ · CEV .

3. Cohesion-Indices
Let g := g(N,w) be a network. For simplicity, we will only consider connected networks.
Furthermore, to avoid problems in normalizations, we will exclude empty networks (i.e.,
networks where do not exist any connections). Let v ∈ VN be a characteristic function
accounting for cohesion. As a simple example one could consider the so-called unanimity
game corresponding to T :

uT (K) =
{

1 , if T ⊆ K
0 , otherwise

where T ⊆ N is the set of essential nodes. We will discuss the unanimity games and
other possible such v in the following section.
Now consider the corresponding binary network gb := g(N, x) and, using the link-game
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of v, vN , assign weights to every link in gb, that is, create a new weighted network out
of the binary network by means of the importance for cohesion. Weights are assigned
by either the Shapley value or the Banzhaf value.

Case 1: g is a binary network
Define a new weighted network g(N, w̃(v, Y )) (Y = Sh or Y = Ba) with

w̃ij(v, Sh) := Shij(gb, vN ) or
w̃ij(v,Ba) := Baij(gb, vN ), respectively

Case 2: g = g(N,w) is a binary network
In this case, we combine the new weights with the original weights. For this,
we need to match the size of the two different weights. As numerical size of
indices or weights does not change ranks and relative distances, we normalize w
to v(N):

wij : = wij∑
λ∈g

wλ
· v(N)

Note that Sh(gb, vN ) and Ba(gb, vN ) are already normalized to v(N) as due to
efficiency of the Shapley value and normalization of the Banzhaf value we have∑

ij∈g
Shij(gb, vN ) = vN (gb) =

∑
ij∈g

Baij(gb, vN ) and vN (gb) = v(N)

where the latter drops from the fact that we assumed g to be connected. Note
that for the unanimity game we have uT (N) = 1 for all T ⊆ N .
Then, define the new weighted network g(N, w̃(v, α, Y )) (Y = Sh or Y = Ba)
with

w̃ij(v, α, Sh) := αwij + (1− α)Shij(gb, vN ) or
w̃ij(v, α,Ba) := αwij + (1− α)Baij(gb, vN ), respectively

where α ∈ [0, 1] is the parameter regulating the emphasis of social/economic/political
weights and importance for cohesion. Note that∑

λ∈g
w̃λ(v, α, Y ) = α

∑
λ∈g

wλ︸ ︷︷ ︸
=v(N)

+(1− α)
∑
λ∈g

Yλ(g, vN )

︸ ︷︷ ︸
=v(N)

= v(N).

Remark 1 (α for binary networks). Note that the definition of w̃ in the case of binary
networks coincides with the definition for weighted networks for α = 0. Hence, for
simplicity, we will use the more general definition and set α = 0 whenever g(N,w)
actually is a binary network.
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Definition 1 (Cohesion-Index). A cohesion-index is a function C : GN × V0
N −→ R,

where v ∈ V0
N accounts for cohesion.

Remark 2. Note that in contrast to ”classical” centrality measures, cohesion-indices
also have a cohesion game as an argument.

Now we apply Freeman’s centrality measures:

Definition 2 (Cohesion-Degree-Index). For every network g(N,w), the Shapley-Cohesion-
Degree-index CDSh and the Banzhaf-Cohesion-Degree-index CDBa are given by

CDY
i (g, v) : = Cdi (g(N, w̃(v, α, Y ))) =

∑
j∈N\{i}

w̃ij(v, α, Y )

where Y = Sh or Y = Ba, respectively.

For comparability (and in order to define a feasible/efficient allocation rule), we nor-
malize the indices. This is by multiplication with

v(N)∑
j∈N

CDSh
j (g, v)

or v(N)∑
j∈N

CDBa
j (g, v)

, respectively.

Note that we have∑
j∈N

CDY
j (g, v) =

∑
j∈N

∑
k∈N\{j}

[
αwjk + (1− α)Yjk(gb, vN )

]

= 2·

α∑
λ∈g

wλ + (1− α)
∑
λ∈g

Yλ(gb, vN )


= 2·

∑
λ∈g

w̃λ(v, α, Y ) = 2 · v(N)

Remark 3. For α = 0, the normalized Shapley-Cohesion-Degree index coincides with
the Position value, introduced by Meessen (1988) and further analyzed by Borm et al.
(1992) and Slikker (2005).

Remark 4 (Relation to Closeness and Betweenness). Our approach uses the corre-
sponding Shapley/Banzhaf value of links, that is, we calculate how important a certain
connection is for the cohesion of a network. This is done by taking into account all other
connections of the network, hence, these values capture the idea of (relative) necessity of
connections which is the basic idea of betweenness. Taking into account the actual value
captures the idea of closeness. Hence, one could argue that the Cohesion-Degree indices
are sufficient as the position between other nodes and relative necessity are captured by
the weights for importance of cohesion. This can further be regulated by the emphasis
parameter α.

However, applying closeness and betweenness might still be of interest and we provide
the formal definitions for completeness.
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Definition 3 (Cohesion-Closeness-Index). For every network g(N,w), the Shapley-
Cohesion-Closeness-index CCSh and the Banzhaf-Cohesion-Closeness-index CCBa are
given by

CCYi (g, v) : = Cci (g(N, w̃(v, α, Y ))) =

 ∑
j∈N\{i}

dw̃(v,α,Y )(i, j)

−1

where Y = Sh or Y = Ba, respectively.

Normalization is done by

v(N)∑
j∈N

CCShj (g, v)
or v(N)∑

j∈N
CCBaj (g, v)

, respectively.

Definition 4 (Cohesion-Betweenness-Index). For every network g(N,w), the Shapley-
Cohesion-Betweenness-index CBSh and the Banzhaf-Cohesion-Betweenness-index CBBa

are given by

CBY
i (N, v, g) : = Cbi (g(N, w̃(v, α, Y ))) =

N∑
j 6=i 6=k

|dw̃(v,α,Y )(j, k)(i)|
|dw̃(v,α,Y )(j, k)|

where Y = Sh or Y = Ba, respectively.

Normalization (for |N | > 2) is done by

v(N)∑
j∈N

CBSh
j (g, v)

or v(N)∑
j∈N

CBBa
j (g, v)

, respectively.

Note that Opsahl et al. (2010) mention that the implementation of Dijkstra’s algorithm
(inverting weights) is unproblematic if we are only interested in identifying the shortest
path in a weighted graph as for the betweenness measure but that this becomes problem-
atic in interpretation of the numerical results if we take into account the actual ”lengh”
of such a path of least costs/least resistance as it is done for the closeness measure. We
avoid this problem as we normalize the indices.

Remark 5. For α = 1, the normalized Cohesion indices coincide with Freeman’s cen-
trality measures.

Definition 5 (Cohesion-Eigenvector-Index). For every network g(N,w), the Shapley-
Cohesion-Eigenvector-index CEV Sh and the Banzhaf-Cohesion-Eigenvector-index CEV Ba

are given by

CEV Y
i (N, v, g) : = CEVi (g(N, w̃(v, α, Y )))

where Y = Sh or Y = Ba, respectively.
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That is, CEV Y is given by the unique nonnegative solution of

(w̃(v, α, Y )ij)ij · CEV Y = λ · CEV Y .

Again, one can normalize by v(N)∑
j∈N

CEV Y
j (g,v) .

4. Properties of Cohesion-Indices
4.1. Axiomatic Characterizations
In this section, we provide axiomatic characterizations of the two Cohesion-Degree-
Indices for binary networks (α = 0). For simplicity, we define:

Definition 6 (Banzhaf Position value). For any TU game with a network structure
(N, v, g), the Banzhaf Position value πBa is given by

πBa(N, v, g)i :=
∑
λ∈gi

1
2Baλ(g, vN ).

We first introduce an axiom which could be seen as the driving force of the (Shapley)
Position value (cf. Borm et al. (1992)): A game (N, v, g) is called link anonymous if ∃
f : {0, 1, ..., |g|} −→ R such that vN (g′) = f(|g′|) for all g′ ⊆ g. An allocation rule for
network structures satisfies the Degree-Property (DEG), if for all link anonymous games
(N, v, g) there exists α ∈ R such that

Y (N, v, g) = α · Cd(g).

In a link anonymous game, we have vN (g′ \ λ) = vN (g′ \ λ′) for all λ, λ′ ∈ g′ ⊆ g, hence,
all links obtain the same marginal contributions and are therefore equally important
within the network. One could argue, that in this case the strengh of a node should be
measured by its degree. If an allocation rule is used for centrality issues, DEG seems a
favourable axiom.

Example 1. Consider N = {1, 2, 3}, g = {13, 23} and the unanimity game u{1,2}. Note
that for

f : {0, 1, 2, 3} −→ R, f(x) :=
{

1, if x = 3
0, else

it holds that uN{1,2}(g
′) = f(|g′|) for all g′ ⊆ g, that is, (N, v, g) is link anonymous. The

Shapley value, the normalized Banzhaf value and the Myerson value are given by

Sh(N, v, g) = (1
2 ,

1
2 , 0) = Ba(N, v, g), µ(N, v, g) = (1

3 ,
1
3 ,

1
3)

while the Degree-measure is given by Cd(g) = (1, 1, 2), hence, (DEG) is not satisfied by
the Shapley value, the Banzhaf value and the Myerson value.
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On the other hand, the (Shapley) Position value and the Banzhaf Position value are
given by

πSh(N, v, g) = (1
4 ,

1
4 ,

1
2), πBa(N, v, g) = (1

8 ,
1
8 ,

1
4).

that is, they are proportional to the Degree-measure.

Borm et al. (1992) show that the (Shapley) Position value satisfies DEG.

Lemma 1. The Banzhaf Position value satisfies DEG.

Find the proof in the appendix.

The next axiom is used to characterize the (Shapley) Position value on cycle-free graphs
(cf. Borm et al. (1992)): A link λ is called superfluous, if vN (g′ ∪ λ) = vN (g′) for all
g′ ⊆ g, that is, if λ is a Nullplayer in (g, vN ). An allocation rule for network structures
Y satisfies the Superflous link Property (SLP) if Y (n, v, g) = Y (N, v, g \ λ) for all su-
perflous links λ.

Borm et al. (1992) show, that the (Shapley) position value is on cycle-free graphs
uniquely determined by DEG, SLP and the following axioms:

• Additivity A: Y (N, v + w, g) = Y (N, v, g) + Y (N,w, g) for all v, w ∈ VN

• Component Efficiency CE:
∑
i∈C Yi(N, v, g) = v(C) for all C ∈ G(N, g)

As a difference to the (Shapley) Position value, the Banzhaf Position value does not
satisfy component efficiency. To close the emerging gap, we define the following axiom:

Definition 7. Component Link Banzhaf Efficiency (CLBE) An allocation rule for net-
work structures Y satisfies CLBE if we have for C ∈ G(N, g):∑

i∈C
Yi(N, v, g) =

∑
λ∈g|C

Baλ(g|C , vN |C).

CLBE states, that the total link-power (due to Banzhaf) of a component should be
distributed among players within the component. For connected networks, this is in
the same spirit as Banzhaf Efficiency, the crucial axiom of the characterization of the
Banzhaf value, just with respect to link contributions.

Theorem 1. The Banzhaf Position value is uniquely determined by A, DEG, SLP and
CLBE for all cycle-free graphs.

Find the proof in the appendix.

Remark 6. On cycle-free graphs the following holds.

1. The Harsanyi-divident representation of πBa is

πBai (N, v, g) =
∑

T⊆2N\{∅}

λT (v)
2|g|H(T )|

Cdi (g|H(T )),

11



where λT (v) is the Harsanyi divident of v corresponding to T . Hence, the Banzhaf
position value is given by the degree measures of the connected hulls of v’s basis
representations, weighted accordingly.

2. The normalized Banzhaf Position value of any unanimity game is given by

πBai (N, βuT , g) := πBai (N, βuT , g)∑
j∈N

πBaj (N, βuT , g)
· v(N) =

|gi|H(T )|
2 · |g|H(T )|

· β

which coincides with the (Shapley) Position value π(Sh)
i (N, βuT , g). This is due to

the fact, that on cycle-free graphs, only the connected hull matters and there, all
links are equally important.

Slikker (2005) introduces the following axiom which, together with component effi-
ciency CE, uniquely determines the (Shapley) Position value for general graphs: An
allocation rule for network structures Y satisfies Balanced Link Contributions (BLC) if
we have ∑

λ∈gj

[Yi(N, v, g)− Yi(N, v, g \ λ)] =
∑
λ∈gi

[Yj(N, v, g)− Yj(N, v, g \ λ)]

for all i, j ∈ N , i 6= j, and v ∈ V0
N .

BLC states that the total threat of a player towards another player should be equal to
the reverse total threat. Using BLC, we find the following general characterization of
the Banzhaf Position value:

Theorem 2. The Banzhaf Position value πBa is uniquely determined by BLC and
CLBE.

Find the proof in the appendix.

4.2. Cohesion-Games and General Properties
In order to calculate relative importance for cohesion of essential nodes, we only explicitly
considered unanimity game so far. The unanimity game is simple in calculations and a
natural and intuitive way to define a game accounting for cohesion of a specific set of
nodes. Michalak et al. (2013) discuss other possibilities for the characteristic function
which are more general as they do not rely on a specific set of nodes; here, the number
of nodes that are reachable by path from a certain coalition is counted:

v(K) = # of nodes in K and those (directly) connected to K

where one could either analyze direct connections or paths with at most k steps.
In order to match this value function with our framework, we have to zero-normalize
the function and transform the weights correspondingly. This can be done for any
characteristic function by the following transformation:

12



Transformation 1. For any characteristic function v ∈ VN , proceed as following

Step 1: Zero-normalization:

v0(K) := v(K)−
∑
i∈N

v({i}) · u{i}(K)

Step 2: Transformation of weights: Set

Yij(gb, vN ) := Yij(gb, vN0 ) + vN ({ij}),

where Y = Sh,Ba.

Following the idea of reachability, we define another possible cohesion game which
directly accounts for the network structure:

Definition 8 (Cohesion Game). Given a network g ∈ Gb
N , we define the corresponding

cohesion game c : GN −→ R as follows:

c(g,K) :=
∑
i∈K

ci(g) ∀K ⊆ N

where ci(g) := # of nodes reachable from i by path in g

Note, that we do not need a zero-normalization for the cohesion game (as c(∅) = 0) or
a transformation via the link-game as it directly works on networks (that is, c ∈ VGN

).

Remark 7. Note that the unanimity games form a basis of VN and both the Shapley
value and the Banzhaf value are linear in the characteristic function, hence, we can
express any v ∈ VN by unanimity games. Therefore, we will first focus on unanimity
games.

Computational complexity for calculating shortest path using Dijkstra (1959)’s algo-
rithm has widely been discussed. Hence, we will only discuss computational complexity
for calculating importance for cohesion. Taking the unanimity game as a basis, the
calculation is mainly about checking wether a subnetwork is connected or not.

Theorem 3 (Computational Complexity of weights). For v = uN , computational com-
plexity is at most

|g|·
|g|−1∑

k=|T |−1

(
|g| − 1
k

)

connectivity checks for the Banzhaf value and for the Shapley value it is the same con-
nectivity checks, just that for every ”yes”-labeled item, one number has to be stored.

Find the proof in the appendix.

Remark 8. NP-Hardness Connectivity checks are made by depth-first search algorithms.
It is well known, that worst case performance of a depth-first-search is O(|N |), that is,
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not NP-hard. However, the number of connectivity checks needed might get of higher
than polinomial complexity.

Theorem 4 (Proportionality). Let g be a cycle-free connected binary graph/network
(i.e., a minimal spanning tree) and consider the unanimity game βuT , T ⊆ N , |T | > 1.
Then, we have for Y = Sh or Y = Ba

CD
Y
i (g, βuT ) = Cdi(g|H(T )), CC

Y
i (g, βuT ) = Cci(g|H(T ))

CB
Y
i (g, βuT ) = Cbi(g|H(T )) and CEV

Y
i (g, βuT ) = CEV i(g|H(T ))

where H(T ) is the connected hull of T , that is, set of nodes that are essential to connect
T .

Find the proof in the appendix.

Theorem 5. If g has star structure with i ∈ N being the hub, then

CDY
i (g, v) = max

g′∈GN

CDY
i (g′, v) and

CBY
i (g, v) = max

g′∈GN

CBY
i (g′, v)

for Y = Sh or Y = Ba and any zero normalized v.

Proof. We know that the sum of weights over all links is v(N) (for both the Shapley and
the normalized Banzhaf value). Hence, for the Cohesion-Degree-indices the maximal
value obtainable is v(N) which is the case for hub i. As the index is maximal, the same
holds for its normalization.
The Cohesion-Betweenness-indices are maximal if |dw̃(j, k)(i)| = |dw̃(j, k)| for all (j, k),

that is, if i lies on all shortest paths between any two nodes. This is the case if i is the
hub of a star (there is only one path between any two nodes). As the index is maximal,
the same holds for its normalization.

Remark 9. For the closeness measure for weighted graphs, maximality is not clear
as the problem of inverted weights as costs of paths of least resistance occurs. Here,
not the actual weights are taken into account, one takes the sum of inverses which is
unproportional to the corresponding sum of weights. Hence, one could argue that the
closeness measure might not be a good option in all applications.
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5. Exclusiveness of Links, Top Nodes and Application
5.1. Example: Exclusiveness of Links and Identifying Top Nodes
Let N = {1, 2, 3, 4, 5, 6} and consider the binary network:

1
2

3
4 5 6

g = {12, 13, 14, 23, 24, 34, 45, 56}

Let v = uN , that is, we are interested in cohesion of the whole network. Weights are
displayed in Table 3.

Table 3: Weights

λ 12, 13, 14, 23, 24, 34 45, 56
Shλ 17/420 53/140

Baλ 10/136 38/136

Results for the Degree measure and Eigenvector centrality and the corresponding Cohe-
sion indices are given in Table 4.

Table 4: Classical Centrality Measures and Cohesion Indices (in share of 100%)

Y 1 2 3 4 5 6
Degree and Cohesion-Degree

C
d (α = 1) 18.75 18.75 18.75 25.00∗ 12.50 6.25

CD
Sh (α = 0) 6.07 6.07 6.07 25.00 37.86∗ 18.93

CD
Ba (α = 0) 11.03 11.03 11.03 25.00 27.94∗ 13.97

Eigenvector and Cohesion-Eigenvector
C
EV (α = 1) 21.65 21.65 21.65 23.74∗ 8.56 2.76

CEV
Sh (α = 0) 2.43 2.43 2.43 27.48 38,28∗ 26.93

CEV
Ba (α = 0) 7.04 7.04 7.04 25.38 31.87∗ 21.61

Top-2-nodes are bolt face,∗ identifies Top-node

This example does not only show numerical differences, also the ranking between nodes
changes. Consider the top 2 nodes: in contrast to the Degree or Eigenvector measure
(α = 1), node 5 is under the top 2 nodes for the Cohesion-Indices (α = 0) and even the
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top node changes. From an interpretative point of view, it is reasonable that nodes 4
and 5 should obtain the highest value in terms of centrality and cohesion as node 4 is
the most central while 5 is essential for cohesion.
One could argue that node 6 and node 1 (or 2 or 3) should obtain the same payoff as

there is no structural reason (as connection node versus boundary node) to treat them
differently. This can be regulated by the emphasis parameter α. If α decreases, one could
argue that, as cohesion emphasis (1−α) increases, node 6 should obtain a higher payoff
than 1 (or 2 or 3) due to the ”exclusiveness” of node 6: there is only one connection to
node 6, hence an exclusive connection which could be seen as more important than other
connections. If emphasis for centrality increases, 1 (or 2 or 3) should obtain a higher
payoff than 6 due to a higher centrality in terms of connections (or original weights for
weighted graphs).

Remark 10 (Gametheoretic Approaches). Suri and Narahari (2008) and Gómez et al.
(2003) suggest to identify top nodes by computing the network-restricted Shapley value
(Myerson, 1977) of the nodes (or its difference to the original Shapley value) while no
specific game is suggested. Considering the game uN and our example, both the Shapley
value and the network-restricted Shapley value assign an equal value of 1/6 to every node.
This stands in contradiction to centrality (4 and 5 are more central than 1, 2 and 3 and
all more central than 6) and furthermore the difference between the connections 1-4 and
5-6 (exclusiveness) is ignored. One can argue that the drawbacks arise due to the too
simple form of the unanimity game we use. However, independently of the characteristic
function, the concepts suggested above only analyze failure of a whole node with all its
connections at once.

5.2. Application: State Parliament Elections
As an application for political networks, let us consider the state parliament elections
(Bürgerschaftswahl) in Hamburg, Germany in 2001. After the election, there were five
parties obtaining seats in the parliament1, namely the Social Democratic Party ”SPD”,
the Christian Democratic Union ”CDU”, the Conservative Law and Order Party ”Schill”,
the Green/Alternative Party ”Grüne” and the Free Democratic Party ”FDP”. The dis-
tribution of seats was according to Table 5. To build the government, a coalition needs

Table 5: Results of the state parliament elections in Hamburg, 2001

party SPD CDU Schill Grüne FDP
∑

seats 46 33 25 11 6 121
seat share 0.38 0.27 0.21 0.09 0.05 1
source: Statistical Office of Hamburg and Schleswig-Holstein

1Due to regulations, parties obtaining a vote share less than 5% are not going to be in the parliament.
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at least 50% of the seats2. In the end, the government was built by the coalition
{CDU, Schill, FDP}3. We are now interested in the question, if this outcome could
have been forecasted by the use of centrality measures.
For notational reasons, let us denote the parties by N = {1, 2, 3, 4, 5} (i.e., SPD is

player 1, CDU is player 2,...). The situation can be modelled by a simple weighted
voting game: assign to every player i ∈ N the corresponding seat share si. Then, the
characteristic function is given by

v(K) :=

1 , if
∑
i∈K

si ≥ 0.5

0 , otherwise
.

Minimal winning coalitions are {1, 2}, {1, 3}, {1, 4, 5}, {2, 3, 4} and {2, 3, 5}. Applying
the Shapley value or the normalized Banzhaf value leads to a distribution of power and
resulting coalitional power displayed in Table 6, ”Unrestricted Case”.
In fact, a coalition between ”CDU” and ”Grüne” as well as between ”Schill” and

”Grüne” was excluded by the parties due to ideological/political incompatibilities. This
means, that (minimal winning) coalition {2, 3, 4} would not materialize as well as all
K ⊆ N such that {2, 4} ⊆ K or {3, 4} ⊆ K would not be winning coalitions. To account
for these incompatibilities, we restrict the space of potential swings4: any set including
{2, 3} or {3, 4} is excluded as potential swing for i ∈ {1, 5}, any set including {4} is
excluded for i ∈ {2, 3} and any set including {2} or {3} is excluded for i = 4. Due to
this restriction, Shapley-based approaches are not suitable anymore as the weights of the
marginal contributions would be unappropriate, hence, we will only use the Banzhaf-
based approaches from now on5. Distribution of power and resulting coalitional power
for restricted case is displayed in Table 6, ”Restricted Case”6.
As we see, the coalitions obtaining the highest coalitional power are {1, 2} and {1, 3}

in the unrestricted case (for both the Shapley and the normalized Banzhaf value) and
{1, 2}, {1, 3} and {1, 4, 5} in the restricted case, which does not explain the resulting
coalition {2, 3, 5}.

Now, take a look at the corresponding political network where we could interpret a
link as a potential coalitional negotiation. We could argue that relative political power
of a party should depend on the seats obtained and the position within the political
network. Taking into account the incompatibilities, the network could be modelled as
presented by Figure 2.
Applying the classical centrality measures (without accounting for the weighted voting

2Parties are assumed to vote en bloc
3For completeness one should note that this coalition broke 2 years later due to upcoming personal
issues between the leaders of ”CDU” and ”Schill”. However, these issues have not been known after
the elections and hence, can not be taken into account for forecasting issues.

4Here, K ⊆ N \ {i} is a swing for i iff v(K ∪ {i})− v(K) = 1.
5Note that for voting games, one usually uses the Banzhaf approach to avoid the different weights of
swings.

6For further details consult the appendix, Table 8.
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Table 6: Gametheoretic Approaches

Distribution of Power (normalized to 100 %)
party 1 2 3 4 5

Unrestricted Case
Shi 40.00 23.33 23.33 6.67 6.67
Bai 38.46 23.08 23.08 7.69 7.69

Restricted Case
Bai 40.00 20.00 20.00 6.67 13.33

Resulting Coalitional Power
coalition {1, 2} {1, 3} {1, 4, 5} {2, 3, 4} {2, 3, 5}

Unrestricted Case∑
Shi 63.33 63.33 53.34 53.33 53.33∑
Bai 61.54 61.54 53.84 53.85 53.85

Restricted Case∑
Bai 60.00 60.00 60.00 - 53.33

(Highest coalitional power is bolt face.)

Figure 2: Political Network

1

2

3

4 5

game) is not appropriate as in this case, there is no difference between parties 1 and 5
while the relative power of party should depend on the seats obtained.7 The Cohesion-
Indices account for both the seat share and the position within the political network.
We restrict the set of potential swings for a connection containing 2 or 3 to the set of
connections not containing 4 and for a connection containing 4 to the set of connections
not containing 2 or 3.8 Find the distribution of individual and coalitional power dis-

7However, only Eigenvector centrality uniquely selects coalition {2, 3, 5} obtaining the highest coali-
tional power. For completeness, find the values for the classic approaches in Table 9, appendix.

8One could argue that this is too restrictive and connections containing 4 can still be part of a swing for
a connection containing 2 or 3 as long as no connected component resulting in excluded coalitions is
build (and correspondingly for swings for connections containing 2 or 3). Note that this less restrictive
case the order of highest individual and coalitional power does not change. For completeness, find
details for this case in the appendix, Table 8 and Table 10.
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played in Table 7.9

Table 7: Cohesion Centrality Approaches

Distribution of Power (normalized to 100 %)
party 1 2 3 4 5
CDBa

i 30.00 20.00 20.00 6,67 23.33
CEV Ba

i 27.04 21.81 21.81 7.28 22.05
Resulting Coalitional Power

coalition {1, 2} {1, 3} {1, 4, 5} {2, 3, 4} {2, 3, 5}∑
CDBa

i 50.00 50.00 60.00 - 63.33∑
CEV Ba

i 48.85 48.85 56.37 - 65.67
(Highest individual and coalitional power are bolt face.)

We see that, taking into account both centrality and relative importance for the vot-
ing game (cohesion), the coalition {2, 3, 5} is uniquely selected with respect to highest
coalitional power. Hence, our new approach could have been considered for forecasting
issues leading to the coalition which was actually built. Note that the other approaches
either do not forecast the actual coalition or are not suitable as the seat share was not
taken into account. and Schill.

6. Conclusion
We suggest a new approach for centrality measures of networks, the cohesion-indices,
accounting for the importance for cohesion and relative power of connections using co-
operative game theory. In contrast to existing (cooperative) game theoretic approaches,
we analyze consequenses of connection failures rather than failures of whole nodes. This
makes our approach suitable in applications in for example energy networks or politi-
cal networks: oil pipelines can break (connection failure) without a breakdown of the
whole gas province (node failure), a bilateral trading agreement can be broken with-
out a whole country leaving the trading union or, as in the political example we used,
political parties can have bilateral incompatabilities without leaving the whole political
spectrum. Consequenses of connection failure can be capacity overloads resulting in
blackouts for energy networks or a (partly or complete) breakdown of an Economic and
Monetary Union due to a failure of certain trading routes, monetary flows or upcoming
incompatibilities between parties. Furthermore, our approach is suitable for weighted
networks.
Beside the definition of cohesion-indices and the political application of this approach

in the case of the state parliament elections in Hamburg, Germany 2001, we also provide

9For further details consult the appendix, Table 8.
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axiomatic characterizations for the Cohesion-Degree approaches for both cycle-free and
general binary networks, discussed specific cohesion games and analyzed computational
complexity.
For further research, we plan to analyze axiomatic characterizations for the Cohesion-

Eigenvector indices and a generalization of the Cohesion-Degree characterization to
weighted networks. Furthermore, an application for weighted networks might be of
interest.
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A. Appendix
A.1. Proofs for Section 4
Proof of Lemma 1:
The Banzhaf Position value satisfies DEG.

Proof. Let (N, v, g) be link anonymous, that is, there exists f : {0, 1, ..., |g|} −→ R such that
f(|g′|) = vN (g′) for all g′ ⊆ g. For g = ∅, we have πBai (N, v, g) = 0 = Cd(g). Let g 6= ∅ and
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λ ∈ g.

Baλ(g, vN ) = 1
2|g|−1

∑
g′⊆g\λ

(
vN (g′ ∪ λ)− vN (g′)

)
= 1

2|g|−1

|g\λ|∑
i=0

∑
g′⊆g\λ
|g′|=i

(f(i+ 1)− f(i))

= 1
2|g|−1

|g|−1∑
i=0

(
|g| − 1
i

)
(f(i+ 1)− f(i))︸ ︷︷ ︸

:=A∈R independent of λ

⇒ πBai (N, v, g) =
∑
λ∈gi

A

2|g|
= A

2|g|
|gi| =

A

2|g|︸︷︷︸
:=α∈R

Cd(g)

Proof of Theorem 1:
The Banzhaf Position value is uniquely determined by A, DEG, SLP and CLBE for all cycle-
free graphs.

Proof. Existence: A is clear and DEG has been shown in Lemma 1.

• SLP: Let λ be superflous in game (N, v). By the Banzhaf value satisfying the Nullplayer
axiom, we then have Baλ(g, vN ) = 0. For ν 6= λ ∈ g we have

Baν(g, vN ) = 1
2|g|−1

∑
g′⊆g\ν

[
vN (g′ ∪ ν)− vN (g′)

]

= 1
2|g|−1

 ∑
g′⊆g\ν
λ∈g′

[
vN (g′ ∪ ν)− vN (g′)

]︸ ︷︷ ︸
=vN ((g′\λ)∪ν)−vN (g′\λ)

+
∑

g′⊆(g\λ)\ν

[
vN (g′ ∪ ν)− vN (g′)

]


= 2
2|g|−1

∑
g′⊆(g\λ)\ν

[
vN (g′ ∪ ν)− vN (g′)

]
= Baν(g \ λ, vN )

and hence, πBa(N, v, g) = πBa(N, v, g \ λ).
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• CLBE: Let C ∈ G(N, g).∑
i∈C

πBai (N, v, g) =
∑
i∈C

∑
λ∈gi

1
2

1
2|g|−1

∑
g′⊆g\λ

(
vN (g′ ∪ λ)− vN (g′)

)
=
∑
λ∈g|C

1
2|g|−1

∑
g′⊆g\λ

(
vN (g′ ∪ λ)− vN (g′)

)
=
∑
λ∈g|C

1
2|g|−1

∑
g′⊆g\λ

[
vN ((g′ ∩ g|C) ∪ λ)− vN (g′ ∩ g|C)

]︸ ︷︷ ︸
for λ∈g|C , marginal contributions are
not effected by connections outside C

=
∑
λ∈g|C

1
2|g|−1

∑
g′⊆g\λ

[
vN (g′|C ∪ λ)− vN (g′|C)

]︸ ︷︷ ︸
the same for all g′,g′′⊆g\λ

such that g′|C=g′′|C

=
∑
λ∈g|C

1
2|g|−1

∑
g̃⊆(g|C)\λ

2|g|N\C |
[
vN (g̃ ∪ λ)− vN (g̃)

]
|g|=|g|N\C |+|g|C |=

∑
λ∈g|C

1
2|g|C |−1

∑
g̃⊆(g|C )\λ

[
vN (g̃ ∪ λ)− vN (g̃)

]
=
∑
λ∈g|C

Baλ(g|C , vN |C)

Uniqueness10: Let Y satisfy A, DEG, SLP and CLBE and g be cycle free. By A, it is sufficient
to show that Y (N, βuT , g) = π(N, βuT , g) for all β ∈ R and T ∈ 2N such that |T | ≥ 2. Let such
β, T be arbitrary but fixed.

Case 1: @ C ∈ G(N, g) such that T ⊆ C.
That is, there exists i, j ∈ T being unconnected in g and hence, βuNT (g′) = 0 for all
g′ ⊆ g. Therefore, Baλ(g, βuT ) = 0 for all λ ∈ g and πBai (N, βuT , g) = 0 for all i ∈ N .
On the other hand, if βuT (g′) = 0 for all g′ ⊆ g, every λ ∈ g is superflous, and hence,
by SLP, we have Y (N, βuT , g) = Y (N, βuT , g \ λ1) = Y (N, βuT , g \ {λ1, λ2}) = ... =
Y (N, βuT , ∅).
Trivially, the game (N, βut, ∅) is link anonymous and hence, byDEG, there exists α ∈ R
such that

Yi(N, βuT , g) = Yi(N, βut, ∅) = α · Cdi (∅) = 0 ∀ i ∈ N
⇒Y (N, βuT , g) = πBa(N, βuT , g)

Case 2: ∃ C ∈ G(N, g) such that T ⊆ C.
Consider the (unique) connected hull (cf. Owen (1986)) of T , H(T ), given by

H(T ) :=
⋂
{S|T ⊆ S ⊆ C such that g|S is connected subgraph}

10We follow the idea of the proof for the (Shapley) position value of Borm et al. (1992).
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As g is cycle-free, H(T ) is the minimal set of nodes that are essential to connect T .11

⇒ βuNT (g′) =
{
β , if g|H(T ) ⊆ g′

0 , otherwise

If λ /∈ g|H(T ), we have Baλ(g, βuNT ) = 0. For λ ∈ g|H(T ), we have

Baλ(g, βuNT ) = 1
2|g|−1

∑
g′⊆g\λ

(
βuNT (g′ ∪ λ)− βuNT (g′)

)
cf. existence CLBE= 1

2|g|H(T )|−1

∑
g′⊆g|H(T )\λ

(
βuNT (g′ ∪ λ)− βuNT (g′)

)︸ ︷︷ ︸
=

{
β , if g′ = g|H(T ) \ λ
0 , otherwise

= β

2|g|H(T )|−1

and therefore, it holds that

Baλ(g, βuNT ) =
{

β

2|g|H(T )|−1 , if λ ∈ g|H(T )

0 , otherwise

= Baλ(g|C , βuNT )
= Baλ(g|H(T ), βu

N
T )

⇒ πBai (N, βuT , g) =
∑

λ∈gi∩g|H(T )

1
2 ·

β

2|g|H(T )|−1 =
|gi|H(T )| · β

2|g|H(T )|

= β

2|g|H(T )|
· Cdi (g|H(T ))

On the other hand, all links λ /∈ g|H(T ) are superfluous in (N, βuT ), hence, by SLP,
Y (N, βuT , g) = Y (N, βuT , g|H(T )). The game (N, βuT , g|H(T )) is link anonymous (all
links have the same number of swings, namely, one) with

f : {0, 1, ..., |g|H(T )|} −→ R, f(x) :=
{
β , if x = |g|H(T )|
0 , otherwise

hence, by DEG, there exists α ∈ R such that

Yi(N, βuT , g)
SLP= Yi(N, βuT , g|H(T ))

DEG= α · Cdi (g|H(T )) (∗)

It directly follows that

Yi(N, βuT , g) = 0 ∀ i ∈ N \H(T ) (∗∗)

11Note that cycle-freeness is essential here: if there is more than one path connecting T , the intersection
is empty on the disjoint parts of the connecting paths.
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By (∗∗) and CLBE, we have∑
i∈H(T )

Yi(N, βuT , g)
(∗)=
∑
i∈C

Yi(N, βuT , g)

CLBE=
∑
λ∈g|C

Baλ(g|C , βuNT )

=
∑

λ∈g|H(T )

β

2|g|H(T )|−1

=
|g|H(T )| · β
2|g|H(T )|−1

On the other hand, by (∗), we have∑
i∈C

Yi(N, βuT , g) = α
∑
i∈C

Cdi (g|H(T )) = α · 2 · |g|H(T )|

Combining this, we get

α · 2 · |g|H(T )| =
|g|H(T )| · β
2|g|H(T )|−1 ⇔ α = β

2|g|H(T )|

and hence

Yi(N, βuT , g) = β

2|g|H(T )|
Cdi (g|H(T )) = πBai (N, βuT , g)

which finishes the proof.

Proof of Theorem 2:
The Banzhaf Position value πBa is uniquely determined by BLC and CLBE.

Proof. Existence: We have already shown that πBa satisfies CLBE. To see BLC, we follow
Slikker (2005), who states that there exists a unique linear combination of link-unanimity games
which represents any link game vN : 2|g| −→ R: for any vN exist βg′ , g′ ⊆ g, such that

vN (g̃) =
∑
g′⊆g

βg′u
N
g′ (g̃).

For (g, βg′uNg′ ) we get

Baλ(g, βg′uNg′ ) =
{

βg′

2|g′|−1 , if λ ∈ g′

0 , if λ /∈ g′
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and using this, we have

πBai (N, v, g) =
∑
λ∈gi

1
2Baλ(g, vN )

Ba satisfies A=
∑
λ∈gi

1
2
∑
g′⊆g

Baλ(g, βg′uNg′ )

=
∑
g′⊆g

∑
λ∈gi

1
2 Baλ(g, βg′uNg′ )︸ ︷︷ ︸

=

{
βg′

2|g′|−1 , if λ ∈ g′ ∩ gi
0, if λ /∈ g′ ∩ gi

=
∑
g′⊆g

∑
λ∈g′

i

βg′

2|g′|
=
∑
g′⊆g

βg′
|g′i|
2|g′|

and therefore

∑
λ∈gj

[
πBai (N, v, g)− πBai (N, v, g \ λ)

]
=
∑
λ∈gj

∑
g′⊆g

βg′
|g′i|
2|g′|

−
∑

g′⊆g\λ

βg′
|g′i|
2|g′|


=
∑
λ∈gj

∑
g′⊆g
λ∈g′

βg′
|g′i|
2|g′|

=
∑
g′⊆g

∑
λ∈g′

j

βg′
|g′i|
2|g′|

=
∑
g′⊆g

βg′
|g′j | · |g′i|

2|g′|

backwards=
∑
λ∈gi

[
πBaj (N, v, g)− πBaj (N, v, g \ λ)

]
for all i ∈ N .
Now suppose Y,W being two allocation rules satisfying BLC and CLBE. We prove uniqueness
by induction over |g|.
Induction basis [IB]: For |g| = 0, that is, g = {∅}, we have that G(N, g) = {i}i∈N and hence, by
CLBE, we have

Yi(N, v, g) =
∑
i∈C

Yi(N, v, g) =
∑
λ∈{∅}

Baλ(g, vN ) = 0 =
∑
i∈C

Wi(N, v, g) = Wi(N, v, g).

Now suppose that Y (N, v, g) = W (N, v, g) for all g such that |g| = k, k ≥ 0 (induction hypothesis
[IH]).
Consider g such that |g| = k+ 1. As k+ 1 ≥ 1, there exists i, j ∈ N , i 6= j such that j ∈ Ci(N, g)
(for all l with |Cl(N, g)| = 1, we have Yl(N, v, g) = Wl(N, v, g) by CLBE). By BLC, we have
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for all i, j ∈ Ci(N, g):∑
λ∈gj

Yi(N, v, g)−
∑
λ∈gi

Yj(N, v, g)
BLC=

∑
λ∈gj

Yi(N, v, g \ λ)−
∑
λ∈gi

Yj(N, v, g \ λ)

[IH]=
∑
λ∈gj

Wi(N, v, g \ λ)−
∑
λ∈gi

Wj(N, v, g \ λ)

BLC=
∑
λ∈gj

Wi(N, v, g)−
∑
λ∈gi

Wj(N, v, g)

⇔ |gj |Yi(N, v, g)− |gi|Yj(N, v, g) =|gj |Wi(N, v, g)− |gi|Wj(N, v, g) (∗)

Summing up (∗) over all j ∈ C yields:∑
j∈C

[|gj |Yi(N, v, g)− |gi|Yj(N, v, g)] =
∑
j∈C

[|gj |Wi(N, v, g)− |gi|Wj(N, v, g)]

⇔ Yi(N, v, g)
∑
j∈C
|gj |︸ ︷︷ ︸

:=A(j)>0 by
|Ci|≥1

−|gi|
∑
j∈C

Yj(N, v, g) = Wi(N, v, g)
∑
j∈C
|gj |︸ ︷︷ ︸

:=A(j)>0 by
|Ci|≥1

−|gi|
∑
j∈C

Wj(N, v, g)

CLBE⇒ A(j) · Yi(N, v, g)− |gi|
∑
λ∈g|C

Baλ(g|C , vN |C) = A(j) ·Wi(N, v, g)− |gi|
∑
λ∈g|C

Baλ(g|C , vN |C)

⇔ Yi(N, v, g) = Wi(N, v, g) ∀ i ∈ N

which finishes the proof.

Proof of Theorem 3:
For v = uN , computational complexity is at most

|g|·
|g|−1∑

k=|T |−1

(
|g| − 1
k

)

connectivity checks for the Banzhaf value and for the Shapley value it is the same connectivity
checks, just that for every ”yes”-labeled item, one number has to be stored.

Proof. In general, the computational effort for calculating the Shapley or the Banzhaf value is
high (at least P-complete) as it increases disproportionately with the number of nodes in the
network of interest. But, as uNT is a simple game, the Shapley and the Banzhaf value can be
calculated via swings: g′ ⊆ g \ {λ} is swing for λ ∈ g iff uNT (g′ ∪ λ) − uNT (g′) = 1. For the
Shapley value, swings have to be weighted according to their cardinality, for the Banzhaf value,
one only has to count the total number of swings and devide this by the number of potential
swings, namely, 2|g|−1.

The effort of identifying swings in uNT further decreases as g′ is a swing for λ = ij iff T ⊆ G ∈
G(N, g′ ∪ {ij}) while @G ∈ G(N, g′) with T ⊆ G. That is, iff g′ ∪ {ij} connects T while g′ does
not. For all λ ∈ g, there are 2|g|−1 subnetworks of g \ {λ}. Of interest are those of the 2|g|−1

subnetworks, that do not connect the nodes in T but the nodes will be connected when adding
λ, that is, we can restrict the analysis of the 2|g|−1 subnetworks to those with at least |T | − 1
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links. The number of subnetworks that have to be checked is at most:

|g|−1∑
k=0

(
|g| − 1
k

)
−
|T |−2∑
k=0

(
|g| − 1
k

)
= 2|g|−1 −

|T |−2∑
k=0

(
|g| − 1
k

)
=

|g|−1∑
k=|T |−1

(
|g| − 1
k

)

Unfortunately it is well known that there is no closed formula for the number of all subsets of a
certain set with cardinality greater than some border. Note that the number of subnetworks of
interest further decreases as only those that include all nodes in T are of interest.

We end up with the fact that calculating the Shapley and the Banzhaf value are counting
problems: For the Banzhaf value, one has to count for any λ ∈ g how many of the subnetworks
of interest do not connect T but will when adding λ. For the Shapley value, also the cardinality
of these subnetworks is of interest. Computational complexity is at most checking

|g|
|g|−1∑

k=|T |−1

(
|g| − 1
k

)

networks, where a connectivity check (g′ does not connect T but g′∪λ does: yes/no) is sufficient;
for the Shapley value, one further has to save the information about the cardinality of those g′
with label ”yes”.

Proof of Theorem 4:
Let g be a cycle-free connected binary graph/network (i.e., a minimal spanning tree) and consider
the unanimity game uT , T ⊆ N , |T | > 1. Then, we have for Y = Sh or Y = Ba

CD
Y

i (g, uT ) = Cdi(g|H(T )), CC
Y

i (g, uT ) = Cci(g|H(T ))

CB
Y

i (g, uT ) = Cbig|H(T )() and CEV
Y

i (g, uT ) = CEV i(g|H(T ))

where H(T ) is the connected hull of T , that is, set of nodes that are essential to connect T .

Proof. Let g be a minimal connected binary graph/network and v = uT . Then, following the
uniqueness proof of Theorem 1 (and similar for the (Shapley) Position value), we have

Yλ(g, βuNT ) =
{
constant , for λ ∈ g|H(T )

0 , for λ /∈ g|H(T )

for Y = Sh or Y = Ba. Hence, in network gH(T ), all weights w̃λ are constant. As the scale of
weights does not matter for ranks and relative distances of the indices, weights can be rescaled
to 1 which leads the original (binary) network, restricted on H(T ), that is, gH(T ). This proves
proportionality to Freeman’s centrality measures as well as Eigenvector centrality.
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A.2. Supplementary Material Political Example, Section 5.2

Table 8: Swings and Banzhaf values for parties and connections (both cases)

For parties (nodes)
party i swings for i # of swings Bai (to 100%)

1 {2}, {3}, {2, 3}, {2, 5}, {3, 5}, {4, 5} 6 40.00
2 {1}, {1, 5}, {3, 5} 3 20.00
3 {1}, {1, 5}, {2, 5} 3 20.00
4 {1, 5} 1 6.67
5 {1, 4}, {2, 3} 2 13.33∑

15 100%
For connections (links)

link λ swings for λ # of swings Baλ (to 100%)
12 ∅, {15}, {23}, {25}, {35}, {15, 23} 6 20.00

[+{45}, {23, 45}] [8] [17.39]
13 ∅, {15}, {23}, {25}, {35}, {15, 23} 6 20.00

[+{45}, {23, 45}] [8] [17.39]
14 {15}, {45} 2 6.67

[+{15, 23}, {23, 45}] [4] [8.70]
15 {14}, {45}, {25}, {35} 4 13.33

[+{14, 23}, {23, 45}] [6] [13.04]
23 {25}, {35} 2 6.67

[+{14, 25}, {14, 35}] [4] [8.70]
25 {15}, {23}, {35}, {15, 23} 4 13.33

[+{14, 23}, {14, 35}] [6] [13.04]
35 {15}, {23}, {25}, {15, 23} 4 13.33

[+{14, 23}, {14, 25}] [6] [13.04]
14 {14}, {15} 2 6.67

[+{14, 23}, {15, 23}] [4] [8.70]
(extra swings for less restrictive case in parantheses.)
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Table 9: Classic Centrality Approaches

Distribution of Power (normalized to 100 %)
party 1 2 3 4 5
Cdi 25.00 18.75 18.75 12.50 25.00
Cci 23.44 18.75 18.75 15.62 23.44
Cbi 50.00 0.00 0.00 0.00 50.00
CEV i 23.13 19.91 19.91 13.92 23.13

Resulting Coalitional Power
coalition {1, 2} {1, 3} {1, 4, 5} {2, 3, 4} {2, 3, 5}∑
Cdi 43.75 43.75 62.50 - 62.50∑
Cci 42.19 42.19 62.50 - 60.94∑
Cbi 50.00 50.00 100.00 - 50.00∑
CEV i 43.04 43.04 60.18 - 62.95
(Highest individual and coalitional power are bolt face.)

Table 10: Cohesion Centrality Approaches, less restrictive case

Distribution of Power (normalized to 100 %)
party 1 2 3 4 5
CDBa

i 28.26 19.57 19.57 8.70 23.91
CEV Ba

i 25.62 21.21 21.21 9.60 22.35
Resulting Coalitional Power

coalition {1, 2} {1, 3} {1, 4, 5} {2, 3, 4} {2, 3, 5}∑
CDBa

i 47.83 47.83 60.87 - 63.05∑
CEV Ba

i 46.83 46.83 57.57 - 64.77
(Highest individual and coalitional power are bolt face.)
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