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Evolution of cooperation in social 
dilemmas: signaling internalized 
norms. 
Stephan Müller, Georg von Wangenheim*  

 

 

Abstract 

Economists have a long tradition in identifying the evolution of cooperation in large, 
unstructured societies as a puzzle. We suggest a new explanation for cooperation which avoids 
restrictions of most previous attempts. Our explanation deals with the role of internalized norms 
for cooperation in large unstructured populations. Even internalized norms, i.e. norms which 
alter the perceived utility from acting in a cooperative or in an uncooperative way, will not help to 
overcome a dilemma in an unstructured society, unless – and this is the thrust of the current 
paper – individuals are able to signal their property of being a norm bearer. Only when 
internalization of the norm may be communicated in a reliable way, the picture may change. We 
derive necessary and sufficient condition for cooperation to be part of an evolutionary stable 
equilibrium. These conditions relate signaling cost of norm-adopters and non-adopters, the 
strength of the social norm and parameter measuring the cost of cooperation.  
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1. Introduction 

Despite obvious advantages of exploiting the good will of others, human beings often cooperate 
even in large, unstructured societies. However, neither is cooperation universal without 
exceptions nor is it easy to explain. Economists have a long tradition in identifying the evolution 
of cooperation in large, unstructured societies as a puzzle (e.g. Axelrod and Hamilton 1981, 
Fudenberg et al. 2012) and in finding explanations of cooperation based on some structure within 
the population.  

Attempts to solve the puzzle are abundant but have so far most often relied on either or both of 
two restrictions: On the one hand, explanations have concentrated on structured populations, 
that is populations in which interaction is not completely anonymous but allows individuals to 
collect and process information about past behavior of others and about their identity. On the 
other hand, explanations have been depending on an unexplained ability of social norms to 
restrict the individuals’ action or strategy spaces, in particular with respect to the abuse of 
punishment. 

Among the first group, some strands of the literature deserve special mention.1 The theory of kin 
selection focuses on cooperation among individuals who are closely related genetically (Hamilton 
1964a; Hamilton 1964b), whereas theories of direct reciprocity focus on the selfish incentives for 
cooperation in repeated interactions (Trivers 1971; Axelrod 1984). In the case of infinite 
repetition within one group see Taylor (1976) or Mordecaï (1977) and the Folk-Theorem-type of 
results (Rubinstein 1979, Fudenberg and Maskin 1986), for indefinite repetition see Kreps et al. 
(1982). The theories of indirect reciprocity and costly signaling show how cooperation in larger 
groups can emerge when the cooperators can build a reputation (Nowak and Sigmund 1998; 
Wedekind and Milinski 2000; Gintis et al. 2001)2. 

Within the second group, we point to the early papers of Hirshleifer and Rasmusen (1989) and 
Witt (1986), who allow for punishment only after a norm has been violated. Sethi (1996) allows 
for all possible strategies which condition punishment on the violation of or the compliance with 
a norm, but adds structure to the society by introducing some exogenous division of the 
population into some individuals who behaves rationally and the rest whose behavior is 
determined by routines which are slowly adapted to their environment.  

We suggest a new explanation for cooperation which avoids both restrictions. Our explanation 
deals with cooperation in large unstructured populations of individuals whose incentives to use or 
abuse actions or strategies evolve endogenously from the model. We assume that their behavioral 
routines adapt to the sum of objective and subjective payoffs and that their subjective payoffs – 
which express internalized norms – slowly evolve according to the objective payoffs. This allows 
us to explain all variation among individuals endogenously and to disregard any information 
about past behavior of other individuals.  

                                                      

1 A complete review of the literature would of course transcend the limits of an introductory section of a journal 
article – it would rather require an entire book or even more. 
2 There are other mechanisms that do not rely on informational aspects, but are based on restrictions in strategies: In 
finitely repeated games cooperation can e.g. result from bounded complexity of strategies (Neyman 1985), history-
dependent payoffs (Janssen et al. 1997) or bounded complexity of beliefs (Harrington 1987). 
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We place our model in the environment which is most unfavorable to cooperation, a completely 
unstructured society where every interaction occurs among strangers for two reasons. One is 
methodological: we want to isolate the impact of internalized norms from other factors that 
might stabilize cooperation. The other is empirical: we believe that in modern societies a non-
negligible part of everyday interactions are characterized by cooperation in dilemma situations 
although they actually do take place in an unstructured environment (for a survey on 
experimental evidence see Roth 1995, Cooper et al. 1996). 

In such an environment, cooperation cannot be induced by any form of repeated interaction3 nor 
by social norms based on sanctions to be inflicted in later interactions. Even internalized norms, 
i.e. norms which alter the perceived utility from acting in a cooperative or in an uncooperative 
way, will not help to overcome a dilemma in an unstructured society, unless – and this is the 
thrust of the current paper – individuals are able to signal their property of being a norm bearer4. 
Should internalized norms simply exist, but lack the possibility of being signaled or screened for, 
they would induce norm bearers to cooperate and to be exploited by others. Hence, norm bearers 
would have a clear evolutionary disadvantage so that norm adoption would vanish. Only when 
internalization of the norm may be communicated in a reliable way, the picture may change, 
because then behavior may be conditioned on expected behavior of others. 

Within this environment, we borrow from the indirect evolutionary approach Güth and Yaari 
(1992) and Güth (1995) the idea that internalized norms are nothing else than an internal payoff 
conditional on the behavior of the individual and its partners and that the adoption of an 
internalized norm evolves slowly depending on its effects on material, external payoffs. Our 
approach is thus closely related to Güth et al. (2000), who analyzes the Game of Trust rather than 
the Prisoners Dilemma. Obviously, the two games are similar since in the Game of Trust the 
outcome of the first mover trusting and the second mover reciprocating is Pareto superior to the 
unique Nash equilibrium. In Güth’s model, evolution allows for heterogeneity with respect to the 
evaluation of the material outcome such that some agents will reciprocate and some will exploit 
trust as second movers. By adding the opportunity of partially informative but costly screening of 
this evaluation to the standard Game of Trust, Güth opens the path to equilibria in which the 
first mover trusts and the second reciprocates. We carry this approach over to the Prisoners’ 
Dilemma and concentrate on signaling instead of screening.  

Next to these differences with respect to the environment of interaction, we depart in a 
fundamental way concerning the behavioral assumptions. We assume that agents play inherited 
strategies defining both whether an individual signals its norm internalization and whether it 
cooperates or not. We thus take the stand of Behavioral Economics (as it is often reflected in 
evolutionary game theory) whereas Güth et al. (2000) applies a rational choice approach with 

                                                      

3 Kandori (1992) and Ellison (1994) show that in an environment with similar informational restrictions as in our 
model contagious strategies may support cooperation in a social dilemma by an extremely indirect way of repeated 
interaction. In such strategies, when one player defects in one period, his opponent of that interaction will start to 
defect from this period onwards, infecting other player who will defect in the future, infecting others and so forth. 
For any fixed population size Kandori (1992) and Ellison (1994) show that cooperation can be sustained in a 
sequential equilibrium if individuals are patient enough. However, such contagious strategies may only uphold 
complete cooperation of all individuals, require nearly infinite patience in large societies and are not tolerant with 
respect to behavioral errors. We therefore do not discuss this approach in detail. 
4 For an empirical paper on the role of costly signaling for the promotion of intragroup cooperation see Soler (2012). 
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agents using Bayesian updating and rationally taking investment decisions with respect to 
screening. Our model is thus evolutionary both with respect to norm internalization and with 
respect to behavior, although the speed of the norm internalization dynamics is clearly less than 
the speed of behavioral adaptation. 

That signaling may point a way out of a social dilemma where mechanisms as reputation, 
reciprocity or assortative matching are absent or fail to work sufficiently well has been argued 
before in the field of evolutionary biology (Wright 1999; Smith 2000; Leimar 2001). Only a few 
approaches incorporate a formal model (Gintis et al. 2001). The novelty of our approach is the 
derivation of the full set of behavioral equilibria, i.e. all separating, pooling and semi-pooling 
equilibria of the signaling extended Prisoners’ Dilemma. This would be rather a technical note if 
it wouldn’t have the implication to induce a far richer set of equilibria concerning the distribution 
of an internalized norm which can stabilize cooperation. Notably the interplay of those multiple 
behavioral equilibria may stabilize partial cooperation and dissolves the necessity to introduce 
evolutionary forces into the dynamics of norm adoption beyond payoff monotonicity that are 
frequency based as in Gintis et al. (2001). 

Sethi (1996) suggests a linkage between his own approach, i.e. mixing optimizing and non-
optimizing behavior in an evolutionary game and the approach taken by Güth and Yaari (1992) 
and Güth and Kliemt (1994) in which all agents are assumed to optimize given heterogeneous 
preferences. Both authors establish the existence of games in which preferences for cooperation 
or fairness are evolutionary stable. Similarity in results despite differences in methodology suggest 
that the two research programs are highly complementary Sethi (1996, p. 117). Our results show 
that the complementarity between these different approaches is limited. We show that there is a 
substantial difference between assuming that norms simply fix a certain behavior and assuming 
that norms only give internal incentives to follow this behavior. In the latter case, which is ours’, 
the parameter measuring how strong this incentive is affects the range of the other parameters 
for which cooperation may emerge.  

The remainder of the paper proceeds as follows. The model is presented in Section 2. Since we 
consider a heterogeneous population composed of norm adopters and non-adopters we first 
derive equilibria in each sub-population of which the stable equilibria are presented in Section 3. 
Thereafter we endogenize heterogeneity and consider equilibria of the two subpopulations in 
Section 4. Section 5 collects and presents the requirements for partial or full cooperation being 
part of a stable evolutionary equilibrium. Finally, Section 6 concludes. 

 

2. The model  
The classical Prisoner’s Dilemma (PD) is the most prominent and best-studied example of a 
social dilemma and serves as the basis for our analysis. The PD is played recurrently in an 
unstructured population. An unstructured population is defined by the anonymity of the interaction, 
i.e. agents process only information of outcomes of their own past interactions. In particular they 
process no information about identity of opponents or about outcomes in games in which they 
were not involved. To save space, payoff matrices are given from the row player’s perspective. 
The strategy domain is finite consisting of the two strategies C – “cooperation” and D – 
“defection”. In conformity with the standard evolutionary model, we assume that individuals are 
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randomly matched into pairs with each pair having the same probability in each short time 
period.5 Any pair will engage in a one-shot PD game. Table 1 below presents the material payoffs 
of the PD that will be decisive with respect to evolutionary success.  

Material payoffs are given by:  C D 
 C 1 β−  
 D 1 α+  0  

Table 1: Prisoner’s Dilemma, where 0, 0 1 and α β β α> > + > . 

A usual assumption in evolutionary models explaining the presence of cooperative behavior is 
that individuals play inherited strategies that may depart from payoff maximizing behavior. The 
play of non-maximizing strategies in this line of research is then interpreted as norm-guided (e.g. 
Sethi 1996). To us this line of argument appears unsatisfactory since apart from showing that 
such strategies can be sustained in equilibrium it lacks any motivated for why an individual should 
adhere to that particular norm. We believe that individuals will not stick to behavior which is 
suboptimal in the current environment. We do not claim, that individuals always do what is best 
for them from an objective perspective (e.g. maximizes fitness), but they will not stick to 
suboptimal strategies forever. Hence, in our view any long-lasting departure from the behavior 
which maximizes material payoffs needs to be motivated by a valuation of the outcome of 
behavior that differs from the material payoffs in a substantial way. In other words, norm-guided 
behavior is not equivalent to an unmotivated commitment to a certain behavior, but it reflects 
the subjective valuation of the (physical) outcome of the game. Following this reasoning we rely 
on (a variant of) the indirect evolutionary approach, pioneered by Güth and Yaari (1992)6, i.e. we 
explicitly model cooperative preferences that determine behavior and behavior in turn determines 
fitness.  

As a particular internalized norm we focus on the case of a cooperative norm. Players carrying 
such an internalized preference gain an additional internal payoff if the behavioral outcome of the 
stage game is mutual cooperation, i.e. (C, C). We assume that there are two types in the 
population (high and low types). Let λ  denote the share of high types in the population and let 

{ },m m m∈  be their preference parameter measuring the attitude towards cooperation, resulting 
in the internal payoff matrix depicted in Table 2 below. As Güth et al. (2000) noted in a different 
setting, the precise level of m is behaviorally irrelevant. All m-types for whom the same inequality 
with respect to α  holds, form an equivalence class concerning the implied behavior. We 
therefore normalize 0,m m α= > .7 The value of m is assumed to be private information of the 
agent. In the tradition of Harsanyi (1967, 1968a, 1968b) beliefs about the opponent’s type are 
common knowledge. As in Güth and Ockenfels (2005) we make the natural assumption that 
beliefs correspond to actual frequencies of types. Without communication the impossibility result 

                                                      

5 An unstructured population need not necessarily engage in uniform or random matches, but departures from those 
assumptions significantly complicates analysis without changing the qualitative results since we assume that 
population is unstructured and remains unstructured. Non-random or non-uniform matching might however 
increase the chance that structure is introduced into the population.  
6 The indirect evolutionary approach has also been applied in different strategic settings (ultimatum game, Huck and 
Oechssler 1999) or to analyze the evolutionary stability of altruistic preferences (Bester and Güth 1998) or of 
altruistic and spiteful preferences (Possajennikov 2000). 
7 Assuming m α>  is necessary, since otherwise defection would still be the dominant strategy for norm-adopters.  
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of Kandori (1992, Proposition 3) applies, which states that the unique equilibrium is 
characterized by full defection, i.e. everybody always defects.  

Communication is modeled as an additional stage prior to the play of the adjusted PD. In that 
stage agents can simultaneously send one message concerning their inner motive. Without loss of 
generality we assume the message space to be the same as the type space. The message to be a 
low type corresponds to sending no message and is costless. As in the standard signaling model 
(Spence 1973) we assume that there exists a social technology which enables individuals to signal 
their positive attitude towards cooperation by incurring some costs. Furthermore, agents who 
actually adopted the norm are supposed to bear lower cost for sending the signal. Let ,k k  denote 

the signaling cost for high types and low types respectively, so that k k< . In the current setup 
strategies are now given by signal-dependent behavior and an own signal, e.g. “cooperate if high-
type signal is received, deviate if low-type signal is received and send high-type signal”, denoted 
CDm . In general terms,  a strategy is denoted by a triple of which the first entry corresponds to 
behavior in the case of receiving a high-type signal, the second to behavior in the case of 
receiving a low-type signal, and the third to the signal sent. 

What might such a signal be? To give an illustrative example consider the situation where 
individuals elbow their way through a bargaining sale. There is a rummage table with one good 
offered as two variants goods A and B. One of the two individuals considered prefers A, the 
other prefers B. However, for both getting both variants is the first best outcome. They can 
behave cooperatively leaving each other place to select their preferred variant or try to queue-
jump and grab both in which case the other gets none. If both individuals chose not to 
cooperate, they would grab one of the variants by chance leaving them in expectation with a 
lower utility then in the cooperative state. Hence this example is structurally equivalent to a PD. 
In this scenario the signal often used is to make room for the other person. Such a signal is costly 
in terms of time which usually has some monetary equivalent. If this gesture is received by both 
individuals this might lead to mutual cooperation. This example is also instructive in 
demonstrating that signaling in our context is rather part of the behavioral strategy then an act of 
rational choice.  

Evaluation of material payoffs is given 
 

 C D 
 C 1 m+  β−  
 D 1 α+  0  

Table 2: PD with preference for cooperation. 

Based on the basic behavioral actions C and D, for the high types there are eight signal-
dependent strategies  ,  ,  , CCm CDm DCm DDm  and  ,  ,  , CCm CDm DCm DDm . For low types, since 
defection is dominant behavior, there are only two strategies that reflect their signals, denoted by 

 , Dm Dm . To distinguish the signaling from the non-signal part of the strategy, we will call the 
former signal and the latter behavior. We will denote the share in the subpopulation of high types 
playing the strategy CCm  by CCmp  and accordingly for any other strategy. Since low types always 
defect we denote their respective shares by mp  and mp . 

In evolutionary game theory there are two approaches with respect to capturing the dynamical 
aspect of evolution. The first one, due to the work of Smith and Price (1973), centers around the 
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concept of an evolutionary stable strategy and is considered as a “static” approach since typically 
no reference is given to the underlying process by which behavior changes in the population. The 
second approach does not attempt to define a particular notion of stability. By explicitly 
modeling the underlying dynamics all standard stability concepts used in the analysis of dynamical 
systems can be applied. We will follow the second approach by modeling the dynamics of the 
according population shares via payoff-monotone dynamics (see e.g. Bendor and Swistak (1998) 
for definitions, i.e. if the fitness payoff of a certain strategy is larger than the one of another, the 
share of a population following the former will increase faster than the share of the latter, or 
decrease slower. An equilibrium is defined by the dynamics introduced above. An equilibrium is a 
distribution in the shares of the population playing a certain strategies, such that the dynamical 
process induces no further adjustments, i.e. an equilibrium is a fixed point of the adjustment 
process. As a stability concept we will apply the notion of asymptotic stability (see. e.g. 
Samuelson 1997 for definitions). An equilibrium of that type must be reconstituted after a small 
but – in terms of the composition of mutation-strategies – arbitrary perturbation. 

As mentioned above there are eight strategies for high types and two for low types. We assume 
that the dynamic accommodation of the population shares playing a certain strategy is relatively 
fast compared to the dynamics of the population share of m -types, i.e. λ .8 This assumption will 
simplify analysis of the dynamics and is considered as adequate since behavior will adapt faster to 
differences in payoffs than socially and culturally transmitted norms. We therefore can analyze 
these processes separately as long as the faster process is stable. More precisely, we apply the 
mathematical tool of quasi-stationary approximation or ‘adiabatic elimination’ (Haken 1977, 
Weidlich and Haag 1983, used in economics by Samuelson 1947: 320, already) of fast variables to 
solve the coupled differential equations, which on the one hand describe the fast dynamics of 
various signal-behavior strategies and on the other hand the slow dynamics with respect to norm-
adoption. The eight strategies for high types and the two for low types amount to ten differential 
equations, one per share per strategy, yielding nine independent equations since the size of the 
total population is fixed. Fixing the size of each subpopulation while analyzing the dynamics of 
behavioral strategies within each subpopulation reduces the number of independent differential 
equation by one more, seven for the high types and one for low types. We recall that XYmp  and 

mp  denote the shares of strategies within the subpopulations so that 
, ,

1XYmX Y m
p =∑  with 

{ }, ,X Y C D∈  and { },m m m∈  and 1m mp p+ = . 

Given our assumption on the speed of the dynamic processes we first have to derive all the 
behavioral equilibria for a given proportion λ  of individuals with a high internal motivation for 
(mutual) cooperation and then analyze whether the implied λ -dynamics can support a fully or 
partially cooperative state. We call the former equilibria ‘p-equilibria’ and the latter ‘λ-equilibria’. 
If they are asymptotically stable with respect to the corresponding p- or λ -dynamics, we say that 
they are p-stable and λ -stable, respectively. p-stable equilibria are presented in section 3, λ -
stable equilibria are derived in section 4.  

3. Equilibria with Exogenous Proportions of Norm Bearers 

                                                      

8 This assumption implies that payoff monotonicity is restricted to the fast and to the slow dynamics, but does not 
comprise the combination of the two. 
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For the ease of reading, we only present the equilibria and their stability properties here and leave 
the derivation to Appendix A (existence) and B (stability). As in many other cases as well, we 
have – depending on the parameters including λ  – separating and pooling equilibria. There are 
one p-stable separating and three p-stable pooling equilibria. In the separating equilibrium the 
subpopulations of the two types of individuals (high and low internal motivation for cooperation) 
exhibit homomorphic behavior, whereas behavior of types in the pooling equilibria is 
heteromorphic. However, there is a third type of equilibria where at least one subpopulation 
applies both types of signal, so called semi-pooling equilibria. Table 3 reports these equilibria. 

In the following we will take a closer look at the separating and pooling equilibria. We will refer 
to the first of these equilibria as the ‘cooperative separating equilibrium’, to the second as the ‘low 
pooling cooperative equilibrium’, to the third as the ‘low pooling defective equilibrium’ and to the fourth as 
the ‘high pooling cooperative equilibrium’. It turns out that the semi-pooling equilibria with one 
exception are less important for the implied λ -dynamics and are therefore not further discussed. 
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Table 3: p-stable equilibria (p-stable semi-pooling equilibria are referred to Appendix C)
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The exception is the p-stable semi-pooling equilibrium at 
1

kλ
α

=
+

 that will be of relevance for 

one of the inner λ -stable equilibria. In this semi-pooling equilibrium high types always play 
CDm and low types are indifferent between sending the signal or not and therefore mp  is 
undefined. The minor importance of all other p-stable semi-pooling equilibria is partly due to the 
fact that they are characterized by strictly negative fitness differentials between high and low 
types and partly due to their limited λ -support (see Figure 1-Figure 2).  

In the cooperative separating equilibrium, the high types recognize each other and cooperate only 
among themselves. That there are both a lower and an upper bound in the support for this 
equilibrium has the following intuition. If there are too few high types then the cooperative 
outcome among them cannot compensate for signaling cost. The higher the signaling cost 
relative to the (non-material) reward for a cooperative outcome the higher the required share of 
high types in the population. If on the other hand there are too many high types then signaling 
becomes sufficiently profitable for low types. In other words if there are enough high types that 
cooperate when receiving the cooperative signal then it becomes profitable for low types to incur 
the signaling cost. The higher the signal cost for low types relative to what can be gained from 
defection against a cooperative opponent, the higher is the share of high types needed for 
signaling to become a profitable strategy for low types. The thresholds for the share of high types 
have a precise economic interpretation. For high types the cost-benefit ratio from signaling (

1
k

m+
) must be smaller than the probability to gain the benefit (λ ). The reverse holds true for 

low types, i.e. their cost-benefit ratio from signaling must exceed (
1

k
α+

), the likelihood to gain 

the benefit.  

In the low pooling cooperative equilibrium nobody signals and high types cooperate. This 
equilibrium exists if there are sufficiently many high types. Only then they can compensate for 
the loss from being cooperative against low types by the cooperative outcome among each other. 
In other words, if the share of high types falls below a certain threshold then they will start to 
prefer playing defective when receiving the low signal. Note that this equilibrium is indeed an 
equilibrium set, since the strategies CCm  and DCm  are equivalent in equilibrium. The share of 
high types required for this to be an equilibrium increases in the sucker’s payoff, since with 
increasing (absolute) sucker’s payoffs cooperative behavior becomes more disadvantageous. This 
threshold, too, has an intuitive meaning. Note that m α−  ( β ) measures the incentive to 

reciprocate cooperative (defective) behavior, i.e. the condition 
m
β λ

β α
<

+ −
, which can be 

rewritten as ( ) ( )1mλ α λ β− > − , states that the expected gain from reciprocating cooperative 
behavior must exceed the expected gain from reciprocating defective behavior.  

In the low pooling defective equilibrium nobody sends the cooperative signal and everybody 
defects earing a payoff of zero. Again, due to lack of distinguishability in equilibrium, equilibrium 
is indeed a set where CDm  and DDm  might be played by high types. This set of equilibrium 
reflects the benchmark solution in the underlying game and exists for all population 
compositions between high types and low types.  
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In the high pooling cooperative equilibrium everybody signals and high types cooperate. This 
equilibrium exists if there are sufficiently many high types. Given that they can compensate for 
the loss from being cooperative against low types by the cooperative outcome among each other. 
In other words, if the share of high types falls beneath a certain threshold then they will start to 
prefer to play defective while receiving the low signal. Contrary to the low pooling equilibrium an 
additional restriction with respect to the share of high types arises reflecting the incentive 
compatibility for low types to signal. Note that this equilibrium again is an equilibrium set, since 
the strategies CCm  and CDm  are equivalent in equilibrium. The share of high types required for 
this to be an equilibrium weakly increases in the sucker’s payoff and the signaling cost for low 
types. Since with increasing (absolute) sucker’s payoffs cooperative behavior and sending the 
signal for low types respectively become more disadvantageous. Here for low types the reverse 
logic applies in comparison to the separating cooperative equilibrium, i.e. for low types to find it 

worthwhile to signal their cost-benefit ratio (
1

k
α+

) must be smaller than the likelihood to profit 

from signaling (λ ). The lower bound stemming from incentive constraint for high types bears 
the same logic as in the low pooling cooperative equilibrium.  

 

4. Endogenous Proportion of Norm Bearers 
We now analyze the dynamics of the share of high types in the population for which we assume 
that the p-dynamic has reached a stable p-equilibrium, as we assumed that inner motives evolve 
far more slowly than behavioral frequencies. The evolution of the proportion of norm bearers is 
determined by its relative fitness. Fitness is measured by the material payoffs as presented in 
Table 1. Thus any preference parameter measuring the evaluation of material payoffs will be 
neglected when calculating fitness payoffs. In analogy to the derivation of p-equilibria, the 
differentials in these fitness payoffs among high and low types is the driving force for the 
evolution of their respective shares. To ease understanding the fitness payoff differentials we 
provide some intuition for their size in the relevant p-stable equilibria. 

In the cooperative separating equilibrium, both types defect in all interactions, except when two 
individuals of the high type meet. They then cooperate. The low type will thus always earn a 
fitness payoff of zero and the high type will earn a fitness payoff of one with probability λ , i.e. 
the probability that he interacts with another individual of the high type. Since high types 
unconditionally bear the signaling cost k , their expected payoff in the cooperative separating 
equilibrium is kλ − , which is also the expected difference of fitness payoffs:

( ) ( )( )f

m m kCD,m mΠ −Π = λ − . 

Obviously, this fitness advantage of the high type grows in the share of high types in the 
population. 

In the two (partially) cooperative pooling equilibria, individuals of the high type cooperate in 
reaction to the signal they send and all individuals of the low type copy this signal but still 
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defect.10 Absent signaling costs, differences in material payoffs solely reflect incentives of the 
underlying PD. More precisely, with probability λ  high types meet their own type and realize the 
cooperative outcome, i.e. they earn 1. With the residual probability they meet a low type and lose 
β . Low types always defect and only earn positive payoffs when matched with a high types, 
which happens with probability λ  and earns them 1 α+ . A fitness differential to the advantage 
of the high types thus cannot result from playing the game itself, but only form sufficiently large 
differences in signaling cost (see Table 3). Obviously, if no signal is sent, as is the case in the low 
pooling cooperative equilibrium, the fitness payoff of the high type can only be smaller than that 
of the low type.  

( ) ( )( ) ( )( )λα λ βΠ −Π = − + − <, 1 0
f

m mCC m m  

 Only in the high pooling cooperative equilibrium the signaling cost disadvantage of the low type 
may outweigh the disadvantage of the high type from playing cooperatively in the game, so that 
the high type earns a higher fitness payoff than the low type: 

( ) ( )( ) ( )( )λα λ βΠ −Π = +-, - 1 -
f

m m kCC m m k  

Obviously, the fitness payoff difference increases (declines) in the share of the high types if 
defection is more (less) tempting against defection than against cooperation, i.e. if β  is larger 
(smaller) than α . If the proportion of the high type in the population is too small, it is either not 
worthwhile to mimic the other type or the chances to meet another high-type individual are so 
low that cooperation ceases to be the best reaction to the signal sent by all individuals. For these 
small shares of the high type in the population, the pooling cooperative equilibria break down 
just like the cooperative separating equilibrium breaks down for too high shares of the high type. 

In the pooling defective equilibrium both types always defect without sending signals and thus all 
earn the same fitness (and behavioral) payoff of zero. 

The following two figures depict the differences in material payoffs for the various p-stable 
equilibria (see Table 3).  

 

 

 

 

 

Figure 1: Differences in material payoffs for 
( )1

k
m
β

α β α
<

+ + −
 

                                                      

10 This implies that the other signal is never sent, which explains why the high type is indifferent between the two 
behavioural actions C and D to this never-observed signal. 
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Payoff differences for semi-pooling equilibria are neglected since their support lies in the interval 

( )
,1

m
β

β α
 
  + − 

 and the difference is strictly negative for all. Hence their presence will have no 

important implications for the dynamics of the share of high types.  

 

 

 

 

 

Figure 2: Differences in material payoffs for 
( )1

k
m
β

α β α
≥

+ + −
 

A stable λ -equilibrium may be realized around one p-stable equilibrium or by the interplay of 
several such equilibria. We first concentrate on the first case which we further differentiate into 
corner equilibria (Lemma 1) and inner equilibria (Lemma 2) and then turn to the second case 
(Lemma 3). 

In the first case the difference in fitness payoffs between high and low types must vanish to 
constitute a stationary point at this particular value of the share of high types λ . For stability, in 
the neighborhood of an equilibrium λ∗ , high types must earn strictly more than low types for
λ λ∗<  and strictly less for λ λ∗> . In terms of Figure 1 and Figure 2, the stationary point is a zero 
of the linear payoff difference for a certain p-stable equilibrium, stability is equivalent to a 
negative slope of the payoff difference function. Of course, the requirement with respect to the 
zero and the slope is only relevant for inner equilibria. At the upper bound 1λ =  a strictly 
positive payoff difference in favor of high types at 1λ < , at the lower boundary a strictly negative 
payoff difference at 0λ >  is necessary and sufficient.  

We first analyze whether there exist λ -stable equilibria with full cooperation. Since only high 
types may cooperate this is equivalent to asking whether there is a λ -stable equilibrium at 1λ =  
with cooperating high types. Since high types in the low pooling cooperative equilibrium face an 
evolutionary disadvantage for all population compositions this p-stable equilibrium cannot induce 
a stable cooperative λ -equilibrium (partial or full). Hence there are two potential candidates left, 
the separating cooperative equilibrium and the high pooling equilibrium. The following lemma 
states the conditions such that a locally stable equilibrium with only high types present in the 
population who cooperate with each other exists.  

Lemma 1 The PD can be fully resolved as a locally λ -stable equilibrium only in two ways:  
(1) by the separating cooperative equilibrium iff 1k α≥ +  and 1k <   
(2) by the high pooling cooperative equilibrium iff: 1k α< +  and either 

k k α− >  or k k α β− = > . 

All proofs are in Appendix D. 

 

 

  

 
1 
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Although the existence of fully cooperative equilibria might seem surprising at the first glance, a 
closer look at the stated conditions reveals how strong they are. In the case of the separating 
cooperative equilibrium the condition corresponds to a scenario where the signaling cost for low 
types are so severe that it will never pay for them to signal. More precisely, in a cooperative 
separating equilibrium with 1λ =  a single low type mutant would earn 1 α+  form playing the 
dominant defective strategy at cost k . The second qualification 1k <  stems from the incentive 
compatibility constraint for high types, since they could always earn zero by not-signaling and 
defective behavior. In the case of the high pooling cooperative equilibrium the difference in the 
signaling cost must exceed the material reward to defect on a cooperative opponent.  

The restrictiveness of Lemma 1 draws our attention to stable inner equilibria. The only candidate 
for such a λ -equilibrium supported by only one p-stable equilibrium is one associated with the 

high pooling cooperative equilibrium at 1
k k α
β α
− −

−
−

. All other equilibria are characterized by 

either strictly negative or by strictly increasing payoff differentials. The high pooling cooperative 

equilibrium exists and is λ -stable, if 1 k k α
β α
− −

−
−

 is inside the λ -support of this equilibrium and 

the fitness differential decreases in λ , which is the case if 0β α− < (see Figure 1). Taking these 
conditions together yields: 

Lemma 2 The high pooling cooperative equilibrium constitutes a λ -stable inner equilibrium at 

1 k k α
β α
− −

−
−

 if and only: m k k
m

β α
α β

< − <
− +

 and 1
1

k kββ
α

+
< −

+
. 

Note that the first condition implies 0β α− < , which guarantees stability. As expected the 
conditions presented in Lemma 2 are less restrictive as compared to the requirements for an 
equilibrium formed by high types only. Looking at the conditions we observe that the existence 
of stable inner equilibria requires that norm adopters’ costs of signaling must differ sufficiently 
from the corresponding costs of non-adopters.  

What remains to be studied is whether separating λ -equilibrium constituted by the interplay of 
several p-equilibria exists. For this to be the case, (1) the supports of the p-equilibria need to be 
adjacent, (2) the differences of fitness payoffs have to exhibit the same properties as for the 
stable λ -equilibrium constituted by only one p-equilibrium (positive for less-than-equilibrium 
shares of high types and negative for more-than-equilibrium shares of high types), and (3) after 
λ  moves from the support of one equilibrium to the support of another the behavioral 
frequencies have to be within the basin of attraction of the “new” equilibrium if they have been 
sufficiently close to the “old” equilibrium. In our case, we may have such an equilibrium only at 

1
kλ
α

=
+

 where three equilibria interplay: The separating cooperative equilibrium, a semi-pooling 

cooperative equilibrium (last row in Appendix C), and the high pooling cooperative equilibrium. 
To facilitate understanding the argument, we suggest the reader to consider Figure 2 while 
reading the following argument. 
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Condition (1) requires that 
1

k
m

β
α α β
≥

+ − +
 (cf. Table 3 and Appendix C). Condition (2) has 

implications for the fitness differences of the p-stable equilibria. For the cooperative separating 

p-equilibrium we have the fitness difference given by ( ) ( ),f f
m mCD m m kλΠ −Π = −  for 

1
k

λ
α

≤
+

. 

This difference must be strictly positive at 
1

kλ
α

=
+

, whence 1 k
k

α+ < . In other words the 

relative disadvantage for low types in terms of signal costs must exceed the relative incentive to 
defect given the opponent cooperates. Given this and a share of high types sufficiently close to, 

but lower than 
1

kλ
α

=
+

, the share of the high type increases when the p-dynamics has reached 

the cooperative separating equilibrium. For the high pooling cooperative equilibrium, the fitness 
difference is given by ( ) ( )( ) ( ),

f
m mCC m m k kλ β α βΠ −Π = − − + − , which has to be negative. We 

Hence get 
1 1

k k β
α β

+
<

+ +
. 

To see that Condition (3) is satisfied under certain conditions we argue in three steps. First, we 
draw the gentle reader’s attention to the fact that for all three of the considered equilibria, we 

have 1CDm CCmp p+ = . This implies that for 
1

kλ
α

=
+

 we have: 

 
( ) ( ) ( )
( ) ( ) ( )

( )( ) { } { }2

1 1

1 1

max where , , \ { , }

m m

m

m
X

CDm m p k

CCm m k

X X C D m m CDm CCm

λ λ β

λ λ β

Π = + − − −

≥ Π = + − − −

> Π ∈ ×

 

where the first inequality is strict if 1mp <  and the second inequality requires 

1
k

m
βλ λ

α α β
∗ ≡ > ≡

+ − +
 . Hence continuity of the payoffs and Lipschitz-continuity of the 

dynamics implies that for all λ  sufficiently close to λ∗  and all sufficiently large CDm CCmp p+ we 

have 0CDm CCmp p+ >  . Hence, as once CDm CCmp p+  has become large enough close to any of the 

three relevant p-stable equilibria, CDm CCmp p+  will continue to grow for all mp . Second, we 

observe that if CDmp  is large enough and the p-dynamics is sufficiently fast compared to the λ -

dynamics, then λ  will always stay close enough to λ∗  to keep the first argument valid. Third, if 

CDm CCmp p+  is large enough and thus increases, ( ) ( )m mCDm CCmΠ < Π  only occurs for ever 

decreasing ranges of large mp . Hence for every payoff-monotone dynamic CCmp  will be smaller after 

every full cycle and will never again reach its previous maximum level. Hence, CDmp  will eventually be 

large enough to secure that our second argument is valid. 

Hence, once our full dynamic system is close enough to λ∗  and the λ -dynamic is slow enough, the 
system will cycle between the separating equilibrium and the high pooling equilibrium in ever 
smaller cycles. (Note that this does not necessarily imply that a fixed point is reached; a limit cycle 
may exist.) We summarize all conditions in the following 
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Lemma 3 If 
if = then 
  >1 1

k k
m

α β

β β
α β α β

+
< ≤

− + + +
 and 

1
kk
α

<
+

 an inner λ -stable equilibrium exists at 

1
kλ
α

=
+

, in which high-type individuals cooperate among each other but also with 

those low-type individuals who signal to be of the high type and the proportion of 
low-type individuals who signal to be of the high type fluctuates. 

Note that the conditions in Lemma 2 and Lemma 3 are mutually exclusive, i.e. there is at most 
one stable inner equilibrium. 

We have so far not considered the case of 
1

k
m

β
α α β
≤

+ − +
. Given that we have 

1
1m kp λ

α
=
+

<  and 

there is a gap between the λ -supports of the separating cooperative equilibrium and of the high 
pooling cooperative equilibrium in case of a strict inequality (see Figure 1) and instability of the 

equilibrium around 
1

kλ
α

=
+

 in case of an equality. In the interval 
1

,k
m

β
α α β+ − +

 
 
 

 the 

defective separating equilibrium is the unique equilibrium. Should the population start at the 
cooperative separating p-equilibrium with positive fitness differential then it will eventually drive 
the share of high-type individuals beyond the λ -support of this equilibrium so that mp  starts to 
grow. Once it grows too much, the strategy DDm  yields the largest behavioral payoff to high-
type individuals and CDm  only the second-largest. Hence the share of always defecting high-type 
individuals DDmp  must grow and CDmp  must decline, because the shares of the other strategies 
(with even lower behavioral payoffs) are already zero. Less cooperation by high-type individuals 
reduces the advantageousness of low type’s signaling the false type so that mp  will eventually 
decline again. A behavioral equilibrium in which only some low-type individuals signal the wrong 
type and only some high-type individuals cooperate after receiving the high signal while the 
others always defect exists, but is not stable (see Appendix B). As a consequence, DDmp  will 
eventually grow large enough to bring the population in the attraction region of the defective 
separating equilibrium, where it will remain. We admit that the evolution may become more 
complex, when mp  and DDmp  both become so large that CDm  becomes less profitable than 

DCm . Then there may be payoff monotonic dynamics for which DCmp  starts to grow, although 
slower than DDmp . If this happens, eventually false signaling by high types may become 
reasonable. However, as the low pooling equilibrium fails to exist in the interval 

1
,k
m

β
α α β+ − +

 
 
 

, we conjecture that the population will eventually end up in the defective 

separating equilibrium as the unique behavioral equilibrium: 

Conjecture If 
1

k
m

β
α α β
<

+ − +
, no λ -stable inner equilibrium exists at 

1
kλ
α

=
+

. 
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Figure 3:  parameter region for partial or full cooperation 

Figure 3 illustrate the conditions of Lemma 1-Lemma 3 graphically. For all inner equilibria 

potentially to exist we assume 0β α− <  and 
1

k
m

β
α α β
≥

+ − +
. SCE denotes the separating 

cooperative equilibrium, HPCE the high pooling cooperative equilibrium and SCE&HPCE the 
inner equilibrium that is generated by the interplay of SCE, HPCE and a semi-pooling 
equilibrium. Finally FC and PC indicate full or partial cooperation respectively.  

It is worth noting that the strength of the cooperative norm measured by  has a direct impact 
on the parameter set allowing for -stable inner equilibria (see Figure 3). As  gets closer the 
incentive to defect  then the parameter region supporting a separating cooperative equilibrium 
becomes smaller and smaller. Although the size of  is not important for the behavioral 
consequence for each individual, but only its relation to , its size matters with respect to the 
presence of evolutionary stable equilibria characterized by partial cooperation. 

 

5. Collecting requirements for equilibria with cooperation 

Combining Lemma 1-3 of the previous Section, we can state a theorem on cooperation in an 
unstructured population: 

Theorem In an unstructured society cooperation in a PD may exist and be stable due to the 
possibility of signaling the existence of inner payoffs for (mutual) cooperation, which do not 
affect fitness, if the costs of falsely signaling to have such inner payoffs are sufficiently large. 
These costs must be larger to reach full cooperation than to reach partial cooperation. 

In our specific model, ‘sufficiently large’ translates to 
 for full cooperation (Lemma 1) 

and 

m

λ m

α

m

α

         or      k k k kα α β− > − = >
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 for partial or full cooperation (Lemma 1-Lemma 3) 

Figure 4 and Figure 5 illustrate the interrelation between the costs for low types to signal falsely 
and the extent of the inner motive for mutual cooperation. This relation is determined by the 
various inequality conditions for existence of partial or full cooperation stated in the Theorem 
above. Figure 4 reveals the negative relation between these two parameters, i.e. in order to sustain 
some level of cooperation lower signalling cost for low types must be compensated by a higher 
inner motive for mutual cooperation of the high types. Here the aforementioned 
interdependence of  and the presence of cooperative equilibria is directly observable. Although 
the precise level of  is not decisive with respect its behavioural consequence its level plays a 
crucial role with respect to the size of the set of parameters such that partial or full cooperation 
could be sustained as an equilibrium outcome. Furthermore we observe that this set of 
parameters is strictly decreasing in the signalling cost for the high type. Finally Figure 5 and 
Figure 5 show that chances for cooperation diminish with increasing , i.e. the riskier cooperation 
or the more painful cooperation is when matched with defective behaviour the higher the 
requirements with respect to signalling costs for low types and the inner motive for mutual 
cooperation. A mirror argument applies with respect to the parameter  measuring the incentive 
to defect on cooperation in the underlying game. The following corollary summarizes these 
insights.  

Corollary  (1) The range of signalling cost for the low type allowing for partial or full 
cooperation is weakly increasing in the social norm for mutual cooperation .  

(2) The set of -pairs allowing for partial or full cooperation is strictly increasing 
in signalling cost for the high type  and strictly decreasing in the Sucker’s 
payoff  and the incentive to defect on cooperation . 

The Theorem reveals that in case of full cooperation almost always only the incentive to defect 
on a cooperative player  relative to the difference in signalling costs matters, whereas for stable 
partial cooperation the relation of  and  is relevant. The loss from playing cooperatively on a 
defective opponent β  must be less than what a player could gain from defecting on a 
cooperative player. Intuitively this explains the edge of defective players over cooperative players 
for shares of the latter that exceed the equilibrium level and vice versa. Reflecting on both 
incentives in case of a partially cooperative equilibrium is also plausible since both behaviors are 
present in equilibrium, whereas fully cooperative equilibria are characterized by solely cooperative 
actions. In that case only the price for cooperation given the monomorphic cooperative behavior 
α  is relevant.  
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Interdependence between the size of the inner motive and the cost to send a false signal  
  

Figure 4: α β≤  Figure 5: α β>  

 

6. Conclusion 
In this paper we analyze an evolutionary model where individuals are able to signal that they 
internalized a particular social norm, namely a norm for mutual cooperation. This preference was 
embedded in a Prisoners’ Dilemma. In section 5 we provide a theorem that states necessary and 
sufficient condition for full or partial cooperation to be prevalent in a stable equilibrium. These 
conditions reflect on the difference in signaling cost between the cooperative and the 
opportunistic type, the extent of the cooperative norm and the model parameters of the 
Prisoner’s dilemma, i.e. the temptation to defect and the sucker’s payoff. We obtain several 
interesting results. First of all, although it is true that the size of the behavioral parameter 
measuring the evaluation of certain material outcomes is not important for the behavioral 
consequence for each individual, but only its relation to the incentive to defect, its size matters 
with respect to the presence of evolutionary stable equilibria characterized by partial cooperation. 
More precisely, the stronger the inner motive to cooperate the less restrictive the conditions on 
the spread in signaling cost. Second, for cooperative agents to coexist with defecting agents in a 
stable equilibrium it is not necessary that the signaling technology fully cancels the incentive to 
defect. Since this would be necessary for many corresponding results that are based on some sort 
of involuntary redistribution (e.g. punishment), our approach may explain cooperation in more 
cases than the latter approaches. Furthermore the range of signalling cost for the low type 
allowing for partial or full cooperation is weakly increasing in the social norm for mutual 
cooperation. Finally, the set of pairs of signalling cost for the defective type and level of 
cooperative norm allowing for partial or full cooperation is strictly increasing in signalling cost 
for the cooperative type and strictly decreasing in the sucker’s payoff and the incentive to defect 
on cooperation. 

We achieved these results by analyzing the evolution of norms concerning cooperation in the 
Prisoners’ Dilemma with one of the most general class of dynamics considered in evolutionary 
game theory, namely the class of payoff-monotone dynamics. That signaling may point a way out 
of a social dilemma where mechanisms as reputation, reciprocity or assortative matching are 
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absent or fail to work sufficiently well has been argued before in the literature. Only a few 
approaches incorporate a formal model. The novelty of our approach is the derivation of the full 
set of behavioral equilibria, i.e. all separating, pooling and semi-pooling equilibria of the signaling 
extended Prisoners’ Dilemma. This would be rather a technical note if it wouldn’t have the 
implication to induce a far richer set of equilibria concerning the distribution of an internalized 
norm which can stabilize cooperation. In particular notably is the existence of an inner 
equilibrium, i.e. an equilibrium where norm bearers and non-bearers coexist, that is stabilized by 
the interplay of a separating, a semi-pooling and a pooling equilibrium of the evolutionary 
signaling game. It is exactly this interplay that stabilizes the share of norm bearers and dissolves 
the necessity to introduce evolutionary forces into the dynamics of norm adoption beyond payoff 
monotonicity that are frequency based11.  

Since cooperative equilibria exist given that agents may signal their cooperative attitude, large 
societies aiming for more cooperation are not completely limited to the reduction of anonymity 
in social interaction (and hence giving up some of the advantages of large societies) or the use of 
formal institutions. Politicians may also try to provide hard-to-falsify signals of internal motives 
to cooperate for areas where interaction is rather anonymous. Then informal institutions may 
spontaneously evolve more easily even in large unstructured interaction environments. Even if 
politics cannot alter the underlying incentives of the social dilemma to the extent such that the 
dilemma aspect would indeed vanish, partial reduction of the incentive to defect or partial 
insurance for the suckers’ payoff may be sufficient to allow for cooperation to evolve. The share 
of norm bearers in our model is driven by evolutionary forces that are beyond the scope of any 
policy measure. However, politics might have some leverage on the strength of the norm once 
incorporated. Hence, strengthening the internalized norms will also increase the chance for 
cooperation.  

If we argue that it is spontaneous institutions which repel defection in large unstructured 
societies, then these insights lead us to argue that concepts of institutions should not require that 
all individuals adhere to the behavior prescribed by the spontaneous institution. Rather a 
definition of institutions should allow for a substantial share of the population to deviate from its 
rule. We add a theoretical basis to this insight which seems obvious from an empirical point of 
view. 

We have not modeled the interplay of different Prisoners’ Dilemma situations in a society. 
Without going into any detail here, we conjecture from our signaling model that cooperation in 
one Prisoners’ Dilemma may serve as a signal to have the internal cooperation in order to better 
fare in another Prisoners’ Dilemma. The temptation to defect in first game would be the costs to 
falsely signal having the internal motivation to cooperate. Hence the interplay between different 
Prisoners’ Dilemma situations does not allow for scaling up: temptation in first game cannot be 
larger than in second game, or cooperation there cannot be complete. Further research needs to 
be done on the details of the interplay between different Prisoners’ Dilemma games in an 
unstructured society.  

                                                      

11 Although Gintis et al. (2001), as one of the few formal evolutionary signaling models, show the existence of an 
stable separating equilibrium, it would under payoff monotonicity only cease to exist as the type that correspond to 
our high types face an evolutionary advantage. Thereby their share in the population would increase and eventually 
exceed the threshold beyond which the separating equilibrium breaks down. 
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The analysis for more general norm than the one we considered is left for future research. So far, 
we think that the size of the parameter measuring the internalized norm is not driven by 
evolutionary forces, since no fitness payoff differences depend on it. However, the size of the 
parameter does determine the range in which cooperative equilibria exist. Hence if two separate 
populations with different levels of the internalized norms are considered, the one with the 
higher value is more likely to evolve towards a cooperative state. If in the course of time both 
population start interacting with each other a cooperative population might induce cooperation in 
an defective population and vice versa. To analyze such an environment might be relevant for 
studying migrational effects on cooperation.  
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Appendix C – Stable Semi-Pooling Equilibria 
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Appendix D - Proofs 

Proof (Lemma 1) Full cooperation can only be achieved with only high types present in the population, i.e. 
1λ = . There are only two equilibria which support cooperation among high types are supported at 1λ =  

under certain conditions and potentially exhibit a fitness advantage for high types (necessary for local 
stability), the separating cooperative equilibrium and the high pooling cooperative equilibrium. With 

respect to the former the support condition amounts to 1 1
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1k <  (see Table 5). With respect to the latter the support condition amoutns to 1k α< + , the fitness 
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