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Abstract

We study strategic communication between a Sender and Receiver who are both
uncertain about their preferred actions. The Sender observes noisy signals about both
players’ ideal policies and then communicates with the Receiver. Even though Sender
and Receiver disagree about ideal policies as a function of the Sender’s information, we
can show that: i) there are information structures such that in equilibrium the Sender
credibly communicates his ideal policy and the Receiver correctly takes the Sender’s
advice at face value and ii) the unique outcome of Nash-bargaining over information
structures induces precisely a situation where communication about ideal policies is
credible. The resulting equilibrium features message strategies that are smooth in a
subspace of the Sender’s information. Smooth communication equilibria are extremely
tractable. Senders with better aligned preferences are endogenously endowed with
better information and therefore give more accurate advice.
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1 Introduction

In a seminal paper, (Crawford & Sobel (1982)), henceforth CS, study strategic communi-

cation in a Sender-Receiver-game. The Sender is perfectly informed about some state of

nature, the Receiver has no information. Even though the Sender’s information is useful in

reaching a good decision, a Sender whose interests differ from those of the Receiver garbles

his information in any equilibrium implying that only a discrete number of different meanings

can be conveyed.

Almost any communication in practice is strategic. Thus, the literature has applied the

CS model to various contexts to explain e.g., communication between central bankers and the

public (Stein (1989), Moscarini (2007)), or communication between financial analysts and

investors (Morgan & Stocken (2003), Ottaviani & Sørensen (2006a), Ottaviani & Sørensen

(2006b)), and to analyze trade-offs between various forms of organizations (Dessein (2002),

Alonso et al. (2008), and Goltsman et al. (2009)). The CS framework has been extended in

various important directions, which include multiple senders (Battaglini (2002)), the selection

of equilibria (Chen et al. (2008)), higher dimensional preferences and choices (Chakraborty

& Harbaugh (2007)), (Levy & Razin (2007)), noisy talk (Blume et al. (2007)), lying costs

(Kartik (2009), Kartik et al. (2007)), and many others.1

Even though many questions have been answered, there remain interesting and important

problems that are hard to tackle analytically. In the CS model, the Sender’s information

structure is part of the model’s primitives. Yet, in many situations in practice, it is the

prospect of communication itself that provides the incentives to be informed in the first

place. How does the advice and the quality of decision-making depend on the quality of

information? What are the trade-offs involved in improving the Sender’s information? Which

Sender types would we expect to have better information and to give more accurate advice?

The discreteness inherent in strategic communication equilibria makes these questions

extremely hard to answer. Changing the information structure involves complex trade-offs

because the information structure affects the equilibrium meaning of messages and hence

the equilibrium partition of the type space in non-obvious ways. We offer a solution to this

problem.

1This list is obviously short and therefore incomplete.
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The model we study in this paper has three key ingredients. Firstly, Sender and Re-

ceiver are uncertain about their preferred actions ex ante and agreed upon the ideal action

based on prior information. Secondly, the Sender obtains noisy signals about both players’

ideal actions. Thirdly, Sender and Receiver jointly determine the optimal noise level in the

Sender’s information prior to the communication stage.

The first two components describe situations in which Sender and Receiver disagree on

the optimal use of news; they are, however, agreed upon the use of information they already

possess. This is a natural assumption in many advisor-advisee situations. It captures the

idea that ex ante differences of opinions can be eliminated by carefully selecting the advisor.

However, it may be more difficult, and not always possible, to eliminate all conflicts of

interests that will arise in the future. E.g., a financial advisor’s past action may provide a

good signal about his current information; but past actions may not provide any information

as to how future information is used. Likewise, an advisor who thinks of himself as being more

competent than the advisee thinks he is will to act more aggressively on future information

than the advisee would like him to act. Many more situations come to mind.

To capture such situations neatly, we assume that Sender and Receiver have symmetric

preferences around some uncertain bliss points and that the priors on these bliss points are

elliptical distributions. Moreover, news - that is, the Sender’s signals - is modelled again

by elliptically distributed signals about the underlying bliss points. As a result of symmet-

ric preferences and elliptical distributions, ideal choices as a function of news correspond

to conditional means, which are linear functions of the underlying news. The slopes of

these conditional means measure how aggressively the players would like to respond to new

information.

The third important ingredient in our model is that Sender and Receiver get together

before the communication stage to determine cooperatively what signals will be available to

the Sender. Specifically, Sender and Receiver engage in Nash-bargaining to determine the

information structure that the Sender will face. As usual, the cooperative perspective should

be taken as a metaphor for saying that players get together to structure the environment in

ways that are most conducive to reaching their goals.

Though seemingly more complex than the standard one, our model is extremely tractable.

Given symmetry of preferences and the available information structures, the Sender’s ideal
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choice simply corresponds to the conditional mean, and he compares any feasible choices

just with respect to how far they are from this ideal choice. Hence, in any equilibrium

he will communicate at most the conditional expected value of his bliss point given the

information he observes, but not more. For arbitrary information structures, equilibria of the

communication game therefore take the standard form of partitional equilibria in the space

of conditional means. However, for some information structures, a smooth communication

equilibrium exists. In a smooth communication equilibrium, the Sender truthfully announces

what action he would like to take - the conditionally expected value of his bliss point,

conditional on the signals he has observed - and the Receiver follows the Sender’s advice.

The Receiver is not naively credulous but wisely so: the Receiver takes the optimal action

relative to his preferences given the information he has obtained - the conditional expected

value of the Receiver’s bliss point conditional on the recommendation made by the Sender.

The construction is an equilibrium if the regression of the Receiver’s bliss point on the

Sender’s recommendation has a slope of exactly one, which we show to be possible under

very general conditions.

When the players get together ex ante to agree upon the information structure, they

anticipate that the noise structure has two functions. Firstly, noise determines the overall

surplus the players can reach through communication. Secondly, noise shifts surplus between

the Sender and the Receiver. With two sources of noise, these functions can be performed

separately, and we can think of the players as first maximizing the size of the cake and

then bargain over its division. For a class of environments, we show that Nash-bargaining

over noise levels results in an information structure that enables the players to communicate

smoothly. More precisely, the players even coordinate on the most efficient information

structure that allows them to communicate smoothly about conditional means.

The equilibrium has a number of intuitive properties. In particular, our model allows

us to answer the questions that have proven to be out of reach so far. We show that a

Sender whose interests are better aligned with those of the Receiver will be endowed with

more precise information. As a result, the quality of equilibrium advice increases with the

alignment of preferences. Moreover, choices become more variable, because the variance of

the ex ante distribution of conditional means is increased.

In terms of practical implications, we advocate transparency of methods coupled with
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communication of aggregated data. The president of the Federal Reserve Board is heavily

concerned with controlling the market’s reaction to the Fed’s press releases. This is a typical

situation, where there would be no disagreement only based on prior information, but the

interpretation of news may differ substantially between the Fed and the market. According

to our theory, we expect there to be transparency with respect to the key economic factors

that the Fed investigates and transparency with respect to the conclusions that the Fed

reaches, as long as the Fed can be silent as to how it reaches its conclusions. A means to

achieve this goal is to present aggregated data. Similarly, financial institutions engaged in

investment advice should put their research methods on the table - alongside with their own

financial interests. This enables them to communicate informative advice - as long as they

are not forced to say how they reach their conclusions. Other examples abound.

Our approach is connected to several others in the literature. Moscarini (2007) investi-

gates how the quality of information relates to the quality of decision making. He shows that

better information for a given bias enables better equilibrium communication - in the sense

that the Sender is able to communicate finer partitions and that the maximum informative

equilibrium can induce a greater number of actions. In contrast to his theory, the quality of

information is endogenous here and the advisor is ultimately more competent because he is

more reliable.

The statistical model we use has been exploited to great success in the finance literature

on market making. While much of this literature studies the special case of normally dis-

tributed uncertainty, Noldeke & Tröger (2004) show that the existence of linear equilibria in

a class of models extends to the case of elliptical distributions. To the best of our knowledge,

the usefulness of finance market models for the analysis of strategic communication games

has not been noted anywhere.

An important building block in our model is the idea that the information structure

can be chosen before the information transmission game is played, which allows us to select

the equilibrium we focus on. Ivanov (2010) studies informational control in the strategic

communication game. However, the optimal information structure in Ivanov (2010) remains

partitional so perfect communication is impossible. Ivanov (2013) studies a dynamic model

where the Receiver can control what information the Sender obtains in each step. Our

information structure is determined in one step only and our statistical environment is very

5



different from Ivanov’s. Moreover, our approach allows us to derive novel predictions relating

conflicts of interest to the quality of decision-making.

An alternative to bargaining over information structures is costly information acquisition

by the Sender. Szalay (2005) studies the case of aligned ex post preferences with commitment

to decision rules; Eső and Szalay (in preparation) study the same model without commitment

to decision rules. Argenziano et al. (2013) look at endogenous information in the case of a

sender who is uniformly biased in one direction; Di Pei (2013) studies a model where the

Sender can choose the partitional information that he observes. With a biased sender, the

equilibrium remains partitional.

The equilibrium of our model is so easily tractable because an uncountable infinity of

actions is induced - communication is smooth in the appropriate space (of conditional means).

We are not aware of any other model in the literature that shares this feature of “large

action sets”. However, in some models equilibria featuring a countable infinity of induced

actions arise. Gordon (2010) has shown that, depending on how the ideal choice functions of

Sender and Receiver intersect, the most informative equilibrium induces either a finite or a

countably infinite number of distinct Receiver actions. Alonso et al. (2008) characterize the

most informative equilibrium for the case of uniform distributions and quadratic utilities.

We confine ourselves to communication between one sender and one receiver in this paper;

the multisender case is analyzed in companion work.

The paper is organized as follows. In section two, we present the model and the main

assumptions. In section three, we define strategies and analyze equilibrium communication.

In section four we prove our result on the existence of a perfectly informative equilibrium in

conditional expectations. In section five we analyze the optimal noise structure. In section

six, we focus on comparative statics. Lengthy proofs are gathered in the appendix.

2 The model

2.1 Timing

We consider a Sender-Receiver-game with two players and the following underlying decision

problem. The Receiver needs to choose a decision x that affects the utility of both the Sender
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and the Receiver. Preferences are given by

uR (x− ω)

and

uS (x− η)

where ui (x− ·) for i = R, S is a strictly concave, symmetric and differentiable function.

The preferences only depend on the distance to the bliss points xR(ω) = ω and xS(η) = η,

respectively.

At the outset, neither the Sender nor the Receiver know the realization of the random

variables ω and η. However, the Sender observes noisy signals of their realizations according

to

sω = ω + εω

and

sη = η + εη,

where εω and εη are independent noise terms with variances that are cooperatively deter-

mined at the start of the game, where the Sender and the Receiver get together to determine

the optimal amount of noise in the Sender’s information structure.

After observing the realizations of sω and sη, the Sender sends a message to the Receiver.

The Receiver observes the message - but not the Sender’s information - and then chooses

x. The Receiver cannot commit ex ante how to use the information he receives from the

Sender.

2.2 Feasible Information Structures

We assume that the random variables ω, η, εω, εη are jointly elliptically distributed, with

finite first and second moments. Each of the marginals has mean zero; let σ2
ω, σ

2
η, σ

2
εω , σ

2
εη

denote the variances of the random variables. For convenience, we assume that the joint

distribution has a density. More assumptions are imposed later when needed.

Elliptical distributions can be defined as follows (e.g. Owen & Rabinovitch (1983), p.746).
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Definition 1 Let µ be a fixed n-component vector and Σ an (n× n) positive definite symmet-

ric matrix. Then, an n-component random vector X = (X1, . . . , Xn)′ is said to be distributed

elliptically, X ∼ En(µ,Σ), if and only if for all nonzero n-component scalar vectors α, all

the univariate random variables α′X such that V ar (α′X) is constant follow the same distri-

bution. If X has a density, then the density function of X, fX(x), can be expressed in the

form fX(x) = cn |Σ|−1/2 g
(
(x− µ)′Σ−1 (x− µ)

)
, for some constant cn and some function g

that is independent of n.

Given that the first two moments exist, µ is mean vector and Σ is proportional (that is,

up to a constant factor equal to) the variance-covariance matrix.

Elliptical distributions have convenient properties. We summarize the properties we use

in the following Lemma:

Lemma 1 Let X ∼ En (µ,Σ) be elliptically distributed. Further let

X = (X1, X2) , µ = (µ1, µ2) , Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where the dimensions of X1, µ1 and Σ11 are, respectively, m, m and m×m.

i) The elliptical distribution is symmetric about µ, i.e.

f(µ+ ∆) = f(µ−∆) ∀∆.

ii) Linear combinations of elliptically distributed random variables are again elliptical.

iii) The conditional distribution of X1|X2 is elliptical, i.e.

X1|X2 ∼ Em
(
µX1 + Σ12Σ

−1
22 (X2 − µX2) ,Σ11 − Σ12Σ

−1
22 Σ21

)
.

Proof. i) by definition, ii) see for example, Fang et al. (1990) Thm 2.16, iii) see for

example, Cambanis et al. (1981) Cor.5.

Examples for elliptical distributions are the normal distribution, the Student–t distribu-

tion, the exponential power distribution, and the logistic distribution.
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2.3 Conflicting interest with respect to news

Since ω and η have the same prior mean, Sender and Receiver are agreed upon the optimal

action if the Sender does not obtain any new information; formally, this is the limiting

case when σ2
εω and σ2

εη both go to infinity. So, potential conflicts arise only with respect

to how new information should be used. The following Lemma characterizes ideal choice

functions for given information and identifies conflicts between Sender and Receiver. Let

ρωη ≡ Cov(ω,η)
σωση

.

Lemma 2 The ideal choice functions of Receiver and Sender are

xR (sω, sη) ≡ arg max
x

E
[
uR (x− ω)

∣∣ sω, sη] = E [ω| sω, sη]

and

xS (sω, sη) ≡ arg max
x

E
[
uS (x− η)

∣∣ sω, sη] = E [η| sω, sη] .

Moreover,

E [ω| sω, sη] = E [η| sω, sη] for all sω, sη

only if the noise variances σ2
εω , σ

2
εη are bounded away from zero. For σ2

εω , σ
2
εη strictly positive

and finite the above equality holds if and only if σω = ση and ρωη = 1.

Furthermore,

lim
σ2
εi
→∞

E [ω| sω, sη] = lim
σ2
εi
→∞

E [η| sω, sη]

for σ2
εj

positive and finite if ρωησi = σj, with i, j = η, ω.

Preferences are symmetric around their bliss point and all conditional distributions are

elliptical and hence symmetric around their mean. Hence, expected losses are minimized, if

the action is set equal to the expected value of the bliss point ω, conditional on the available

information. The formal proof is in the Appendix.

Sender and Receiver disagree on how to use new information, except in very special cases.

Clearly, if perfect signals are available, then the Sender is interested in sη while the Receiver

is interested in sω. To make them agree on how to use new information with positive and

finite noise variances, they have to be equally uncertain ex ante and need to have perfectly

aligned interests; this is virtually the case where their bliss points depend on one and the
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same random variable only. Finally, unless the covariance of ω and η happens to be identical

to either one of the variances of ω or η, Sender and Receiver also disagree on how to use a

single signal if only one is available - formally, this is the limiting case where the variance of

the other signal goes to infinity.

We are clearly interested in the cases where communication is plagued by differences of

objectives. Therefore, we impose the following Assumption:

Assumption 1: ρωη 6= min
{
ση
σω
, σω
ση

}
.

Assumption 1 implies conflict with respect to the use of the signals.

3 Strategic Communication

We now solve our game under asymmetric information. There are two stages of the game.

In the first stage, Sender and Receiver get together and engage in Nash-bargaining over

the information that the Sender can observe. The cooperative nature of this bargaining

game captures the idea that Sender and Receiver wish to stack the deck in a way that

enables them to reach the highest possible surplus in the ensuing communication game. The

communication game is modelled non-cooperatively. We assume that the Receiver cannot

commit to what action he will take as a function of the message he receives; moreover,

information is soft, so the Sender cannot credibly commit to being honest either. The

equilibrium concept we use is Perfect Bayes Nash Equilibrium. In the equilibria we study,

there won’t be any out of equilibrium messages, so Perfect Bayes Nash Equilibrium and

Bayes Nash Equilibrium coincide.

We solve our game proceeding backwards from the communication phase to the bargain-

ing phase.

3.1 Strategies

Take the experiment - that is the noise variances σ2
εω and σ2

εη - as given. After the Sender has

observed his signals, he communicates a message m ∈M to the Receiver. The message space
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M is assumed to be rich. It will be enough to consider pure message strategies for the Sender.2

A pure Sender strategy maps the Sender’s information, I, into messages M : R2 → M,

I 7→ m. A pure Receiver strategy maps messages into actions, X : M → R, m 7→ x. Let

f (ω|m) denote the pdf of the Receiver’s posterior over ω given the message sent by the

Sender.

The Receiver’s optimal action given the Sender’s message is

xR (m) ∈ arg max
x∈R

∫
uR (x− ω) f (ω|m) dω.

Note that the Receiver solves a concave problem for arbitrary posteriors f (ω|m). Hence

xR (m) is in fact unique and the Receiver never wishes to use a mixed strategy.

The Sender’s optimal message solves

m (I) ∈ arg max
m∈M

∫
uS
(
xR (m)− η

)
f (η| I) dη.

The Receiver updates his information about ω based on the message he receives, so the

posterior distribution satisfies Bayes law. Let s (m) ≡ {I = {sω, sη} : m (I) = m} . Then,

f (ω|m) =
f (ω,m)∫∫

s(m)

f (sω, sη) dsωdsη
.

The numerator on the right-hand side is the joint likelihood that the state is ω and message

m is received. The denominator is the likelihood of receiving message m; it is obtained by

integrating over the Sender types that send message m.

3.2 Non-existence of full communication equilibria

Under Assumption 1, there cannot be any equilibrium where the Sender communicates all

his information truthfully. Formally, we have the following result:

Lemma 3 Under Assumption 1, there does not exist any equilibrium where m (I) = I.

2More specifically, the best equilibrium of our game will involve pure strategies. Therefore, we abstain
from introducing the notational clutter to deal formally with mixed strategies.
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Proof. Suppose there exists an equilibrium with m (I) = I. Then, the Receiver’s posterior

is f (ω| I) resulting in an optimal choice xR (I) = E [ω| I] . By Assumption 1, E [ω| I] 6=
E [η| I] for any I in the relevant set. Hence, regardless of the signal structure, as long as

the informational environment satisfies Assumption 1, there cannot be a fully informative

equilibrium.

Even if Sender and Receiver agree that both signals should be used to reach a good

decision, they disagree with respect to the weight they attach to the individual sources of

information. Therefore, the Sender is not willing to reveal his information truthfully to the

Receiver if the latter cannot commit to use the information the way the Sender proposes.

3.3 Sender preferences and conditional expectations

Given symmetry of the Sender’s payoff and symmetry of the distributions, there is a neat

simplification available. The Sender cares only about the conditionally expected value of η

given his information. To see this, suppose there are two messages m and m′ and the Re-

ceiver’s optimal actions are xR (m) and xR (m′), respectively, where wlog xR (m′) > xR (m).

Then, a Sender of type I = {sω, sη} prefers to send message m rather message m′ if∫
uS (x (m)− η) f (η| sω, sη) dη ≥

∫
uS (x (m′)− η) f (η| sω, sη) dη.

Given that preferences have bliss point E [η| sω, sη] and given the symmetry of the distri-

bution, the Sender simply prefers to induce the action that comes closer to E [η| sω, sη] .
Conversely, the set of types that are indifferent between sending message m and message m′

are those sω, sη for which

E [η| sω, sη] =
x (m′) + x (m)

2
. (1)

Equation (1) describes a locus of points sω, sη that induce a constant conditional expectation;

the constant depends on the induced actions.

Clearly, we cannot expect to have meaningful communication beyond what is of interest

to the Sender. Hence, without loss of generality we can reduce the Sender’s message space

to the unidimensional space of conditionally expected means. Define

θ ≡ E [η |sω, sη ] .
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Given our informational assumptions, E [η| sω, sη] is a linear function of sω and sη; formally,

we have E [η| sω, sη] = αsω + βsη, where α and β are constants and given by

α =
σ2
εησησωρωη

(σ2
ω + σ2

εω)(σ2
η + σ2

εη)− ρ2
ωησ

2
ωσ

2
η

(2)

β =
σ2
η(σ

2
εω + σ2

ω)− σ2
ησ

2
ωρ

2
ωη

(σ2
ω + σ2

εω)(σ2
η + σ2

εη)− ρ2
ωησ

2
ωσ

2
η

.

From the perspective of the Receiver, sω and sη are unknown. Since linear functions of ellip-

tically distributed random variables are again elliptically distributed, θ follows an elliptical

distribution θ ∼ E (0, σ2
θ) and the joint distribution of ω, η, and θ is elliptical too.

3.4 Equilibria

Our game has the standard plethora of equilibria in the communication game. Since this is

standard, we contend ourselves with a heuristic description. It is always an equilibrium that

all Sender types θ pool on the same message (or mix over all available messages) and the

Receiver always chooses x = 0. This is the babbling equilibrium. Depending on the conflict

of interest, it may also be possible to sustain partitional equilibria, where sets of Sender

types within given intervals pool on the same message. Again depending on the degree of

conflict between Sender and Receiver, the number of actions induced in such an equilibrium

may go out of bounds; that is a countable infinity of actions is induced.

We can keep this discussion heuristic, because all these equilibria will not be played

when Sender and Receiver agree on an optimal information structure and then play the best

equilibrium for both of them. The most informative equilibrium for the optimal information

structure induces an uncountable infinity of actions. The equilibrium is fully revealing in

the space of conditional expectations.

Before we prove this statement, we establish a weaker result: there are information struc-

tures that enable perfect communication about conditional means in the most informative

equilibrium.
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4 A benchmark: perfect communication about condi-

tional means

Suppose the Sender communicates his conditionally expected value of η given his information

truthfully to the Receiver, that is

m (θ) = θ for all θ.

We know from Lemma 1 that the Receiver’s posterior based on information θ is

ω| θ ∼ E
(
ρωθ

σω
σθ
θ, σ2

ω(1− ρ2
ωθ)

)
,

where ρωθ = Cov(ω,θ)
σθσω

. Hence the Receiver’s ideal policy given information θ is

E [ω| θ] =
Cov (ω, θ)

V ar (θ)
θ = ρωθ

σω
σθ
θ.

Clearly, the Sender will only be happy to communicate θ truthfully if the Receiver does

exactly what the Sender would want to do, so

E [ω| θ] = θ for all θ,

which requires that

Cov (ω, θ) = V ar (θ) . (3)

The following theorem relates equation (3) to the underlying noise structure:

Theorem 1 For any conflict described by ρωη ∈ (0, 1] and σ2
ω, σ

2
η ∈ (0,∞) satisfying 1

ρωη
>

σω
ση
> ρωη, there is a continuum of information structures σ2

εω , σ
2
εη such that a perfectly infor-

mative equilibrium in conditional expectations θ exists if σ2
εω , σ

2
εη satisfy

σ2
εη

σ2
η

=

(
1− σω

ση
ρωη

)
ρωη

(
σω
ση
− ρωη

) σ2
εω

σ2
ω

+

(
1− σω

ση
ρωη

)
ρωη

(
σω
ση
− ρωη

) (1− ρ2
ηω

)
. (4)
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Equation (4) arises from plugging α and β from (2) into (3) and solving. The details can

be found in the appendix. The conditions in the theorem ensure that the locus defined by

equation (4) describes a line with positive intercept and slope.

Perfect communication about conditional expectations is possible provided that the

Sender’s and the Receiver’s preferences are perfectly aligned in that subspace of the Sender’s

information. Interests are perfectly aligned if the regression of ω on θ has a slope of unity: the

Receiver cannot extract more than θ from what he is told. Notice that there is still bunching

of Sender types; the Sender makes garbled statements about the underlying information.

However, in contrast to partitional equilibria, the bunches are very easy to characterize.

For the obvious reasons, we impose henceforth

Assumption 2: 1
ρωη

> σω
ση
> ρωη > 0.

Note that Assumption 2 implies that there is conflict between Sender and Receiver;

formally, Assumption 2 implies Assumption 1. Notice also that for the case where Sender

and Receiver are equally uncertain ex ante, σω
ση

= 1, Assumption 2 simply requires that the

correlation be positive but smaller than one.

The existence of a perfectly revealing equilibrium about θ depends crucially on the details

of the noise structure. For given noise variances, generically a fully revealing equilibrium

does not exist. Rather, the noise structures have to be carefully adjusted to make sure

they satisfy equation (4) . We now show that Nash-bargaining about the experiment ex ante

achieves precisely that the noise variances are set so as to enable perfect communication

about θ for a class of preferences.

5 Bargaining over information

Suppose any given equilibrium in the communication game is being played and Sender and

Receiver both correctly anticipate that this equilibrium will be played. Suppose further

that they both anticipate the ensuing equilibrium for any given information structure. By

definition, for a given information structure, surplus is highest if players coordinate on an

equilibrium that achieves the highest joint surplus. Assume this. We can then delineate a
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bargaining frontier, that associates to each information structure a pair of utility gains for

Sender and Receiver.

Describing the bargaining frontier requires solving for the best equilibrium for each given

information structure, a complex task. Fortunately, we do not have to do this, to solve

our game. Rather, we will provide an upper bound on what can be reached and show that

Nash-bargaining achieves the upper bound. We split the following analysis into two parts.

For the class of quadratic preferences, we can derive a complete Nash-bargaining solution.

For more general preferences, we simply show that our equilibrium maximizes joint surplus

and splits the difference between Sender and Receiver.

5.1 Quadratic loss functions

For the purpose of this section, we specialize our environment and assume that Sender and

Receiver’s preferences are described by quadratic loss functions around their bliss points ω

and η.

Suppose Sender and Receiver anticipate playing a partitional equilibrium with n (finite

or infinite) induced actions. Upon receiving a message mi sent by types θ ∈ [θi−1, θi] , the

Receiver takes action

x∗i = E [ω| θ ∈ [θi−1, θi]] .

It is easy to show - see the appendix for details - that relative to making a decision based

on prior information only, the utility gain to the Sender can be written as

∆US = −
∑n

i=1

∫ θi

θi−1

(x∗i − θ)
2 f (θ) dθ + V ar (θ) (5)

and the utility gain to the Receiver can be written as

∆UR = −
∑n

i=1

∫ θi

θi−1

(x∗i − E [ω| θ])2 f (θ) dθ +
Cov (θ, ω)2

V ar (θ)
. (6)

V ar (θ) is the utility gain to the Sender if his preferred policy x (θ) = θ for all θ is imple-

mented. The actual utility gain is the maximum utility gain net of the losses due to limited

communication in a partitional equilibrium. Likewise, Cov(θ,ω)2

V ar(θ)
is the maximum utility gain

to the Receiver if his preferred policy x (θ) = E [ω |θ ] for all θ is implemented. His actual

16



utility gain in any equilibrium is therefore equal to the maximum possible gain net of any

losses due to limited communication.

It follows that, in any equilibrium, the Sender cannot expect to benefit more than if the

Receiver commits to just blindly follow his advice and choose x (θ) = θ for all θ, so

∆US ≤ V ar (θ) ;

and the Receiver cannot expect to benefit more than if the Sender would always convey θ

truthfully and the Receiver is allowed to choose x (θ) = E [ω| θ] for all θ, that is

∆UR ≤ Cov (θ, ω)2

V ar (θ)
.

Consider an ideal - and in general unrealistic - world, where both players indeed get their

way, so that

∆US = V ar (θ)

and

∆UR =
Cov (θ, ω)2

V ar (θ)
.

Of course, this is unrealistic, except for the case where E [ω| θ] = θ for all θ. However, suppose

for a moment that Sender and Receiver bargain in paradise. In this game, we have

∆UR =
Cov (θ, ω)2

∆US
. (7)

V ar (θ) and Cov (θ, ω) can be varied independently of each other. Therefore, we can view

(7) as a bargaining frontier of a paradise bargaining game, where Cov (θ, ω) varies the level

of the surplus and V ar (θ) divides the surplus between the Sender and the Receiver. The

Nash-bargaining problem on this frontier solves

max ∆US∆UR (8)

s.t. ∆UR =
Cov (θ, ω)2

∆US
.

Notice that the objective coincides with the constraint. Hence, all the allocations on the

frontier solve the bargaining problem in the artificial game. The value of the objective is
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equal to Cov (θ, ω)2 and is independent of V ar (θ) . As part of the proof of the theorem that

follows, we show in the appendix that setting σ2
εω = 0 maximizes Cov (θ, ω) and the objective

takes value Cov (η, ω) in that case. Moreover, for σ2
εω = 0, V ar (θ) ranges from ρ2

ωησ
2
η (for

σ2
εη =∞) to σ2

η (for σ2
εη = 0). So, σ2

εω = 0, σ2
εη ≥ 0 solves the bargaining game in the artificial

game where both players get the upper bound of their utility gains. These arguments make

the following theorem immediate:

Theorem 2 Consider a Nash-bargaining game where the utility possibility frontier is given

by the payoffs arising from playing the most informative equilibrium for any given informa-

tion structure. Under Assumption 2, the unique outcome of this bargaining game is

(
σ2
εω , σ

2
εη

)
=

0,

(
1− σω

ση
ρωη

)
ρωη

(
σω
ση
− ρωη

) (1− ρ2
ωη

)
σ2
η


so that V ar (θ) = Cov (θ, ω) = Cov (η, ω) .

The intuition is very simple. Note that the bargaining frontier cannot be characterized for

all information structures. From our preliminary thoughts we know that the Sender cannot

be made better off for any given information structure than when the Receiver is credulous;

and the Receiver cannot be made better off than when the Sender non-strategically tells him

the truth even if the Receiver responds strategically to such messages. For this artificial game,

the bargaining frontier was easy to describe. Moreover, there is a unique situation in which

the bargaining frontier of the artificial game and the true bargaining game coincide: when the

Receiver is rightly credulous and the Sender is rightly non-strategic. This is precisely then

the case when the Sender can announce θ and the Receiver optimally responds by taking

this advice at face value, which requires that V ar (θ) = Cov (η, ω). So, for this unique

situation, the bargaining frontiers - and hence the objectives - coincide in the two problems.

For all other information structures, the true bargaining frontier must be strictly below the

bargaining frontier of the artificial problem.

As is well known, Nash-bargaining with equal weights results in splitting the difference.

For V ar (θ) = Cov (θ, ω) , the utility gains (5) and (6) are equal for the equilibrium that fully

reveals θ and moreover, the utility gain to each of them is maximal if Cov (θ, ω) = Cov (η, ω) .
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5.2 General preferences

Nash-bargaining with general preferences is not straight-forward. However, we can establish

a simpler result. The information structure described in Theorem 2 maximizes joint surplus.

Moreover, if Sender and Receiver have the same utility functions and are ex ante equally

uncertain about their bliss points (the prior variances are the same), then the information

structure divides the gains from the experiment equally between the Sender and the Receiver.

If Sender and Receiver anticipate that x (θ) = θ, then their utility gains from the exper-

iment can be written as

∆US = EuS (θ − η)− EuS (0− η)

and

∆UR = EuR (θ − ω)− EuR (0− ω) .

For equal prior variances and uS (·) = uR (·) , Sender and Receiver have the same utility

if they had to choose x based on prior information only. Hence, splitting the gains equally

requires that Sender and Receiver have the same utility from decision making when x (θ) = θ

for all θ is being chosen. Note that the random variables θ − η and θ − ω both have mean

zero and moreover arise from linear combinations of elliptically distributed random variables.

Hence, by their defining property, the variances of these distributions uniquely define the

distributions. Therefore, the utility gains are identical if and only if the distributions of both

differences have identical variance. That is, if

σ2
η − σ2

θ = σ2
θ − 2Cov (ω, θ) + σ2

ω,

where we have used the fact that Cov (η, θ) = σ2
θ - which follows from E [η| θ] = θ. Obviously,

for σ2
η = σ2

ω the equation holds if and only if σ2
θ = Cov (ω, θ) . Moreover, the uncertainty

is minimized if Cov (ω, θ) is maximal, that is if Cov (ω, θ) = Cov (ω, η) , which is precisely

achieved by the information structure in Theorem 2.

6 Comparative statics

How does the quality of advice and of decision-making depend on conflicts of interests? How

does prior uncertainty impact on decision-making? Our model gives very clear and simple
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answers to these questions. The equilibrium quality of advice is measured by σ2
θ . The higher

the variance of induced choices, the better off are both Sender and Receiver. In the most

informative equilibrium for the optimal information structure, we have

σ2
θ = Cov (ω, η) = ρωησωση.

If interests are better aligned, then both Receiver and Sender are better off. The reason

is that a Sender with better aligned preferences can be given access to better information.

Therefore, an advisor who is more trustworthy will appear more competent: his equilibrium

information is of better quality. It is interesting to note that higher prior uncertainty has

a positive impact on the quality of decision-making. The reason is that with a high level

of prior uncertainty, the weight attached to new information tends to be higher. Since the

variance of ideal choices based on prior information only is zero, placing more weight on new

information unambiguously increases the variance.

7 Conclusion

We analyze a Sender-Receiver-Game of strategic communication in which the most informa-

tive equilibrium involves smooth communication and is therefore extremely tractable. The

key ingredients are that Sender and Receiver are uncertain about but agreed upon their

most preferred action ex ante; the Sender observes signals about the underlying states of

nature and finally that the players get together before communicating to determine the level

of noise in the Sender’s information.

Since the Sender’s information is of a higher dimension than his preferred policy, there

is room for honest communication that is not completely revealing: the Sender can reveal

what he would suggest to do - the conditionally expected value of his bliss point given the

signal realizations - without revealing why he would do that - that is, without revealing

the underlying signals. Thus, we obtain the standard partial pooling result of cheap talk

equilibria; however, pooling is much easier to characterize in the most efficient equilibrium

of our game, because only Sender types with the same conditional expectation pool and so

we obtain communication that is perfectly revealing in that space.

The upshot of our theory is that transparency of methods is good and allows strategic
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Senders to communicate credibly about statistics of the underlying information. The equi-

librium is the more informative the better interests are aligned, with a slightly different twist

than other theories predict. The Sender is endogenously endowed with better information

when his interests are better aligned with those of the Receiver. Thus, more trustworthy

Senders are better informed and therefore give more accurate advice.

8 Appendix

Conditioning for elliptical distributions. The expectation and covariance matrix are

as follows

E[ω, η, sω, sη] = (0, 0, 0, 0)′

and

Cov(ω, η, sω, sη) =


σ2
ω ρωησωση σ2

ω ρωησωση

ρωησωση σ2
η ρωησωση σ2

η

σ2
ω ρωησωση σ2

ω + σ2
εω ρωησωση

ρωησωση σ2
η ρωησωση σ2

η + σ2
εη

 .

By Lemma 1 the conditional variances can be calculated via

E [X |Y ] = µX + Σ12Σ
−1
22 (Y − µY )

with

Cov (X, Y ) =

(
Σ11 Σ12

Σ21 Σ22

)
.

We obtain

E [ω|sω] =
Cov(ω, sω)

σ2
sω

sω =
σ2
ω

σ2
ω + σ2

εω

sω,

E [ω|sη] =
ρωησωση
σ2
η + σ2

εη

sη,

E [η|sω] =
ρωησωση
σ2
ω + σ2

εω

sω,

E [η|sη] =
σ2
η

σ2
η + σ2

εη

sη,
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and moreover

E [ω| sω, sη] = sω

σ2
ω

σ2
εη + σ2

η − σ2
ηρ

2
ηω(

σ2
ω + σ2

εω

) (
σ2
η + σ2

εη

)
− (ρωησωση)

2


+sη

σησωρωη σ2
εω(

σ2
ω + σ2

εω

) (
σ2
η + σ2

εη

)
− (ρωησωση)

2


and

E [η| sω, sη] = sω

σησωρωη σ2
εη(

σ2
ω + σ2

εω

) (
σ2
η + σ2

εη

)
− (ρωησωση)

2


+sη

σ2
η

σ2
εω + σ2

ω − σ2
ωρ

2
ωη(

σ2
ω + σ2

εω

) (
σ2
η + σ2

εη

)
− (ρωησωση)

2

 .

Proof of Lemma 2. Part i) Let I denote the information available and let z = ω, η and

consider the problem

max
x

∞∫
−∞

u (x− z) f (z| I) dz

Since the utility depends only on the distance between x and z we have u′ (x− z) > 0 for

z < x, u′ (x− z) = 0 for x = z, and u′ (x− z) < 0 for z > x.

The first-order condition can be written as
∞∫

−∞

u′ (x∗ − z) f (z| I) dz = 0.

Consider the candidate solution

x∗ = µ ≡ E [z| I] .

Substituting back, we can write

∞∫
−∞

u′ (µ− z) f (z| I) dz = 0.
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Consider two points z1 = µ − ∆ and z2 = µ + ∆ for arbitrary ∆ > 0. By symmetry of u

around its bliss point and symmetry of the distribution around µ, we have

u′ (∆) f (µ−∆| I) = −u′ (−∆) f (µ+ ∆| I) .

Since this holds pointwise for each ∆, it also holds if we integrate over ∆. Thus, the first-order

condition holds at x∗ = µ. By concavity of u in x, only one value of x solves the first-order

condition. Hence, the solution is the one stated in the Lemma.

Part ii): The conditional expectations are as follows:

E [η|sω, sη] = σ2
εη

ρωησωση
(σ2

ω + σ2
εω)(σ2

η + σ2
εη)− (ρωησωση)2

sω (9)

+σ2
η

σ2
εω − σ

2
ωρ

2
ωη + σ2

ω

(σ2
ω + σ2

εω)(σ2
η + σ2

εη)− (ρωησωση)2
sη

and

E [ω| sω, sη] = σ2
ω

σ2
εη + σ2

η − σ2
ηρ

2
ωη(

σ2
ω + σ2

εω

) (
σ2
η + σ2

εη

)
− (ρωησωση)

2
sω (10)

+σ2
εω

σησωρωη(
σ2
ω + σ2

εω

) (
σ2
η + σ2

εη

)
− (ρωησωση)

2
sη.

Consider first the case where at least one of the variances is zero and the other one finite,

e.g., σ2
εη = 0. In this case disagreement is obvious: the Sender does not use signal sω at all

while the Receiver wishes to take that into account. Likewise for the case where σ2
εω is zero.

Next, consider the case where σ2
εη and σ2

εω are both positive and finite. (9) and (10) are

identical for all sω and sη if and only if

σ2
εηρωησωση = σ2

ω

(
σ2
εη + σ2

η − σ2
ηρ

2
ωη

)
and

σ2
η

(
σ2
εω − σ

2
ωρ

2
ωη + σ2

ω

)
= σησωρωησ

2
εω .

This requires that

σ2
η

(
1− ρ2

ωη

)
=

(
ρωηση
σω

− 1

)
σ2
εη
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and

σ2
ω

(
1− ρ2

ωη

)
=

(
σωρωη
ση

− 1

)
σ2
εω .

A necessary condition for these two conditions to hold is that ρωη ≥ σω
ση

and ρωη ≥ ση
σω

. Since

ρωη ∈ [−1, 1], this implies that ρωη = ση
σω

= σω
ση

and therefore, ρ2
ωη = 1 and ση = σω.

Consider finally the limiting cases where one of the variances goes out of bounds. Ap-

plying l’Hôpital’s rule to (9) and (10) , we get in the limit as σ2
εη →∞

E [ω|sω] =
σ2
ω

σ2
ω + σ2

εω

sω and E [η|sω] =
ρωησωση
σ2
ω + σ2

εω

sω,

so that

E [ω|sω] ≡ E [η|sω] ⇔ ρωηση = σω.

Likewise, for the case where σ2
εω →∞, we get

E [ω|sη] =
ρωησωση
σ2
η + σ2

εη

sη and E [η|sη] =
σ2
η

σ2
η + σ2

εη

sη,

so

E [ω|sη] ≡ E [η|sη] ⇔ ρωησω = ση.

Proof of Theorem 1. The moments of the distribution of θ are given by

θ = E [η|sω, sη] = αsω + βsη

E [θ] = αE [sω] + βE [sη] = 0

V ar(θ) = α2
(
σ2
ω + σ2

εω

)
+ 2αβρωησωση + β2

(
σ2
η + σ2

εη

)
=

σ2
εωσ

4
η + σ2

εησ
2
ησ

2
ωρ

2
ηω − σ4

ησ
2
ωρ

2
ηω + σ4

ησ
2
ω

σ2
εωσ

2
εη + σ2

εωσ
2
η + σ2

εησ
2
ω − σ2

ησ
2
ωρ

2
ωη + σ2

ησ
2
ω

,

where we have used that

α = σ2
εησησω

ρωη
σ2
εωσ

2
εη + σ2

εωσ
2
η + σ2

εησ
2
ω − σ2

ησ
2
ωρ

2
ωη + σ2

ησ
2
ω

β = σ2
η

σ2
εω − σ

2
ωρ

2
ηω + σ2

ω

(σ2
ω + σ2

εω)(σ2
η + σ2

εη)− (ρωησωση)2
.
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Moreover,

Cov (ω, θ) = E [ωθ] = E [αωsω + βωsη] = ασ2
ω + βρωησωση

= σησωρωη
σ2
εησ

2
ω + σ2

ησ
2
εω + σ2

ησ
2
ω − σ2

ησ
2
ωρ

2
ωη

(σ2
ω + σ2

εω)(σ2
η + σ2

εη)− ρ2
ωησ

2
ωσ

2
η

The statement then follows from solving Cov (ω, θ) = V ar(θ) for the underlying noise struc-

ture.

Proof of Theorem 2. We first derive expected payoffs in any partitional equilibrium

demonstrating that the expressions in the text provide upper bounds on expected utilities.

Part i): expected utility

In a partitional equilibrium, upon receiving a message that is sent by types θ ∈ [θi−1, θi],

the receiver takes action

x∗i = arg max
x

∫ θi

θi−1

uR (x− ω) f (ω| θ ∈ [θi−1, θi]) dω.

With a slight abuse of notation, we denote the optimal action as x∗i also in the limiting case

where θi−1 = θi. For the quadratic case, we have

x∗i = E [ω| θ ∈ [θi−1, θi]]

and, the Sender’s expected utility,
∑n

i=1

∫ θi
θi−1

∫
uS (x∗i − η) f (η| θ) dηf (θ) dθ, can be written

as

−
∑n

i=1

∫ θi

θi−1

∫
(x∗i − θ + θ − η)2 f (η| θ) dηf (θ) dθ

= −
∑n

i=1

∫ θi

θi−1

∫ (
(x∗i − θ)

2 + 2 (x∗i − θ) (θ − η) + (θ − η)2) f (η| θ) dηf (θ) dθ

= −
∑n

i=1

∫ θi

θi−1

(x∗i − θ)
2 f (θ) dθ −

∑n

i=1

∫ θi

θi−1

∫
(θ − η)2 f (η| θ) dηf (θ) dθ

= −
∑n

i=1

∫ θi

θi−1

(x∗i − θ)
2 f (θ) dθ + V ar (θ)− V ar (η)

where the second and third equation follow from θ = E [η| θ] , which implies also that

Cov (θ, η) = V ar (θ) .
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Likewise, the Receiver’s expected utility,
∑n

i=1

∫ θi
θi−1

∫
uR (x∗i − ω) f (ω| θ) dωf (θ) dθ, takes

the form

−
∑n

i=1

∫ θi

θi−1

∫
(x∗i − E [ω| θ] + E [ω| θ]− ω)2 f (ω| θ) dωf (θ) dθ

= −
∑n

i=1

∫ θi

θi−1

∫ (
(x∗i − E [ω| θ])2 + 2 (x∗i − E [ω| θ]) (E [ω| θ]− ω) + (E [ω| θ]− ω)2) f (ω| θ) dωf (θ) dθ

= −
∑n

i=1

∫ θi

θi−1

(x∗i − E [ω| θ])2 f (θ) dθ −

(
Cov (θ, ω)2

V ar (θ)2 V ar (θ)− 2
Cov (θ, ω)2

V ar (θ)
+ V ar (ω)

)

= −
∑n

i=1

∫ θi

θi−1

(x∗i − E [ω| θ])2 f (θ) dθ +
Cov (θ, ω)2

V ar (θ)2 V ar (θ)− V ar (ω) .

Part ii): bargaining

Using Theorem 1, we can write

Cov (ω, θ) = σησωρωη

σ2
εη

σ2
η

+
σ2
εω

σ2
ω

+ 1− ρ2
ωη(

1 +
σ2
εω

σ2
ω

)(
1 +

σ2
εη

σ2
η

)
− ρ2

ωη

and

V ar (θ) = σ2
η

σ2
εω

σ2
ω

+
σ2
εη

σ2
η
ρ2
ωη + 1− ρ2

ωη(
1 +

σ2
εω

σ2
ω

)(
1 +

σ2
εη

σ2
η

)
− ρ2

ωη

.

Let a ≡ σ2
εω

σ2
ω

and b ≡ σ2
εη

σ2
η

.

Since Cov (ω, θ) is decreasing in a and b, we have Cov (ω, θ) ≤ σησωρωη = Cov (ω, η).

Furthermore, the upper bound is attained for a = 0 or b = 0.

V ar (θ) becomes independent of a for b = 0. Therefore, we cannot shift surplus from

Sender to Receiver for b = 0. Let V ar (θ; b) denote the variance of θ for a = 0 as a function

of b. V ar (θ; b) is decreasing in b. For b = 0, V ar (θ; 0) = σ2
η. In the limit as b→∞ we have

limb→∞ V ar (θ; b) = ρ2
ωησ

2
η.

Thus, there exists a solution to the equation V ar (θ) = Cov (ω, η) iff

σ2
η > σησωρωη > ρ2

ωησ
2
η
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which is equivalent to
1

ρωη
>
σω
ση

> ρωη > 0.
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