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Abstract

Apart from a priori assumptions on instantaneous or long run effects of struc-

tural shocks, sign restrictions have become a prominent means for structural vector

autoregressive (SVAR) analysis. Moreover, second order heterogeneity of systems

of times series can be fruitfully exploited for identification purposes in SVARs. We

show by means of a Monte Carlo study that taking statistical information into

account offers a more accurate quantification of the true structural relations. In

contrast, resorting only to commonly used sign restrictions bears a higher risk of

failing to recover these structural relations. As an empirical illustration we employ

the statistical and the sign restriction approach in a stylized model of US monetary

policy. By combining identifying information from both approaches we strive for

improved insights into the effects of monetary policy on output. Our results point

to a decline in real GDP after a monetary tightening at an intermediate horizon.
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1 Introduction

Structural vector autoregressive (SVAR) modeling has become a widely used tool in em-

pirical macroeconomics. Representing the innovations to the VAR system independently

and identically distributed Gaussian structural shocks, however, cannot be recovered from

reduced form residuals without further assumptions. Against this background, imposing

zero restrictions on some instantaneous effects (Sims (1980)) or on long-run effects of the

shocks (Blanchard and Quah (1989)) has been suggested for identification. More recently,

the imposition of theory-based sign restrictions upon impulse responses has become one

of the most popular approaches to either fully identify all structural relations or, in a

more ‘agnostic’ scenario, to leave some room for rotation based identification of a few not

directly restricted structural relations.1 Albeit often seen as relatively mild restrictions,

identification by means of sign restrictions also provoked a critical discussion (see Fry

and Pagan (2007, 2011) and Paustian (2007)). Particularly with regard to a quantitative

interpretation of the results, the prevailing focus on median impulse responses might often

be misleading, as pointed out by Jääskelä and Jennings (2011), Kilian and Murphy (2009)

and Inoue and Kilian (2013). While using sign restrictions may offer useful information

on the structural interplay of variables within a dynamic system, it is fair to notice that

a unique structural decomposition of the covariance matrix of reduced form error terms

does not exist. To arrive at unique impulse responses by means of sign restrictions an

analyst willingly relies on censored simulation outcomes. In light of biases invoked by

censoring, one may critically recast the opting for sign restrictions, at least, if further

data based information is available that could be used for identification purposes.

Numerous recent empirical evaluations of macroeconomic systems have uncovered a

general tendency of decreasing macroeconomic risks as a characteristic of a period begin-

ning in the mid of the 1980s and lasting for about or more than two decades (Perez-Quiros

and McConnell (2000), Kahn, McConnell and Perez-Quiros (2002)). The period of the

so-called ‘Great Moderation’ is characterized by a general mitigation of second order mo-

ment levels and dynamics. As shifts in the covariances of reduced form vector innovations

have become a stylized fact at least for mature economies, it appears worthwhile to shed

more light on the potential of volatility shifts in identifying structural relations.

Rigobon (2003), Lanne and Lütkepohl (2008a) and others have proposed a method

1See Fry and Pagan (2011) for a summary of empirical studies employing sign restrictions. Faust (1998),
Uhlig (2005), Mountford (2005) and Dedola and Neri (2007) are, among others, examples in the field of
monetary policy, Peersman (2005) for the analysis of economic fluctuations, and Mountford and Uhlig
(2009) for the analysis of fiscal policy shocks.
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that exploits changes in the (unconditional) (co)variance of residuals for a unique identi-

fication of shocks.2 On the one hand, the possibility to exploit statistical properties for

identification purposes is advantageous, since eventual incompatibility of conventional ap-

proaches with the data becomes testable. On the other hand, however, shocks identified in

a data driven manner by means of statistical arguments may often lack a straightforward

economic interpretation. Herwartz and Lütkepohl (2013) therefore recommend to com-

bine information extracted from the data with economic nonsample information. Despite

the fact that changes in volatility are a common characteristic of many macroeconomic

and financial variables, such statistical approaches have been rarely adopted in empirical

studies.

In this work we assess the relative merits of the purely theory-based and the statistical

identification that rests on shifts in second order moments. It consists of two main parts.

In the first place, employing a dynamic stochastic general equilibrium (DSGE) model we

subject both identification schemes to a simulation-based comparison. The Monte Carlo

design can be thought of as mimicking the identification strategies followed by two fictive

analysts. While one analyst throughout employs a set of a priori sign restrictions for

identification, the other employs changes in the volatility structure of the residuals if such

changes have been diagnosed by means of a suitable pretest. In cases where the volatility

approach is not applicable, (s)he proceeds with the former theory-based approach. This

setup allows to investigate numerous interesting aspects of performance and informational

content of the rival identification strategies. Firstly, we investigate the accuracy of both

identification strategies by means of a new and intuitive evaluation criterion. Secondly,

we assess under which circumstances and how often the statistical approach might be

feasible. Thirdly, we compare the outcome of imposing an agnostic and a fully restricted

sign pattern. Fourthly, we investigate to what extent omitted variable biases could change

the relative performance of both strategies for structural analysis. The simulation exer-

cises show that resorting only to sign restrictions bears a higher risk of failing to recover

structural relations, while impulse response patterns identified by means of (co)variance

shifts offer more precise measures of the true dynamics.

In the second place, we apply both identification approaches to a standard low-

dimensional model of US monetary policy. In this vein and similar to a recent study

by Lütkepohl and Netšunajev (2013), we are able to test the theoretically motivated

2See Rigobon (2003) for a simple intuition of the method. Note that also other approaches using statistical
identification exist. For instance, Lanne and Lütkepohl (2010) assume mixed normal distributed model
innovations to identify the shocks and impulse responses.
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restrictions concerning the signs of the impulse responses.3 We conclude that common re-

strictions used to identify demand, supply and monetary policy shocks are not rejected by

the data. Hence, these a priori beliefs can be helpful for an economic interpretation of the

more precise responses resulting from an identification with statistical means. Based on

this diagnosis we examine the impact of a monetary tightening on real GDP. In contrast

to previous agnostic sign restriction approaches our results suggest a significant decline

in real GDP at an intermediate horizon.

In the next section we provide a brief summary of the two identification approaches.

Section 3 provides the simulation setup and the respective identifying assumptions. The

evaluation criterion and simulation results are discussed in section 4. The empirical

example is provided in section 5. Section 6 concludes.

2 Identification of structural shocks

For purposes of exposition consider a K−dimensional vector autoregression of order p

yt = A1yt−1 + A2yt−2 + · · ·+ Apyt−p + Bεt, t = 1, ..., T. (1)

In (1) εt denotes the vector of structural shocks which are typically presumed serially

and cross sectionally uncorrelated with mean zero and unit covariance matrix. Thus,

ut = Bεt can be considered as reduced form residuals. These reduced form residuals can be

estimated by means of standard OLS or ML estimators. Presuming the structural shocks

to be multivariate Gaussian, εt ∼ iidN(0, IK), it is well known that the structural shocks

εt cannot be recovered from reduced form estimates, since the reduced form covariance is

robust under rotations of εt, i.e.

Σu = Cov[ut] = BB′ = BQQ′B′, with Q 6= IK and QQ′ = IK .

As a consequence, the impacts of the structural shocks εt on the variables in the system

yt cannot be identified without further assumptions. In the following we describe two

recent approaches to identify the columns of B that differ with respect to the exploited

additional information.

3Lütkepohl and Netšunajev (2013) model changes in volatility by means of a Markov switching mechanism
and test the identification assumptions of Kilian and Murphy (2009) in a model of the crude oil market.
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2.1 Identification by means of sign restrictions

One potential candidate for the matrix B is given, for instance, by a Choleski factor C

of the estimated reduced form covariance matrix Σ̂u. However, this popular decomposi-

tion implies a recursive dynamic structure that might be hard to justify in many cases.

Multiplying C with some rotation matrix Q one obtains another candidate generating

orthogonal shocks. The decomposition by means of CQ yields distinct, generally nonre-

cursive, responses of the variables. The sign restriction approach consists of generating

a broad set of distinct impulse responses in this vein, and subsequently discarding those

that do not satisfy a given theory-based sign pattern.4

To determine matrices Q one may consider the product of the K(K − 1)/2 distinct

forms of Givens rotation matrices. For instance, in case K = 3 (the model dimension

considered in the Monte Carlo study in section 3 and the empirical example in section 5)

one may choose

Q(θ) =

 1 0 0

0 cos(θ1) − sin(θ1)

0 sin(θ1) cos(θ1)

×
 cos(θ2) 0 − sin(θ2)

0 1 0

sin(θ2) 0 cos(θ2)



×

 cos(θ3) − sin(θ3) 0

sin(θ3) cos(θ3) 0

0 0 1

 , (2)

where 0 ≤ θi ≤ π, i = 1, 2, 3. A large set of Q(θ) matrices and, subsequently, of impulse

responses can be determined by drawing values for the elements in θ = (θ1, θ2, θ3)
′ from

a uniform distribution, θi ∼ U [0, π], i = 1, 2, 3. A particular impulse response pattern is

accepted if it is in line with a priori specified sign restrictions. Otherwise it is discarded.

The sampling procedure is repeated until a prespecified number of successful draws (in

this study 1,000) is obtained. In accordance with the literature, we resort to the median

and the 16% and 84% quantile of the distribution of the accepted impulse responses for

structural analysis.

2.2 Identification by means of changes in volatility

Rigobon (2003), Rigobon and Sack (2003) and Lanne and Lütkepohl (2008a, 2008b) show

that distinguishing m = 1, 2, . . . ,M covariance states of VAR residuals may allow to

obtain structural shocks from the estimated reduced form residuals. For simplicity of

exposition assume that there is one permanent volatility break at period TB such that

4See, for instance, Fry and Pagan (2007) for a more detailed explanation of this approach.
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M = 2 and

E(utu
′
t) =

Σ1 for t = 1, ..., TB − 1

Σ2 for t = TB, ..., T.
(3)

The two covariance matrices Σ1 and Σ2 can be decomposed into Σ1 = WW ′ and Σ2 =

WΨW ′, where W is a (K×K) matrix and Ψ is a diagonal matrix with diagonal elements

ψkk > 0, k = 1, ..., K. The crucial condition for a unique decomposition (apart from

changes in sign and ordering of the shocks) is that the diagonal elements of Ψ have to

be distinct. It is worthwhile to mention, however, that this assumption can be subjected

to statistical testing. Setting B = W obtains unique structural shocks εt = W−1ut. Ac-

cordingly, these shocks have an identity covariance matrix in the period before the break

(regime 1) and a diagonal covariance matrix Ψ in the period after the break (regime 2).

Potential ambiguity of structural effects due to sign changes is easily avoided by switch-

ing all signs of a column of W in case the corresponding diagonal element has a negative

sign. This is without loss of generality, as it only implies that one studies the effects of

positive shocks. The specific ordering of the shocks is, however, an important issue for

their economic labeling later on (see section 5).

Volatility based identification can easily be extended to cases of more than two regimes,

however, for systems with M > 2 the decomposition mentioned below the definition in (3)

is restrictive, i.e. testable by means of common likelihood based tests. Put differently, the

assumption of regime invariant responses to structural shocks can be contrasted against

the data for multi-regime systems with M > 2, while it is ‘just identifying’ in case M = 2.

Details on the estimation procedure are given in the Appendix.

3 Simulation setup and identifying assumptions

In this section we introduce the data generating process (DGP) used for the Monte Carlo

simulations, the postulated volatility shifts of the artificial time series, and the specific

assumptions made for the identification of structural shocks.

3.1 Data generating process

For simulation purposes we employ a simple 3-equation DSGE model that has been widely

used as a baseline framework for monetary policy analysis (see, amongst others, Gertler,

Gali and Clarida (1999), Carlstrom, Fuerst and Paustian (2009), and Castelnuovo (2012a,

2012b)). The consideration of trivariate systems is also common practice in the SVAR
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literature. The log-linearized version of the model reads as

xt = γEtxt+1 + (1− γ)xt−1 − δx(rt − Etπt+1) + ωx,t, (4)

πt = (1 + αβ)−1βEtπt+1 + (1 + αβ)−1απt−1 + κxt + ωπ,t, (5)

rt = τrrt−1 + (1− τr)(τππt + τxxt) + ωr,t, (6)

ω•,t = ρ•ω•,t−1 + ε•,t, • ∈ {x, π, r}, t = 1, 2, . . . , T, (7)

where xt, πt and rt denote the output gap, inflation and the nominal interest rate, respec-

tively, and Et indicates expectations formed at period t. Accordingly, the equations (4)

to (6) represent a New Keynesian IS equation, a hybrid New Keynesian Phillips curve,

and a Taylor rule with interest rate smoothing. First order autoregressive (AR(1)) shock

processes are summarized in (7), with subscripts • ∈ {x, π, r} indicating a demand shock,

a supply shock and a monetary policy shock, respectively.

The employed parameter settings correspond to common calibration assumptions drawn

from the macroeconomic literature. In particular, we set the discount factor β = 0.99,

the slope of the Phillips curve κ = 0.05, the parameter governing the indexation to past

inflation α = 0.5, the parameter governing the impact of the ex-ante real interest rate

δx = 0.1, and the weight allocated to expectations of future output γ = 0.5. The policy

parameters in the Taylor rule are given by τπ = 1.8 and τx = 0.5, the smoothing param-

eter is τr = 0.6. Finally, the autoregressive parameters in (7) are set to ρx = ρπ = ρr = 0.5.

Given equilibrium determinacy, the model in (4) to (7) can be formulated as xt

πt

rt

 = Φ

 xt−1

πt−1

rt−1

+ B

 ωx,t

ωπ,t

ωr,t

 , (8)

where, by implication, the matrices Φ and B read as

Φ =

 0.74 −0.09 −0.16

0.13 0.44 −0.06

0.24 0.30 0.53

 and B =

 2.32 −0.48 −0.41

0.72 2.32 −0.22

0.98 1.57 0.76

 . (9)

The system in (8) has a finite order structural VAR representation,

yt = A1yt−1 + A2yt−2 + Bεt, (10)

where yt = (xt, πt, rt)
′. Defining F = diag(ρx, ρπ, ρr) the autoregressive parameter ma-
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trices in (10) are A1 = Φ + BFB−1 and A2 = −BFB−1Φ.5 The elements in B represent

the instantaneous effects of the shocks on the variables. Note that this matrix implies a

unique pattern of signs corresponding to each structural shock. This feature will be rele-

vant for the applicability of sign restrictions later on. Furthermore, it should be stressed

that the specification in (10) formalizes the residuals as linear functions of the structural

shocks, while the empirical analysis delivers unique estimates only for the reduced form

residuals ut = Bεt.

3.2 Volatility shifts

By assumption, the DGP in (10) exhibits a change in the (unconditional) volatility of

the shocks. This phenomenon is quite common in numerous macroeconomic data (see,

for instance, Sensier and van Dijk (2004)). Similar to Cavaliere, Rahbek and Taylor

(2010) we presume that εt = Vtet, where et is a K -dimensional Gaussian process with

mean zero and identity covariance matrix. Moreover, Vt is a time-dependent diagonal

matrix, Vt = diag(v1t, v2t, ..., vKt). We allow for shock processes with a single variance

break (M = 2) and generate the true shifts to occur at TB = [0.5T ], where [z] denotes

the integer part of z. In practice an analyst will likely rely on historical information

or statistical evidence to determine the time location of a change in volatility. For this

purpose (s)he might resort to common break point diagnostics (see, for instance, Inclan

and Tiao (1994)). Given that such a test is consistent, the timing error diminishes as

the sample size T increases. In the simulations we mimic this situation by setting the

presumed (co)variance shift to occur at a random time instance

TB
∗ =

[(
0.5 +

0.5√
T
g

)
T

]
, g ∼ N(0, 1). (11)

Hence, for T →∞ the break point chosen by the analyst coincides with the true one, i.e.

TB
∗ → TB = [0.5T ]. To be explicit with regard to the simulated (co)variance patterns

we set Vt = IK for the pre-break period throughout. Two main scenarios of post-break

(co)variance patterns are distinguished with Vt switching either to some random V (r)

or to fixed second order moments V (f). Thereby we examine the effects of alternative

magnitudes of the volatility shifts that are specified next.

• Shift to random (co)variances (Vt = V (r), t ≥ TB)

Randomizing the extent of actual (co)variance shifts in a particular simulation

experiment the diagonal elements of V (r) are drawn from a uniform distribution,

v
(r)
k ∼ U [1, 3], k = 1, . . . , K. Given the support of this distribution, the simulated

5For details, see Ravenna (2007), Carlstrom, Fuerst and Paustian (2009) and Castelnuovo (2012b).
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scenarios cover (i) both marked and mild shifts in second order moments and/or (ii)

states where pretesting the distinctness of elements in Ψ is more or less powerful.

Thus, the generation of random (co)variances mimics a broad range of empirically

relevant scenarios.

• Shift to fixed (co)variances (Vt = V (f), t ≥ TB)

Within the fully controlled variance regime we set V (f) = diag(3, 2, 1) for all simula-

tion experiments. In contrast to the randomly drawn magnitudes before, this choice

implies that the volatility shifts are markedly non-proportional throughout. While

one may expect the pretesting for volatility shifts a priori to be more powerful for

this case of shifts to fixed (co)variances, it is worthwhile to mention that at the

system level average (expected) standard errors are identical across the two shift

scenarios V (f) and V (r).

Note that Cavaliere, Rahbek and Taylor (2010) also consider volatility shifts of size

3 standard deviations and argue that such values are empirically plausible. Aside from

changes in the volatility of the shocks, the dynamic structure of the DGP is time-invariant.

Hence, the resulting impulse responses do not differ across varying volatility regimes. Such

time-invariance is supported in some related studies (see Christiano, Eichenbaum and

Evans (1999), Sims and Zha (2006), and the discussion in Lanne and Lütkepohl (2008a))

but not uncontroversial. We return to this issue in the empirical application.

3.3 Imposed identifying restrictions

The pattern of the sign restrictions imposed on the responses of the variables is summa-

rized in Table 1. Consistent with the theoretical model a demand shock εx leads to a

positive response of all three variables. A supply shock επ invokes a positive response of

inflation and the interest rate and a negative response of the output gap. Moreover, the

monetary policy shock εr is identified by requiring output and inflation to fall and the

interest rate to rise. All sign restrictions on the responses apply to the impact effect.

Table 1: Imposed sign restrictions in the simulation exercise.

Shock

Variable εx → επ → εr →
x + − −/?
π + + −
r + + +

As argued by Uhlig (2005), a particular merit of the sign restriction approach is the
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option to impose restrictions only on a subset of responses, and let the data decide about

some effects of central interest. In this regard we concentrate on the response of the

output gap to monetary policy and leave this response unconstrained as indicated by ‘?’

in Table 1. The policy shock is still uniquely identified by its negative and positive impact

effect on inflation (πt) and the interest rate (rt), respectively. In the Monte Carlo study

it will be of interest to what extent the outcome of this more agnostic procedure differs

from outcomes based on the full set of sign restrictions.

3.4 Further comments on the simulation setup

We generate S = 1, 000 sets of time series for each simulation experiment. The length

of a simulated process is set to T + 100 and the first 100 observations of each series are

discarded to immunize simulation outcomes against initial conditions. Three alternative

sample sizes, T = 200, 500 and T = 1, 000, are considered. These choices are also mo-

tivated by a sample size of T > 500 in the empirical application provided in section 5.

Since the intention of the study is to compare the identification accuracy of both iden-

tification strategies, we assume that the true lag order of the VAR model is known in

advance and abstract from potential biases due to an inaccurate dynamic specification.

As stated above, we also assume that an analyst imposes the correct pattern of signs and

the (almost) precise break date. These assumptions might be justified if the analyst only

imposes sign restrictions that are robust across various calibrations and models, and the

break date is gathered from consistent statistical pretesting. Moreover, with regard to

the ordering of the statistically identified shocks, the diagonal elements of the matrix Ψ̂

are ordered according to the ranks of the diagonal elements in V (r) or V (f). The columns

of Ŵ are adjusted accordingly.

For a given time series an important issue is to address if identification by means of

changes in volatility is applicable. Note again that the diagonal elements of the matrix

Ψ̂ have to be distinct for a unique determination of the structural shocks. Therefore, for

each process, we apply a formal pretest to check for equality of the diagonal elements of

Ψ̂, i.e. we separately test the null hypotheses H0 : ψkk = ψll for k, l ∈ [1, ..., K], k 6= l. The

pretests are performed at a 10% significance level by means of Wald statistics that do not

require additional likelihood optimizations. If all null hypotheses are jointly rejected, we

proceed with identification based on the diagnosis of volatility breaks. If the data do not

allow for an identification by means of statistical criteria, we employ the sign restriction

approach. Thus, the outcome of this (hybrid) identification strategy comprises results of

both approaches in some weighted form.
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4 Evaluation criterion and simulation results

In this section we evaluate the accuracy of the impulse response estimates resulting from

both identification strategies. For this purpose we first introduce an evaluation criterion

that may reasonably apply to both identification approaches. Before we discuss simula-

tion results in more detail, a few particular simulation scenarios are highlighted that are

thought to correspond to particular stances of econometric identification in practice.

4.1 Evaluation of structural impulse responses

To compare the outcomes from the two identification strategies, we presume that the

ultimate aim of both methods is a most accurate description of a system’s responses to

structural shocks on impact and over time. Targeting at a close approximation of true

impulse response functions, it is natural to compare both identification approaches graph-

ically. To summarize all results in one figure, we use the following simple criterion. In

a first step, an acceptance range around the known, true dynamics of the DGP is con-

structed. For this purpose we specify for each DSGE model parameter an interval around

the specific value previously chosen for the DGP in (4) to (7) (see Table 2). Following

Canova and Paustian (2011) we assume a uniform distribution over each interval, ran-

domly draw a new set of parameter values and determine the impulse responses arising

from this new calibration at periods h, h = 0, 1, ..., 15. Subsequently, we construct an

area containing 90% of these artificial responses based on 10,000 draws of distinct sets

of parameter values. With these ‘areas of acceptance’ (AoA) at hand, we check if the

impulse response point estimates resulting from the volatility based identification scheme

and the median response derived from the sign restriction approach are located within the

defined AoA. This is performed for all S = 1, 000 Monte Carlo replications of a particular

experiment, and finally we report the frequency of responses located within the AoA.

The intervals documented in Table 2 are specified such that they include theoretically

plausible values and are sufficiently small to result in an AoA that provides a meaningful

and straightforward measure for the accuracy of estimated impulse response functions.

To get accepted, responses have to deliver the correct sign (at least for the first periods)

and to be quantitatively similar to the true ones.6 The evaluation criterion takes into

account that point estimates resulting from the volatility based identification scheme and

6As we will see later, our defined AoA does not cross the zero line within the first periods. Therefore the
chosen sign restrictions (Table 1) are robust across the different sets of parameter values. Instead of the
intervals documented in Table 2 we also experimented with intervals based on the 5% and 95% quantile
of the posterior densities from a Bayesian estimation of the DSGE model. However, this often results in
relatively broad acceptance ranges and eventually lacks a clear-cut sign pattern for the on impact effects
of the structural shocks.
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Table 2: DGP parameter values and interval for AoA.

Parameter DGP calibration Interval for AoA

β 0.99 0.99
α 0.5 [0.4, 0.6]
κ 0.05 [0.03, 0.07]
γ 0.5 [0.4, 0.6]
δx 0.1 [0.05, 0.15]
τx 0.5 [0.3, 0.7]
τπ 1.8 [1.6, 2.0]
τr 0.6 [0.4, 0.8]
ρx 0.5 [0.4, 0.6]
ρπ 0.5 [0.4, 0.6]
ρr 0.5 [0.4, 0.6]

the median response functions of the sign restriction approach are not directly compara-

ble.7

Figure 1 shows the true impulse responses and the AoA. We emphasize that each

structural shock is normalized such that its impact effect on one variable is equal to

unity.8 In the same vein we also normalize the outcome of both identification schemes.

Note that while in the framework of the statistical approach the impulse response are

based on structural shocks that have unit variance in regime 1, the responses resulting

from the sign restriction approach are based on shocks that have unit variance for the

entire sample period. Therefore, the adopted standardization ensures that the simulation

results are not tampered by a different scale of the shocks.

[Insert Figure 1 about here.]

4.2 Alternative scenarios

As mentioned before, we implement several distinct simulation scenarios, which are sum-

marized in Table 3. The scenarios differ with respect to the magnitudes of the volatility

shifts and the sample size. Scenarios I, II, and III refer to cases with shifts to random

7Furthermore, our results are not affected by using the median response function itself instead of select-
ing the particular impulse response that is closest to the median response function (‘median target’) as
proposed by Fry and Pagan (2011). Using a Bayesian framework, Inoue and Kilian (2013) have recently
proposed an alternative method that addresses the problem of summarizing the evidence from the stan-
dard sign restriction approach by evaluating the posterior of sign-identified models. However, in this
paper we only focus on the standard approach and leave an additional comparison with this new method
for future research.

8We achieve this by dividing each column of the matrix of instantaneous effects by the absolute value of
the respective main diagonal element of this column.

12



(co)variances (Vt = V (r), t ≥ TB), i.e. the magnitude of the volatility shift of each time se-

ries at time TB = [0.5T ] is randomly determined by drawing from the uniform distribution

over the interval [1, 3]. Scenarios IV, V, and VI refer to cases where the magnitude of the

volatility shifts at time TB is fixed across simulations at Vt = V (f) = diag(3, 2, 1), t ≥ TB.

The marginal impact of distinguished sample sizes becomes evident when contrasting

scenarios I, IV (T = 200); II, V (T = 500); and III, VI (T = 1, 000).

We choose the scenarios II and V (T = 500) for the purpose of benchmarking with

regard to shifts to random (co)variances (V (r)) and shifts to fixed (co)variances (V (f)),

respectively. For both cases simulation results are shown for all responses to all shocks.

With regard to the remaining scenarios we focus on the response of output to a monetary

policy shock emphasizing that the analysis of this particular impulse response function is

at the core of this work.9 Beyond that, we consider potential biases for the identification

of a monetary policy shock that may arise as a consequence of an omitted variable.

Table 3: Overview of simulation scenarios.

Shift T = 200 T = 500 T = 1, 000

V (r) Scenario I (Fig. 5) Scenario II (Fig. 2) Scenario III (Fig. 5)

V (f) Scenario IV (Fig. 5) Scenario V (Fig. 3, 4) Scenario VI (Fig. 5)

4.3 Simulation results

Simulation results are depicted in Figure 2 to Figure 6. For each identification strategy we

display the frequency of impulse responses that are located within the defined AoA at pe-

riods h = 0, 1, ..., 15. Note again that the frequency of accepted impact responses reported

in the panels along the main diagonal is unity by construction. They should therefore not

be interpreted as evidence supporting either one of the employed identification strategies.

4.3.1 Shifts to random (co)variances

We first consider the simulation results based on scenario II (V (r), T = 500), which are

summarized in Figure 2. Identification by means of changes in volatility is only applicable

in around 450 out of S = 1, 000 replications while in all other replications we have to

resort to sign restrictions. It is therefore not surprising to observe only a small difference

in results between the identification strategy that targets to employ statistical information

and the pure sign restriction approach. Overall, however, one may diagnose a slight lead

of the volatility based identification in that respective impulse responses are more frequent

9The complete set of simulation results is available from the authors upon request.

13



close to the true functional patterns in comparison with median responses obtained from

the sign restriction approach. Impulse responses based on the sign restriction approach

are outside the AoA in almost all cases at the impact period h = 0, with the reaction of

the interest rate rt to a supply shock επ being the only exception. At higher horizons,

the performance of the impulse responses based on the sign restriction approach appears

somewhat more satisfactory. Nevertheless, in this scenario (V (r), T = 500), we often fail

to recover the true dynamics due to the lack of sufficient statistical information in the

data, and the relatively poor accuracy of median responses drawn from the sign restriction

approach.

[Insert Figure 2 about here.]

4.3.2 Shifts to fixed (co)variances

Results for scenario V (V (f), T = 500) are displayed in Figure 3. Apparently, the shift to

fixed (co)variances implies a stronger change in relative variances of the shocks compared

with the previous scenario (V (r), T = 500). This allows for a unique determination of

the structural shocks by statistical means in around 98% of the replications. Overall, the

strategy to exploit diagnosed (co)variance shifts performs considerably better than the

pure sign restriction approach even though, for instance, only around 40% of the responses

of inflation to a monetary policy shock are inside the AoA at the impact period h = 0.

The instantaneous response of the output gap (xt) to a monetary policy shock (εr) is now

satisfactorily detected in around 70% of replications. In contrast, the distinct shifts in

volatility appear to have little impact on the results of the pure sign restriction approach.

Yet, the reaction of the interest rate rt to the shock with the strongest shift in volatil-

ity (εx) is now correctly diagnosed in almost all cases when applying the full set of sign

restrictions. Interestingly, simulating with post-break (co)variances V (f) in comparison

with V (r) requires up to three times as many draws of rotation matrices (indexed by θi)

to obtain the desired number of responses that are in line with the specified sign pattern.

For both scenarios II and V (T = 500), altogether, there appear to be only little

differences between the median responses from the agnostic and the fully restricted sign

restriction approach. Remarkably, this also holds true for the agnostically unspecified

reaction of the output gap (xt) to the monetary policy shock (εr). Yet, it seems likely that

the range of responses in the agnostic setup is much wider, complicating the decision about

the impact of the structural shock. Only if both, the 16% and the 84% quantile of the

distribution of the accepted set of impulse responses have the same sign at the respective

period, the results are usually regarded to indicate the direction of the effect. To further
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investigate this issue we calculate the frequencies of cases where these signs are identical

and correct. As displayed in the upper right hand side panel of Figure 4, one would be

noncommittal concerning the proper direction of the unconstrained response of the output

gap (xt) to restrictive monetary policy shocks (εr) in almost all cases. This finding is also

in line with simulation results in Castelnuovo (2012a).10 The potential failure of the

agnostic setup to provide a clear qualitative conclusion concerning the effect of monetary

policy on output will deserve further consideration when discussing the empirical example

in section 5.

[Insert Figure 3 and Figure 4 about here.]

4.3.3 Alternative sample sizes

Consider next the marginal impacts of a smaller and a larger sample size relative to

the T = 500 baseline scenarios. In doing so we focus on the response of output to a

monetary policy shock. Respective results for scenario I (V (r), T = 200) are displayed

in the upper left panel of Figure 5. Again, most median responses from the pure sign

restriction approach are outside the AoA during the first periods after the shock. As

expected, the smaller sample size compared with scenario II (V (r), T = 500) goes along

with power loss when pretesting distinctness of the diagonal elements in Ψ̂. Specifically,

statistical information can be exploited for identification in around 30% of the cases.

Nevertheless, using statistical properties obtains a somewhat larger frequency of impulse

responses located in the neighborhood of the true functions.

The lower left hand side panel of Figure 5 illustrates the results for scenario IV (V (f),

T = 200). Pretesting now hints at the potential of volatility based identification in

87% of the replications. Notably, this frequency is higher as it has been for scenario II

(V (r), T = 500). Power gains in pretesting translate into a more frequent detection of

quantitatively accurate effects of monetary policy on output. The combined identification

strategy recovers the true dynamics to a satisfactory degree in around 43% of the cases

while relying merely on sign restrictions, none of the median responses based on the full

or on the agnostic set of sign restrictions fulfills the defined criterion at the impact period.

For scenarios III and VI we use a sample size of T = 1, 000. The upper and lower right

hand side panels of Figure 5 display the results based on volatility shifts V (r) and V (f),

respectively. In both cases, the quantitative accuracy of responses gathered from sign

restrictions generally resembles that for previous scenarios. The median responses are

still at odds with the true dynamics at the impact period but more often located within

10Results in Paustian (2007) indicate that the agnostic sign restriction approach might pin down the
correct sign of an unconstrained impulse response of special interest, but the number of restrictions and
the variance of the specific shock have to exceed settings that are typical for applied work.
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the AoA at a longer horizon. Under scenario III, the volatility shifts can be exploited in

around 62% of all replications. Under scenario VI, identification by means of changes in

volatility is applicable in each Monte Carlo replication and delivers responses that come

very close to the true ones in the vast majority of replications.

[Insert Figure 5 about here.]

4.3.4 The case of an omitted variable

In practical applications SVAR models are often small dimensional to respect the postu-

late of model parsimony in light of finite sample information. In consequence, empirical

analysis often proceeds under the potential threat that important variables have been left

out from the analysis. In this subsection, therefore, we aim at investigating to what extent

an omitted variable could change the relative performance of both strategies for structural

analysis. For instance, interactions between financial markets and the real economy might

constitute an important factor for the transmission of monetary policy and other shocks,

which could be overlooked when working with a standard trivariate system. For this rea-

son we suppose that the true DGP is a 4-equation DSGE model featuring macro-finance

interactions (Castelnuovo and Nisticò (2010), Castelnuovo (2013)), as it is discussed in

some more detail in Appendix C. We then check how the quantitative accuracy of both

strategies is affected when still considering a 3-dimensional SVAR comprising output, in-

flation and the interest rate.11

Collecting the contemporaneous relations in the 4-equation model, the matrix B is

given by

B =


2.14 −0.70 −0.49 0.46

0.63 2.27 −0.22 0.07

0.79 1.30 0.62 0.81

−0.22 −0.50 −0.30 1.66

 . (12)

The impact effect of demand/supply/monetary shocks on the output gap, inflation and

the interest rate are given in the upper left 3 × 3 block of B. The sign pattern used

to identify these three shocks remains unchanged.12 Note that a monetary policy shock

11Clearly, there might be good reasons to use an even richer DGP and, hence, investigate the consequences
of several omitted variables. We choose the model given in Appendix C since it is closely related to the
small-scale baseline DGP outlined in (4) to (7) but still allows for interactions that might be crucial for
analysing economic activity. An additional investigation using a large-scale model is beyond the scope of
this paper.

12However, when considering a three variable system only, the sign restrictions used for the identification
of a demand shock are equal to the signs of the impact effect of a financial shock εs to the output
gap, inflation, and the interest rate (fourth column, first three elements). It is therefore not possible to
differentiate between a demand shock and a financial shock without any additional assumptions.
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(unexpected increase in the interest rate) now has a stronger negative effect on output

and inflation as it has been the case for the 3-dimensional DGP introduced in section 3.1.

The simulation exercise with the omitted variable basically resembles the previous

scenario V (V (f ′) = diag(3, 2, 1, 1), T = 500). We focus again on the response of the

output gap to a monetary policy shock. The left hand side panel of Figure 6 shows

the AoA based on the extended model, and the right hand side panel of Figure 6 shows

respective simulation results. Confirming former results for scenario V, none of the sign-

identified responses is located within the AoA at the impact period h = 0. In contrast

to the outcome of scenario V, identification by means of changes in volatility mostly fails

to accurately recover the somewhat stronger negative response of output. Still, however,

in the extended model the frequency of statistically identified impulse responses located

within the AoA is generally in excess of the frequency of sign-identified responses.13

[Insert Figure 6 about here.]

4.3.5 Simulation summary

In summary, the Monte Carlo results show that median responses mostly fail to recover

quantitative features of the true impulse response patterns. This supports the findings of

Jääskelä and Jennings (2011) who state that median responses to a monetary policy shock

do not coincide with the corresponding true impulse responses generated from a small open

economy DSGE model. In addition, our results indicate that the agnostic approach often

does not offer a clear qualitative statement about an unrestricted response. A setting with

more variables and, consequently, more restrictions could indeed be suitable to improve

the accuracy of an identification scheme but might also imply a higher risk of a priori

imposing an incorrect economic structure. As expected, the feasibility of the volatility

approach depends on the relative size of the volatility shifts and the length of the sample

at hand. Since median impulse responses are drawn from censored simulations it is not

surprising that the accuracy of this identification scheme does not gain from increasing

sample information. Thus, given that both volatility shifts and sample information are

of reasonable size, it appears worthwhile to exploit the potential of volatility shifts in

identifying structural relations. Moreover, the omission of relevant variables provides a

severe obstacle to an accurate evaluation of impulse response patterns. While this holds

true for both identification approaches compared in the Monte Carlo study, identification

13Since a 4-dimensional VAR(2) could be approximated by a 3-dimensional VAR(p) with p > 2, we also
estimated the empirical model composed of output, inflation and the interest rate using p = 4 lags. For
both strategies the results regarding the on impact responses remain virtually unchanged. Results are
available upon request.
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by means of statistical criteria still obtains closer approximations of the true dynamics in

comparison with median responses based on the imposition of sign restrictions.

We emphasize that our results do not suggest that one approach outmatches the other

when it comes to applied work. Contrary to shocks identified by means of sign restrictions,

it is not obvious to give statistically identified shocks an accurate economic interpretation.

This leads to the question if and how an analyst could make use of information from both

approaches. We further consider this issue in the context of an empirical application.

5 A small model of US monetary policy

In the following we illustrate the utilization of both identification techniques in an em-

pirical application concerning the US economy. To remain closely related to the DGP

employed in the previous sections, we stick to a model comprising real GDP, a measure

of the level of prices and an interest rate. This set of variables is commonly used in the

empirical and theoretical literature to analyze the effects of monetary policy shocks on

the economy. In our context, such a parsimonious model also allows the imposition of

sign restrictions that are supported by standard textbook models.

We employ an extended version of a data set at monthly frequencies that has been

previously used by Bernanke and Mihov (1998) and Uhlig (2005), starting in 1954M07

and ending in 2008M09 (651 observations). In line with these authors, we interpolate

real GDP with industrial production and the GDP deflator with a consumer price and

a producer price index by means of the approach in Chow and Lin (1971).14 The data

set ends in 2008M09 to focus on monetary policy before the financial crisis. The vector

of endogenous variables yt in our SVAR model consists of the log of real GDP, scaled by

100 (qt), the log of the GDP deflator, scaled by 100 (pt), and the federal funds rate (it).

We choose a lag length of p = 17 (Uhlig (2005): p = 12) based on standard information

criteria and the LM test for absence of serial correlation and also include intercept terms.

It should be stressed again that we assume changes only to occur in the volatility of

the structural shocks while the coefficient matrices A1, . . . , Ap and the matrix B, which

relates the reduced form disturbances to the structural shocks, remain unaffected. We

note that these assumptions are controversial, especially as the sample period includes

14The data source is the FRED database of the Federal Reserve Bank of St. Louis. We use the series
GDPC1 for real GDP, GDPDEF for the GDP Deflator, FEDFUNDS for the federal funds rate, INDPRO
for industrial production, CPIAUCSL for the consumer price index, and PPIFGS for the producer price
index. See also Uhlig (2005).
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both, the high inflation episode of the 1970s and the ‘Great Moderation’ period.15 Though

a time-invariant dynamic structure of the model finds some support in the literature (see

section 3.2 for references), amongst others Boivin and Giannoni (2006) and Bacchiocchi

and Fanelli (2012) argue against constant SVAR parameters. Noticing eventual changes

in the dynamic specification, however, we stay with the assumption of time-invariance in

this regard for two reasons. First, it allows for a better comparison with Uhlig (2005).

Second, it is worthwhile to point out that both approaches to identification build on

dynamic stability such that both might suffer ‘symmetrically’ from an eventual misspec-

ification of the VAR dynamics. Next, we apply sign restrictions and covariance diagnosis

for the identification of structural shocks.

We impose sign patterns that are analogous to the agnostic scenario in the simulation

study discussed in section 3.2 and displayed in Table 4. Considering monthly data, we

decide to put restrictions not just on the impact effects but to restrict responses for one

quarter (i.e. in periods h = 0, 1, 2). Accordingly, three structural shocks are distinguished,

an aggregate demand shock εd (e.g. a shock in government spending or a shift of aggregate

consumption), an aggregate supply shock εs (e.g. composed of a productivity shock or an

unexpected increase of the oil price) and a monetary policy shock εm (unexpected increase

in the interest rate).

Table 4: Imposed sign restrictions for the analysis of US monetary policy.

Shock

Variable εd → εs → εm →
q + − ?
p + + −
i + + +

We focus on the effect of a monetary policy shock on real GDP where the size of the

monetary policy shock is normalized to an increase by 25 basis points. The left hand side

panels of Figure 7 provide the median impulse responses and the 16% and 84% quantiles

derived from the sign restriction approach over a support of h = 0, 1, 2, . . . , 24 periods.

We stress that our results are very similar to those of Uhlig (2005) though they are based

on a lower-dimensional system with only three variables and an extended sample period.

The range of the unrestricted responses of real GDP to a monetary policy shock is rather

wide and covers positive and negative effects, with the median response implying a pos-

itive reaction of real GDP at least for several periods after the impact. Uhlig (2005)

15Our assumptions therefore correspond to the so-called ‘good-luck’ view (e.g. Stock and Watson (2003)).
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therefore concludes that neutrality of monetary policy is not at odds with the data. How-

ever, Castelnuovo (2012a) and the simulation based evidence in section 4.3 indicate that

such an unclear result is not unlikely even if one applies the sign restriction approach to

data that are generated under non-neutrality of monetary policy. Relying exclusively on

sign restrictions in this example might therefore be unsatisfactory. Given that there are

volatility changes in the data, it appears worthwhile to employ the statistical identifica-

tion approach for a deeper investigation.

As to postwar US data, Boivin and Giannoni (2006) and Bacchiocchi and Fanelli (2012)

consider a single break in the year 1979. This is also consistent with Lanne and Lütkepohl

(2008a) providing empirical evidence for a regime change in 1979M10. We therefore set a

single break point TB=1979M10. Thus, we examine a model with two volatility regimes,

where the corresponding covariance matrices obey the decompositions Σ1 = WW ′ and

Σ2 = WΨW ′. The estimated matrices (with standard errors in parentheses) are

Ŵ =


0.067
(0.018)

−0.474
(0.021)

−0.023
(0.049)

0.026
(0.012)

0.022
(0.022)

−0.152
(0.007)

0.355
(0.016)

0.035
(0.031)

0.073
(0.044)

 , Ψ̂ =


1.827
(0.207)

0 0

0 0.406
(0.046)

0

0 0 0.789
(0.089)

 . (13)

Wald statistics for testing the equality of the diagonal elements of Ψ̂ are documented

in Table 5. Generally, the null hypotheses of identical diagonal elements in Ψ̂ are to

be rejected at common significance levels. Thus, there is considerable evidence that the

impact matrix is identified and, hence, the structural shocks are to be uncovered by

statistical properties of the data.

Table 5: Test for equality of diagonal elements of Ψ̂.

H0 Wald test p-value

ψ11 = ψ22 45.20 0.0000
ψ11 = ψ33 21.34 0.0000
ψ22 = ψ33 14.61 0.0001

Since the columns of W and the corresponding diagonal elements of Ψ can be permuted

without affecting the decompositions Σ1 = WW ′ and Σ2 = WΨW ′, the labeling of the

shocks is unclear yet. However, we are able to contrast the sign restrictions specified

in Table 4 with the signs of the elements in Ŵ in (13). If the theoretically founded

prior beliefs were in line with the data, the signs used to define a specific shock should be
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reflected in one of the columns of this matrix. Considering the sign pattern of the columns

of Ŵ , it can be seen that it indeed supports the assumptions made regarding a demand,

supply and monetary policy shock.16 In line with a demand shock, the impact effects of

the first shock (first column of Ŵ ) are all positive. The second shock leads to a positive

response of the price level and the interest rate, and to a negative response of real GDP

(second column of Ŵ ). Thus, the second shock conforms with the definition of a supply

shock. The third shock increases the interest rate and decreases the price level (third

column of Ŵ ), thereby matching the assumptions relating to an unexpected tightening

of monetary policy. Summarizing these arguments, we conclude that the theory-based a

priori assumptions do not conflict with the data in our model.

[Insert Figure 7 about here.]

Based on this first result the assumptions in Table 4 offer a reasonable device for

subsequent economic interpretation of the statistically identified shocks. Drawing on sta-

tistically identified shocks for economic analysis might be desirable not only in light of the

ambiguous outcome of the sign restriction approach with respect to the effect of monetary

policy on economic activity (see the left hand side panel of Figure 7). Simulation results

discussed in section 4 also show that the point estimates of the volatility approach are

more precise, and for this reason more appropriate for a quantitative assessment by means

of impulse responses or variance decompositions.17

Interestingly, the impact effect of the third statistically identified shock (which we

now label as a monetary policy shock) on real GDP is slightly negative. This negative

reaction of real GDP to an increase in the interest rate is at odds with the unrestricted

median response resulting from the sign restriction approach, but accords with conven-

tional theoretical views. Beyond that, the estimated matrices in (13) are such that the

structural shocks are scaled to unit variance in regime 1. This allows for an interpretation

of the diagonal elements of the matrix Ψ̂ as relative variances of the structural shocks

in regime 2 (1979M10–2008M09) versus regime 1 (1954M07–1979M09). Therefore, the

second regime in the model can be associated with a relatively lower volatility of supply

and monetary policy shocks and a relatively higher volatility of demand shocks.

Next we look at the impulse response functions resulting from the volatility approach,

which are displayed in the right hand side panels of Figure 7. As before, the size of the

16We have already permuted the columns of Ŵ and the corresponding diagonal elements of Ψ̂ in (13) to
facilitate comparisons with the sign pattern in Table 4. Clearly, this does not affect our analysis.

17It should be emphasized that in contrast to the standard sign restriction approach the statistical approach
also offers interpretable confidence bounds. For methods of constructing error bands for impulse response
functions of SVARs with sign restrictions see Moon, Schorfheide, Granziera and Lee (2011).
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monetary policy shock is normalized to an increase by 25 basis points. The confidence

intervals around the point estimates indicate that at least on impact the negative reac-

tion of real GDP is not clear-cut.18 However, there seems to be a significantly negative

reaction of real GDP at an intermediate horizon. Remarkably, this is fully in line with

the theoretical considerations in Inoue and Kilian (2013). Inoue and Kilian (2013) argue

in favor of a sign restriction on the response of real GDP after 6 months while leaving the

short-run and the long-run response unrestricted. They show that their resulting model

yields more plausible dynamics. We therefore regard the statistically identified impulse

response functions as evidence in favor of this restriction.

To sum up, based on the volatility approach empirical evidence suggests a negative

response of real GDP to a rise in the interest rate, which becomes more pronounced after

about six periods. In contrast, the sign restriction approach obtains quite ambiguous

results. Analysts who wish to use sign restrictions in a monetary policy model may thus

consider to follow the approach in Inoue and Kilian (2013), and impose sign restrictions

at time instances within the second or third quarter after the monetary impulse.

6 Conclusions

Identification procedures relying on zero restrictions and on sign restrictions have been

subjected to various criticisms. Besides the fact that imposing false restrictions can

severely distort the results, the simulation results in this work further indicate that fo-

cusing on median responses derived from the sign restriction approach often leads to in-

accurate conclusions with regard to the quantitative impact of distinct structural shocks.

Under the condition that the relative volatility shifts and the available samples are of rea-

sonable size, impulse responses quantified by means of volatility shifts prove to be more

precise.

We therefore argue that it is useful to amend a SVAR analysis by checking if in-

formation from the data can be exploited for identification purposes. Using a stylized

3-dimensional model of US monetary policy we illustrate how identifying information

from both approaches can be beneficially combined. First, we employ statistical informa-

18The bootstrapped confidence intervals in the right hand side panel of Figure 7 are obtained along the lines
described in Benkwitz, Lütkepohl and Wolters (2001). We use Hall’s percentile method in setting up the
intervals and choose the 16% and 84% quantile of the bootstrap distribution based on 1,000 replications.
We take directly the estimators of the parameters obtained from maximizing (15) and, hence, omit the
iteration process. Furthermore, the initially obtained estimate of W is used as the starting value in the
optimization step while the elements in Ψ̂ are held constant.
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tion to evaluate commonly used sign restrictions. Second, we use these theoretical beliefs

for an economic interpretation of the more precise responses resulting from the statistical

identification under volatility breaks. Our results point to a decline in real GDP after a

monetary tightening at an intermediate horizon. This finding is in line with previous the-

oretical considerations in the literature, but could not have been recovered by employing

an agnostic sign restriction approach.

The identification of structural shocks is an ongoing issue in the SVAR literature with

new approaches developing in several dimensions. On the one hand, Inoue and Kilian

(2013) propose a method to enhance structural analysis based on sign restrictions, which

is also applicable if the data do not allow for identification by means of statistical diag-

nostics. Evaluating the quantitative accuracy of this new sign restriction-based method

might constitute an interesting topic for future research. On the other hand, Bacchioc-

chi and Fanelli (2012) have recently proposed a method that allows volatility changes to

also affect the structural parameters of the SVAR model by directly combining statistical

identification with some theory-driven restrictions.
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A Estimation of B by means of changes in volatility

For given model orders M = 2 and p the estimation of the SVAR model is initiated with a

common OLS estimation to obtain reduced form residual estimates ût. For details on the

following multistep iterative estimation procedure see also Lanne and Lütkepohl (2008a):

1. Reduced form residuals ût are used to determine covariance estimates

Σ̂1 =
1

TB − 1

TB−1∑
t=1

ûtû
′
t and Σ̂2 =

1

T − TB + 1

T∑
t=TB

ûtû
′
t. (14)

2. The concentrated log likelihood

logLH = −TB − 1

2

[
log |WW ′|+ tr

(
Σ̂1(WW ′)−1

)]
− T − TB + 1

2

[
log |WΨW ′|+ tr

(
Σ̂2(WΨW ′)−1

)]
(15)

is maximized to obtain ML-estimates Ŵ and Ψ̂. As starting values for the opti-

mization we use W =
(
T−1

∑T
t=1 ûtû

′
t

)1/2
+ W 0 and Ψ = IK , where the ‘matrix

square root’ is obtained from an eigenvalue decomposition, W 0 is a matrix of small

random numbers, and IK is the K−dimensional identity matrix.

3. Conditional on Ŵ and Ψ̂, GLS estimators for the dynamic parameters read as

Υ̂ = vec
[
Â1, Â2, ..., Âp

]
=

[∑TB−1
t=1

(
ZtZ

′
t ⊗
(
ŴŴ ′

)−1)
+
∑T

t=TB

(
ZtZ

′
t ⊗
(
Ŵ Ψ̂Ŵ ′

)−1)]−1
×
[∑TB−1

t=1

(
Zt ⊗

(
ŴŴ ′

)−1)
yt +

∑T
t=TB

(
Zt ⊗

(
Ŵ Ψ̂Ŵ ′

)−1)
yt

]
, (16)

where Z ′t =
[
y′t−1, y

′
t−2, ..., y

′
t−p
]
. The GLS estimates in Υ̂ are used to update the

covariance estimates Σ̂1 and Σ̂2 in (14) by means of residuals ût = yt− (Z ′t ⊗ IK)Υ̂.

Steps 1. to 3. are iterated until convergence of Ŵ , Ψ̂ and Υ̂. Second order properties of

the estimates in Ŵ and Ψ̂ can be obtained from the inverse Hessian of the log likelihood

function.
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B Figures: Simulation experiment
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Figure 1: True impulse responses (—) and defined AoA (grey shaded) of the baseline 3-equation
DSGE model. AoA illustrates the 90% set based on 10,000 different calibrations. Variables x,
π, r (εx, επ, εr) denote the output gap, inflation and the nominal interest rate (demand shock,
supply shock and monetary policy shock).
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Figure 2: Scenario II (V (r), T = 500): Frequency of impulse responses located within the
defined AoA at periods h = 0, 1, ..., 15.
(2) Identification by means of changes in volatility (if applicable, or else sign restrictions).
Volatility approach is applicable in 45% of the cases. (∗) Identification by means of sign restric-
tions only. (◦) Sign restrictions on subset of responses (agnostic). On average, one out of 69 (20)
draws of rotation matrices (see equation (2)) obtains responses that satisfy the fully restricted
(agnostic) sign pattern. For further notes see Figure 1.
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Figure 3: Scenario V (V (f), T = 500). Frequency of impulse responses located within the
defined AoA at periods h = 0, 1, ..., 15.
Volatility approach is applicable in 98% of the cases. On average, one out of 205 (35) draws of
rotation matrices (see equation (2)) obtains responses that satisfy the fully restricted (agnostic)
sign pattern. For further notes see Figure 2.
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Figure 4: Scenario V (V (f), T = 500). Identification by means of sign restrictions: Sign checks
for ranges between the 16% and 84% quantiles of the distribution of the accepted set. Frequency
of identical and correct signs.
(∗) Sign restrictions on all responses. (◦) Sign restrictions on subset of responses (agnostic).
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Figure 5: Overview of alternative scenarios. Frequency of impulse responses located within
the defined AoA at periods h = 0, 1, ..., 15. Response of output to a monetary policy shock.
Upper panels: Scenarios with volatility shift V (r). Scenario I (T = 200): Volatility approach
applicable in 29% of the cases. Scenario III (T = 1, 000): Volatility approach applicable in 62%
of the cases.
Lower panels: Scenarios with volatility shift V (f). Scenario IV (T = 200): Volatility approach
applicable in 87% of the cases. Scenario VI (T = 1, 000): Volatility approach applicable in all
cases. For further notes see Figure 2.
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C A 4-equation DSGE model

To analyze the effects of a potentially important omitted variable, we extend the baseline

DGP provided in section 3.1 by a law of motion of an indicator of financial soundness

st. The model was initially proposed by Castelnuovo and Nisticò (2010) and has been

recently employed in a Monte Carlo experiment by Castelnuovo (2013). We refer to these

authors for all details and just quote the relevant equations, i.e.

xt = γEtxt+1 + (1− γ)xt−1 − δx(rt − Etπt+1) + ψxst + ωx,t, (17)

πt = (1 + αβ)−1βEtπt+1 + (1 + αβ)−1απt−1 + κxt + ωπ,t (18)

rt = τrrt−1 + (1− τr)(τππt + τxxt + τsst) + ωr,t, (19)

st = βEtst+1 + λsEtxt+1 − δs(rt − Etπt+1) + ωs,t, (20)

ω•,t = ρ•ω•,t−1 + ε•,t, • ∈ {x, π, r, s}. (21)

Apart from its own representation in (20) financial soundness st enters the monetary

policy reaction function (19) and the IS equation (17). The model again has a VAR

representation of order 2. Table 6 summarizes the calibration of the additional parameters

of the extended model. The values of the additional parameters closely correspond to the

estimates in Castelnuovo (2013). The values of all other parameters and the intervals

around these values remain unchanged (see Table 2). The left hand side panel of Figure 6

shows the resulting true impulse response of output to a monetary policy shock and the

corresponding new AoA. Note that this AoA is only affected by the specific values of the

additional parameters as documented in Table 6. The right hand side panel of Figure 6

reports the frequency of impulse responses that fulfill the evaluation criterion.

Table 6: Additional parameter values of the extended model.

Parameter ψx τs λs δs ρs
DGP calibration 0.2 1.0 0.05 0.1 0.5
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Figure 6: Left: True impulse response of output to a monetary policy shock (—) and defined
AoA (grey shaded) based on the extended model. AoA illustrates the 90% set based on 10,000
different calibrations.
Right: Results for the extended model. Scenario V’: T = 500, Volatility shift V (f ′). Frequency
of impulse responses located within the defined AoA at periods h = 0, 1, ..., 15.
(2) Identification by means of changes in volatility (if applicable, or else sign restrictions).
Volatility approach applicable in 98% of the cases. (∗) Identification by means of sign restrictions
only. (◦) Sign restrictions on subset of responses (agnostic).
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D Figures: Empirical application
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Figure 7: Impulse responses to a monetary policy shock εm. Left hand side panels: Identifi-
cation by means of sign restrictions (agnostic). Median impulse responses and 16% and 84%
quantiles. Right hand side panels: Identification by means of changes in volatility. Impulse
responses with 68% confidence bounds. Variables q, p, i denote real GDP, GDP Deflator and
federal funds rate.
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