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Abstract

Including disaggregate variables or using information extracted

from the disaggregate variables into a forecasting model for an eco-

nomic aggregate may improve the forecasting accuracy. In this pa-

per we suggest to use boosting as a method to select the disaggregate

variables which are most helpful in predicting an aggregate of interest.

We compare this method with the direct forecast of the aggregate, a

forecast which aggregates the disaggregate forecasts and a direct fore-

cast which additionally uses information from factors obtained from

the disaggregate components. A recursive pseudo-out-of-sample fore-

casting experiment for key Euro area macroeconomic variables is con-

ducted. The results suggest that using boosting to select relevant

predictors is a viable and competitive approach in forecasting an ag-

gregate.
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1 Introduction

The issue of forecasting aggregates directly or combining disaggregate fore-

casts has already been discussed and analyzed in an early contribution by

Marcellino et al. (2003) who point out that combining disaggregate forecasts

outperforms direct forecasting of the Euro area aggregates. Hubrich (2005),

however, argues that due to differences in the disaggregate series it is not

necessarily better to employ the aggregation of the disaggregate forecasts

rather than the direct forecasting method. Even asymptotic theory pro-

vides inconclusive results regarding the ranking of these two approaches. In

the course of further developments in this discussion, Hendry and Hubrich

(2006, 2011) show analytically that taking disaggregate variables into account

in the direct forecasting model should be helpful for reducing the forecast

mean squared error. Based on the analysis for aggregates with time-varying

weights, Lütkepohl (2011) and Brüggemann and Lütkepohl (2013) also point

out that incorporating disaggregate information in the forecasting model will

generally lead to forecast improvements. However, including all disaggregate

variables is often not feasible since too many parameters have to be esti-

mated, which makes this forecast inefficient.

This paper focuses on how to include the disaggregate information or the

relevant disaggregate variables in the direct forecasting model. The most

promising existing approach of dealing with high-dimensional data, namely,

the factor method summarizes the information contained in a large number

of series in just a few unobservable common factors. If the factors can be

estimated accurately and precisely, then the task of forecasting an aggregate

using all disaggregate variables as predictors can be simplified substantially

by using the estimated factors as disaggregate information for forecasting.

Another way of exploiting high-dimensional data is to select observed raw

variables as predictors from a large feasible set which are most informative

in predicting an aggregate of interest. This paper suggests to use boosting

as such a variable selection device.

Boosting stems from the machine learning and biostatistics literature for

analyzing high-dimensional data and has proven to be very competitive in

terms of prediction accuracy (Bühlmann and Hothorn (2007)). It estimates
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an unknown function iteratively and adds in each iteration the variable with

the largest contribution to the fit. Until now, there are only very few ap-

plications in the macroeconometric literature. Bai and Ng (2009) estimate

the common factors of a large set of predictors and then use boosting to

pick out the most relevant factors to be augmented to a standard forecast-

ing model. They find that some form of boosting outperforms the standard

factor-augmented forecasts. Buchen and Wohlrabe (2011) evaluate the fore-

casting performance of boosting and compare it with the forecast combina-

tion schemes and dynamic factor models. Using the same data presented in

Stock and Watson (2006) they find that boosting is a viable and computation-

ally efficient approach to improve the forecasting accuracy. By investigating

the forecasting performance of multivariate models Carriero et al. (2011) also

include multivariate boosting in their forecast comparison. They show that

boosting performs best in forecasting CPI inflation one month ahead.

This paper compares the performance of four different forecasting mod-

els: the direct forecast of an aggregate of interest, aggregating forecasts of

disaggregate variables, including the disaggregate information summarized in

factor series in the direct forecasting model and using boosting to select rele-

vant disaggregate variables in the direct forecasting model. The main purpose

of this study is to answer two empirical questions: First, does adding disag-

gregate information or variables in the direct forecasting model improve the

forecasting performance? Second, what is the appropriate way to incorporate

the disaggregate information or variables in the direct forecasting model?

In the empirical application to the Euro area macroeconomic key vari-

ables such as real GDP and consumer price index we find that substantial

improvements in terms of forecasting accuracy can be achieved when taking

the disaggregate variables or information into account in the direct forecast

of the aggregate. Furthermore, using boosting to select the most relevant

disaggregate variables can produce fairly good forecasts. By determining the

optimal number of iterations for boosting, the cross-validation method beats

always the data-dependent information criterion.

The structure of the remaining paper is organized as follows. Section 2

outlines the boosting procedure, especially the componentwise boosting. The

alternative forecasting models are discussed in Section 3. Section 4 describes
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the empirical analysis and Section 5 concludes.

2 Componentwise Boosting

Basis idea

Boosting is a stagewise additive modelling algorithm. The underlying idea

is to combine simple estimators to obtain an ensemble such that the perfor-

mance of each single ensemble member is improved. It estimates an unknown

function f(xt) for a response variable yt as a sum of M estimated functions:

f̂(xt) = f̂ (0) + ν

M∑
m=1

ĝ(m).

xt = (x1,t, . . . , xN,t)
′ contains the N-dimensional predictor variables which

are stationary. f̂ (0) represents the initial function value and the estimated

functions ĝ(m) are derived by using a base learner which is a simple fitting

procedure based on the minimization of some loss functions. Thus in each

iteration m, boosting adds the estimated base learner ĝ(m) providing the

smallest loss. Without modifying the coefficients of those learners which are

previously added to the model, only the parameters of the last base leaner

need to be estimated in each step.

ν is the shrinkage parameter which ensures that the effect of the base

learner is shrunken towards zero in order to reduce its variance and to prevent

overfitting. Bühlmann and Hothorn (2007) suggest to use a sufficiently small

value since with a small ν the forecasting accuracy has been empirically found

to be potentially better and almost never worse.

L2-Boosting

According to the specification of the response variable yt, the base learn-

ers and the loss functions, different boosting algorithms were designed in

literature. For example, for binary classification the AdaBoost of Freund

and Schapire (1996) can be applied. The base procedure is a classifier. If

the function of interest f(xt) is the conditional mean f(xt) = E(yt|xt), the
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L1-Boosting or L2-Boosting can be used based on the form of the loss func-

tions. Different to the L1-loss, which is not differential at some points, the

L2-Boosting uses the squared errors as the loss function. It is very useful for

regressions especially with many variables as candidate predictors. The loss

function of the L2-Boosting has the form:

L(yt, f) =
1

2
(yt − f)2.

This term is scaled by the factor 1/2 so that the negative gradient vector can

equale the residuals.

Componentwise L2-Boosting

The specification of the base learner g(m) is of great importance. The L2-

Boosting chooses the linear least squares as the base learner for linear models.

In each iteration the base learner is applied to one candidate variable and

thus only one variable will be selected in the sense of ordinary least squares

fitting (hence componentwise). The componentwise boosting treats the lags

of one predictor as separate predictors so that the variables and lags are

selected simultaneously from a large set of candidates for forecasting. To

mention that for each iteration the same predictor variable or the lag can be

selected.

Componentwise L2-Boosting algorithm

Consider a linear forecasting model which has the following form:

E(yt+h|yt, xt) = c+

p∑
i=1

αiyt+1−i +
N∑
j=1

pj∑
i=1

βj,ixj,t+1−i = c+ γ′zt.

yt represents the one-dimensional target response variable and the vector xt =

(x1,t, . . . , xN,t)
′ contains the N -dimensional exogenous predictor variables. p

and pj denote the number of the lags for yt and xt. It is assumed that the

variables yt and xt are stationary. z = (y, x1, . . . , xN)′ contains all predictor

variables and their lags. So there are totally (p + p1 + · · · + pN) candidate

predictors.
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1. Start with f̂
(0)
t = ȳ. Set m = 0.

2. Increase m by 1:

• Compute the negative gradient of the loss function −∂L(yt,f)
∂f

and

evaluate at the estimate of the previous iteration f̂
(m−1)
t : ut =

yt − f̂ (m−1)
t for t = 1, . . . , T (current residual).

• Regress ut on each predictor z(k), k = 1, . . . , (p + p1 + · · · + pN)

and compute SSR(k) =
∑T

t=1(ut − zt,(k)θ̂(k))2.

• Choose the predictor z(k∗) which minimizes SSR.

• Set ĝ(m) = θ̂(k∗)z(k∗).

• Update f̂ (m) = f̂ (m) + νĝ(m−1).

• Iterate step 2 and 3 until m = mstop.

In the first step of the componentwise boosting, the mean of the target vari-

able yt is used as the initial value. Next, the negative gradient of the loss

function is computed and this is evaluated at the estimate of the previous

iteration. As explained before the squared errors scaled by the factor 1/2 are

used as the loss function, so we obtain for this step the current residual which

is just the difference between the actual data and the fitted value up to that

iteration. This current residual is then regressed on the (p + p1 + · · · + pN)

candidate variables in turn. The variable which produces the smallest sum

of squared errors is selected and can enter the next iteration with its fitted

value. The algorithm terminates when the final iteration mstop is reached.

Generally, as stated in Bühlmann and Yu (2003), ”L2-Boosting is nothing

else than repeated least squares fitting of residuals”.

Key parameters

In order to minimize the expected forecasting errors, the bias and variance

should be balanced. To reduce the variance it is important to consider a weak

learner which involves few parameters and thus has low variance relative to

bias. As discussed before, this can be achieved by choosing the shrinkage

parameter ν sufficiently small. However, a small value of the shrinkage pa-

rameter results in a large number of boosting iterations. With a large number

6



of mstop, it is clear that the boosting algorithm will over-fit the data. So, how

to stop a boosting procedure at an optimal iteration number is of great im-

portance. This key parameter can be determined by using a corrected version

of the Akaike information criterion (AIC) or via cross-validation techniques.

The corrected AIC for the iteration step m has the following form:

cAIC(m) = log(σ̂2) +
1 + df(m)/T

[1− df(m) + 2]/T
,

σ̂2 = T−1
T∑
t=1

(yt − f̂m)2.

df(m) are the degrees of freedom in the boosting fit in the iterationm. Details

are given in Bühlmann and Hothorn (2007).

In the literature it is also advised to use the boostrapped cross-validation

method to choose an appropriate number of iterations. This method deter-

mines the optimal mstop by running the boosting algorithm multiple times for

the boostrapped samples drawn with replacement from the original dataset.

Due to the high correlations in the time-series data considered in this paper,

the new samples are drawn from the residuals after fitting the model first.

3 Forecasting Models

As stated in the introduction, this paper is interested in forecasting an aggre-

gate macroeconomic varaible. Suppose the aggregate of interest is yt = w′xt

and xt = (x1,t, . . . , xN,t)
′ is the vector of disaggregate component variables.

N denotes the number of disaggregate variables. w = (w1, . . . , wN)′ is the

weighting vector with fixed values. A forecast of yt+h at period t is denoted

by yt+h|t .

Direct forecast of the aggregate

The direct forecast of the univariate aggregate can be computed as:

yAGG
t+h|t = c+

p∑
j=1

αjy
AGG
t+1−j + εt+h.
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This forecasting model does not take any disaggregate variables or informa-

tion into account. The predictors are only the lagged values of the aggregate.

Aggregation of disaggregate forecasts

In this approach the forecasts are at first computed for each disaggregate

variable x1, . . . , xN :

xi,t+h|t = ci +

pj∑
j=1

αijxi,t+1−j + εi,t+h,

where i = 1, . . . , N . Thus N individual forecasts for N disaggregate vari-

ables can be obtained. Then these forecasts are aggregated using the same

weighting vector w to construct the forecast of yt:

yAGG
t+h|t = w1x1,t+h|t + . . .+ wNxN,t+h|t.

Since fixed weights are considered here, it is possible to pool the disaggre-

gate forecasts to form a forecast of the aggregate. The case of time-variant

aggregation weights (Brüggemann and Lütkepohl (2013)) is not considered

in this paper.

Direct Forecast using disaggregate information summa-

rized in factors

A widely discussed method to extract the information contained in a large

number of predictors uses a factor model which has been proposed in Stock

and Watson (2002a,b). In their approach, the information contained in the

N -dimensional stationary disaggregate variables xt = (x1,t, . . . , xN,t)
′ can be

summarized by a small number of r unobserved common factors Ft and an

idiosyncratic part:

xt = ΛFt + et, t = 1, . . . , T,

where xt is a N × 1 vector with stationary components, Λ is a N ×K matrix

of factor loadings, Ft is the r×1 vector of common factors and et is an N ×1

vector of idiosyncratic components.
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The forecast for the aggregate variable yt by including disaggregate in-

formation can be obtained with two steps. In the first step, the disaggregate

variables xt = (x1,t, . . . , xN,t)
′ are used to estimate the r-dimensional unob-

served factors. Estimation of the factors is done by using a classical static

principle components on x̃t, which is obtained by standardizing xt to have

zero mean and unit variance (Stock and Watson (2002b)). This step gives a

r×1-dimensional time series of common factors. It can be shown that under

mild conditions the principal components of x̃t are consistent estimators of

the true unobservable factors (see e.g. Stock and Watson (2002a) for details).

The choice of the number of factors r may be based on suitable criteria (see

e.g. Bai and Ng (2002)). In the second step, one can add the disaggregate

information contained in the factors and produce the h-step-forecast of yt as:

yAGG
t+h|t = c+

p∑
i=1

αiyt+1−i +
r∑

i=1

pj∑
j=1

βiF̂i,t+1−j + εt+h.

This forecasting model has the advantage that it considers information both

on the aggregate variable and its disaggregate components. If the factors are

correctly estimated, the information condensed in all disaggregate variables

can be used in the forecasting to improve its performance.

Since the target variable yAGG
t is aggregated through the disaggregate

variables, it may be interesting to check whether using only factors extracted

from the disaggregate variables is helpful for improving the forecasting per-

formance, thus the second variant which has the following form can be con-

sidered:

yAGG
t+h|t = c+

r∑
i=1

pj∑
j=1

βiF̂i,t+1−j + εt+h.

The lagged values of the aggregate variable are not included in the forecasting

model. Only the factors are used as predictors.

9



Direct Forecast including disaggregate variables selected

by componentwise boosting

Starting point is a forecasting model which has the following form:

yAGG
t+h|t = c+

p∑
i=1

αiy
AGG
t+1−i +

N∑
i=1

pj∑
j=1

βi,jxi,t+1−j + εt+h.

In this variant the lagged values of the aggregate, all the disaggregate vari-

ables and their lags are considered. The variables or the lagged values which

are most helpful to improve the forecasting performance are selected by using

the componentwise boosting algorithm introduced in Section 2.

The second variant considered in this forecasting model focuses only on

the disaggregate variables and their lags:

yAGG
t+h|t = c+

N∑
i=1

pj∑
j=1

βi,jxi,t+1−j + εt+h.

The componentwise L2-Boosting is used to select among all the disaggregate

variables the most informative ones.

Summary of the forecasting models

It is worth briefly summarizing the main characteristics of all the forecasting

models under analysis before moving on to the empirical part. Four alterna-

tive models are considered in this paper. Each of them aims at forecasting

an aggregate variable which is constructed by aggregating the disaggregate

components. The first model considers only information from the aggregate

variable, while the second model focuses mainly on the disaggregate compo-

nents. The last two approaches combine both the aggregate and disaggregate

information. The factor model approach extracts relevant information from

all the disaggregate variables, while the componentwise boosting algorithm

allows us to pick out the most relevant observed raw data. Both of them

provide a dimension reduction in the predictors.

In the last two forecasting models another variant is considered which

performs a dimension reduction only in the disaggregate variables. The rea-

son for this model variant is that the aggregate variables are constructed by
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aggregation of the disaggregate variables. When combining the aggregate

and disaggregate information together, the information set is used twice. So

it may be interesting to investigate whether only using information from the

disaggregate variables can provide a better forecasting performance.

4 Empirical Analysis

4.1 Data

The forecasting comparison considered in this paper includes six macroeco-

nomic key variables for the Euro area on a quarterly frequency: real GDP

(YER), the consumer price index (CPI), the GDP deflator (YED), the ex-

change rate against the US-Dollar (EER) and short- and long-term interest

rates (STN and LTN).

The data for aggregated macroeconomic variables are obtained from the

Area Wide Model (AWM) database maintained at the Euro Area Business

Cycle Network1. The AWM aggregates are constructed as the weighted av-

erage of log-level data for 11 European countries. The fixed weights used

in aggregating the individual country series are the nominal GDP shares for

1995 (Fagan et al. (2001) and Fagan et al. (2005))2. This AWM data is

now in widespread use, e.g. within the ECB for estimating econometric mod-

els.3 Quarterly data for the period from 1970Q1 to 2011Q4 are used in the

following.

The individual member countries’ time series data for the same period

from 1970Q1 to 2011Q4 are taken from the OECD quarterly national ac-

counts database.4 Twelve eurozone countries are considered. (Greece, which

joined the EMU in 2001, is also included.) All the series are seasonally ad-

1http://www.eabcn.org
2Weights used in aggregation: Belgium 0.039, Germany 0.305, Spain 0.102, France

0.210, Ireland 0.011, Italy 0.203, Luxembourg 0.002, Netherlands 0.056, Austria 0.030,

Portugal 0.024, Finland 0.017. Since Greece, which joined the EMU in 2001 and therefore

is not considered in Fagan et al. (2001) and Fagan et al. (2005), has the weight zero in the

forecasting comparison.
3It should be noted, however, that the AWM database is not an official ECB database.
4The data are obtained via Thomson Datastream.
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justed and transformed so that they have the same base year. Thus, for each

macroeconomic aggregate variable 12 disaggregate European countries data

are observed (N = 12).

A formal unit root analysis has been conducted and there is evidence that

all the time series for all countries can be characterized as I(1) processes.5 So

the first differences of the variables enter the forecasting models. Logarithms

are taken of the real GDP, the CPI, the GDP deflator and the exchange rate

EER, while the short- and long-term interest rates are not transformed. To

estimate the common factors, the first differences of the variables are stan-

dardized to have zero mean and unit variance. Especially for the countries

data missing observations are present, so the expectation-maximization (EM)

algorithm proposed in Stock and Watson (2002a) is applied to construct a

balanced panel.

4.2 Comparison methodology

A recursive pseudo-out-of-sample forecasting experiment is conducted for

comparing the performance of the forecasting models discussed above. We

are interested in forecasting the macroeconomic aggregate h periods ahead

yAGG
t+h|t. Forecasting horizons h = 1, 2 and 4 are considered. The forecasting

covers the period from 2003Q1 to 2011Q4. The h-step-ahead projection

for constructing the forecasts directly is applied, not the iterated multi-step

forecast, since the latter one entails estimating a number of models for the

disaggregate variables and the common factors that could erode forecast

performance.

To evaluate the forecasting accuracy, the mean squared forecast error

(MSFE) is used as loss function, where the forecast error is defined as the

difference between the estimated value and its actual value et+h = ˆyt+h|t
AGG−

yAGG
t+h . The first forecasting model with a fixed lag length of four is used as

benchmark. Each MSFE obtained from other forecasting models (and their

variants) will be expressed relative to the MSFE obtained from the first

forecasting model (referred to as FA). Thus, if the relative MSFE is less than

one, the according model is more precise than the direct univariate forecast

5The results for the unit root tests are available on request.
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with the first model. To simplify the notation, the second forecasting model

which combines the disaggregate forecasts together is referred as FD in the

following. The third model which uses factors as predictors is referred as

FF1 and FF2 for its two different variants. Similarly, we use FB1 and FB2

for the two variants of the forecasting model which applies componentwise

boosting algorithm to select the most informative predictors.

For the results reported here, a fixed number of four lags for the autore-

gressive part and two lags for all disaggregate variables are used. Results

using the common data-dependent lag selection information criteria are not

reported, since similar results can be obtained by checking the robustness of

the results with respect to this choice.

The forecasting variants FF1 and FF2 extract factors by using only the

country information on the aggregate variable to be predicted. For instance,

when forecasting the Euro area real GDP, the factors are estimated from

the dataset that only includes real GDP from the 12 member countries and

no other variables are taken into account. The number of factors used in

FF1 and FF2 has to be determined. When using the information criteria

proposed by Bai and Ng (2002), we found that the maximum number of

factors are suggested by all three criteria. Giving the relatively low number

of disaggregate variables (N = 12), this is not a meaningful choice. Therefore,

we decided to explore the cumulative percentage of the variance in the dataset

that can be explained by the factors and found that for each variable at least

35% of the total variance in the respective data set can be explained by two

factors. So two factors with respectively two lags are used in FF1 and FF2.

For the two variants FB1 and FB2 in the last forecasting model, the

shrinkage parameter ν is set to the commonly used value of 0.1 (Bühlmann

and Hothorn (2007)). The crucial parameter mstop is determined by the

corrected version of AIC or the 25-fold boostrapped cross-validation (referred

to as CV). Both of these two methods are considered in order to analyse to

what extent the forecasting accuracy of boosting depends on the choice of

the optimal iteration number mstop.
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4.3 Empirical results

Results from the forecasting comparison for all the considered macroeconomic

variables are presented in Table 1. For each variable and forecasting model

variant, we report the MSFE of the respective model variant relative to

the MSFE of the forecasting model which uses only the lagged values of

the aggregate variable as predictors. Forecasting horizons h = 1, 2 and 4 are

considered. The forecasting evaluation starts in 2003Q1 and ends in 2011Q4.

The smallest MSFE ratio for each variable and forecasting horizon is in bold.

This table suggests several conclusions.

First, combining the disaggregate forecasts does not necessary provide

more accurate forecasts than the forecasts based on the aggregate variable

when forecasting the macroeconomic key variables for the Euro area. For ex-

ample, when forecasting the growth rate of the real GDP (YER), the relative

MSFEs for the forecasting model FD at the horizons h = 1 and h = 4 are

larger than one. Similar results hold for the variables YED, EER and STN.

Only for the variables CPI and STN, gains can be observed by pooling all

the country-specific forecasts together.

Second, overall there is evidence that taking into account disaggregate

information in form of factors or selected disaggregate variables can improve

the forecasting performance. For the variable YER, forecasting models and

variants based on factors or boosting procedure lead in almost all horizons

to smaller MSFEs. Only one exception is observed for the model variant

FB2 using AIC to determine mstop (h = 2). For the other variables, the

use of disaggregate information or variables may not lead to sizable gains in

forecasting precision in all cases, however, for some forecasting horizons such

gains are always observable.

Third, it is difficult to find an appropriate way to incorporate the dis-

aggregate information or disaggregate variables in the forecasting model. In

some cases using factors as predictors tends to have lower MSFEs. How-

ever, in many cases the boosting method can indeed improve the forecasting

performance compared to the factor approach. Furthermore, in Table 1 the

smallest MSFE ratio for each variable and forecasting horizon is in bold. It

can be seen that especially for the variables EER and interest rates, using

14



boosting to select the predictors yields for all horizons the smallest relative

MSFEs.

Fourth, there is no compelling evidence that using only the disaggregate

information or variables, without considering the lagged values of the aggre-

gate variables in the forecasting model, is helpful to improve the forecasting

precision, since the second variant of the forecasting model which uses factors

as predictors and the second variant of the boosting procedure perform in

most cases worse than the respective first variant. This result indicates that

even if the aggregate variables are constructed by aggregating the disaggre-

gate variables, the information hidden in the aggregate variables is important

and therefore should be considered for forecasting.

Fifth, it can be found that using the cross-validation method to choose

the optimal iteration number always outperforms the use of the corrected

version of AIC. In all cases the boostrapped cross-validation leads to larger

forecasting improvements than the AIC.

5 Conclusion

The main purpose of this paper is to check whether taking into account

disaggregate information or variables is helpful to improve the forecasting

accuracy of an aggregate variable and how to include the disaggregate infor-

mation or the relevant disaggregate variables in the direct forecasting model

appropriately. A new variable selection method, the boosting procedure is

introduced and discussed. In context of forecasting the six macroeconomic

variables for the Euro area, four forecasting models (and their variants) are

compared: (1) the direct forecast of an aggregate which uses only the lagged

values of the aggregate as predictors, (2) first forecasting the disaggregate

variables respectively and then aggregating the disaggregate forecasts, (3)

including disaggregate information with the help of the factor model in the

direct forecast and (4) including disaggregate variables selected by boosting

in the direct forecast.

The empirical results indicate that in comparison to the direct forecasting

model which uses only past values of the aggregate variable, using disaggre-

gate information summarized in the factors or using disaggregate variables
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selected by boosting as additional predictors in the direct forecasting model

can provide more accurate forecasts. Moreover, it can be shown that using

boosting to select disaggregate variables beats in most cases the benchmark.

Thus boosting is a viable and competitive approach alternative to other meth-

ods using a large number of predictors. The number of the iterations is the

key parameter for the boosting procedure. Based on our empirical results

we suggest to use the cross-validation method to determine this important

parameter.

16



Table 1: MSFEs of different forecasting models relative to the first forecasting

model

YER CPI

horizon h = 1 h = 2 h = 3 h = 1 h = 2 h = 3

FD 1.018 0.980 1.020 0.968 0.941 0.925

FF1 0.833 0.964 0.970 1.002 1.008 1.015

FF2 0.825 0.975 0.993 1.008 1.019 1.085

FB1(AIC) 0.913 0.991 0.978 0.975 0.931 0.968

FB1(CV) 0.907 0.961 0.931 0.974 0.931 0.967

FB2(AIC) 0.909 1.009 0.984 1.010 0.937 0.993

FB2(CV) 0.907 0.963 0.942 1.010 0.937 0.993

YED EER

horizon h = 1 h = 2 h = 3 h = 1 h = 2 h = 3

FD 1.045 1.108 1.125 0.998 1.004 1.000

FF1 0.890 0.985 1.013 1.004 1.008 0.992

FF2 0.896 1.084 1.065 1.014 0.981 0.990

FB1(AIC) 0.909 1.043 0.986 1.010 0.975 0.992

FB1(CV) 0.908 1.012 0.958 0.955 0.924 0.975

FB2(AIC) 0.990 1.031 1.038 1.005 0.975 0.989

FB2(CV) 0.982 1.012 1.013 0.957 0.925 0.977

LTN STN

horizon h = 1 h = 2 h = 3 h = 1 h = 2 h = 3

FD 0.960 0.955 0.996 1.056 1.027 1.012

FF1 1.004 1.046 1.139 1.013 1.021 0.992

FF2 1.053 1.055 1.122 0.998 1.031 1.023

FB1(AIC) 0.970 1.022 1.002 1.002 1.000 1.011

FB1(CV) 0.920 0.934 0.888 0.979 0.991 0.989

FB2(AIC) 0.968 1.026 1.003 1.023 1.019 1.022

FB2(CV) 0.907 0.950 0.896 1.017 1.000 0.998
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