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Abstract

This paper examines the causal effect of volume on outcome on the example of
patients with a hip fracture. We use an instrumental variable approach and con-
sider both the practice-makes-perfect and selective-referral hypothesis as well as
unobserved patient heterogeneity. Our results indicate that unobserved severity
drives the results in the volume-outcome relationship for hip fracture patients
and with this the practice-makes-perfect hypothesis has an even stronger effect
on hospital quality than expected so far.
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1 Introduction

The volume-outcome relationship is a frequently analyzed topic in the literature. In 1979,

Luft et al. showed in their seminal paper that in ten out of twelve conditions a correlation

between volume and outcome exists (Luft et al., 1979). Numerous other studies followed in

the years after. The volume-outcome relationship can be explained by two hypotheses with

reversed causality directions: The practice-makes-perfect hypothesis states that higher case

volume leads to a better quality because learning affects routines, and economies of scale

apply (Luft et al., 1987; Seider et al., 2004). Hospitals which treat more patients with a

specific condition reduce their mistakes, optimize processes, and can afford better technical

equipment. Hence, volume is the leading cause for good practice. In contrast, the selective-

referral hypothesis assumes that good quality hospitals have a higher case volume. This is the

result of the good reputation of the hospital: Referring physicians know which hospitals are

of good quality and refer patients to a specific hospital. Another reason for this hypothesis

could be that patients inform themselves via quality reports and choose the hospital e.g. with

the lowest mortality rate. Based on these arguments quality is the leading cause of a high

case volume. Both hypotheses are possible and if simultaneously valid, OLS estimation leads

to biased and inconsistent results, i.e. the effect of volume is overestimated in a regression of

volume on outcome.

Nevertheless most of the previous literature has only focused on the correlation in the

volume-outcome relationship and reviews conclude that in general a correlation between vol-

ume and outcome exists, but the effect size depends on the condition considered (Gandjour

et al., 2003; Halm et al., 2002). Only a few studies tried to determine the causal relation-

ship by using instrumental variable regression or simultaneous equation models. Common

instruments are the number of hospital beds (Farley and Ozminkowski, 1992; Luft et al.,

1987; Norton et al., 1998) and geographical factors (Barker et al., 2011; Seider et al., 2004;

Tay, 1999). Hamilton and Hamilton (1997) use a duration model with hospital fixed effects

to exclude selective-referral; however, reverse causality can still drive their results. Barker

et al. (2011) and Seider et al. (2004) conclude that the practice-makes-perfect hypothesis is

the leading cause for the volume-outcome relationship. In contrast, Tsai et al. (2006) and

Hamilton and Hamilton (1997) find evidence for selective-referral as the primary reason in

the volume-outcome relationship. Farley and Ozminkowski (1992) and Luft et al. (1987)
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provide mixed results, while Norton et al. (1998) and Gaynor et al. (2005)1 even come to the

conclusion that volume is exogenous.

It seems possible that, besides reverse causality, the volume-outcome relationship might

be biased by an omitted variable bias due to unobserved patient heterogeneity. Patients may

choose hospitals based on quality or even on their initial health status (Tay, 1999). It is

obvious that patient characteristics are usually unequally distributed among hospitals, i.e.

there are e.g. university hospitals treating sicker patients in terms of age and comorbidities.

Problems arise because patient characteristics are correlated with the outcome (Iezzoni, 2003).

Therefore, patient characteristics are essential for an appropriate risk adjustment. Most stud-

ies analyzing the volume-outcome relationship use administrative data (Halm et al., 2002).

Even though these data sets can have very detailed information, clinical parameters like lab-

oratory values, functional status or symptoms and detailed socioeconomic characteristics are

missing. Hence, in simple regression models, there might be an unexplained part which can

be correlated with the outcome variable and the case volume. For example, if (unobserved)

sicker patients are treated more often in high volume hospitals, this would yield to a decline

in the measured quality, because those patients have a higher risk to die independent from the

quality of the hospital. The coefficient of volume is in this case affected by case volume, which

should cause a lower mortality rate, and unobserved illness characteristics which increases

mortality.

The issue of unobserved patient heterogeneity in volume-outcome studies is less frequently

discussed. Tay (1999) models the effect of volume on outcome for patients with acute myocar-

dial infarction (AMI) with a hospital choice model estimated using a logit model with random

coefficients, i.e. they control for the selection of patients with different initial health statuses.

Tay (1999) do not find a significant effect of case volume, if the omitted variable bias is ig-

nored. However, when controlling for unobserved heterogeneity, volume becomes significant.

Tay (1999) concludes that more severely ill patients choose higher volume hospitals. Hamilton

and Hamilton (1997) and Hockenberry et al. (2010) use similar duration models which also

allow accounting for unobserved patient severity. They use a generalized estimating equa-

tion and model unobserved heterogeneity with a step function. Hockenberry et al. (2010)

find that the marginal effects of volume increase after accounting for unobserved heterogene-

1Gaynor et al. (2005) is the corresponding published article of the working paper of Seider et al.
(2004).
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ity. Further literature which does not directly analyze the volume-outcome relationship also

concludes that unobserved patient heterogeneity matters (Becker, 2007; Gowrisankaran and

Town, 1999; Kessler and McClellan, 2000). Hence, not only reverse causation is relevant in

the volume-outcome relationship but also unobserved patient heterogeneity.

The relevance for assessing the causal effect of volume on outcome arises from the high po-

litical impact: The volume-outcome effect is the foundation for minimum volume standards.

For example, in Germany minimum volume standards were introduced for five conditions

in 2004. Consequently, hospitals which do not achieve a certain number of cases within a

specific condition are not allowed to treat patients with this condition anymore.2 This regu-

lation was introduced following international evidence for the volume-outcome relationship,

but most studies only found evidence for a correlation between volume and outcome. How-

ever, from a health policy point of view, the causality direction in volume-outcome matters

as minimum volume standards implicitly ground on the practice-makes-perfect hypothesis:

One of the main concerns against minimum volume standards is that they could endanger ac-

cess to hospital services, i.e. minimum-volume standards impose a tradeoff between potential

gains in quality of care and losses in access to care. If the practice-makes-perfect hypothesis

holds, minimum-volume standards will most likely improve overall outcomes, because hospi-

tals treating more cases will improve their quality. However, this implies longer travel times

for patients due to the reduced number of hospitals providing treatment. If higher volume

does not lead to better quality, i.e. the selective-referral hypothesis applies, minimum-volume

standards would be unfavorable as access to care would deteriorate by driving low-volume

providers out of the market (Seider et al., 2004). To ensure that the minimum volume regu-

lation really has an effect on quality and not only a specializing effect, the causality direction

has to be determined.

We examine the causal effect of volume on outcome for hip fracture patients following

Hentschker and Mennicken (2012). As outlined, the volume effect might be biased if reverse

causality and/or unobserved patient heterogeneity exist. To exclude these biases we instru-

ment case volume with the number of potential patients and the number of further hospitals

in the regional area around each hospital. With an instrumental variable approach it is

not possible to separate the effect of selective-referral and unobserved patient heterogeneity

2In 2011 the social court stopped the minimum-volume standard for knee-replacements due to
substantial doubts on a causal relationship between quantity and quality.
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(Hockenberry et al., 2010) but because they work in in different directions, it is possible to

determine the stronger influence. So far, there is no study available which determines the

causal effect of volume on outcome with German data. Furthermore, there is no standard

way on which level the volume-outcome relationship should be analyzed. Three of the seven

studies considering causality in volume-outcome use the hospital level as the unit of analysis

(Barker et al., 2011; Farley and Ozminkowski, 1992; Luft et al., 1987), while the remaining

four use the patient level (Hamilton and Hamilton, 1997; Norton et al., 1998; Seider et al.,

2004; Tsai et al., 2006). There is no consensus in the literature, which level is more ap-

propriate. Hence, we analyze the volume-outcome relationship on both levels and compare

results.

The remainder of this paper is organized as follows: Section 2 presents the data and

first descriptive summaries. Section 3 explains the applied methods; section 4 shows the

estimation results, followed by robustness checks and discussion in section 5 and 6. Section 7

summarizes the main findings and concludes.

2 Data

We use administrative data of all German hospitals for the year 2007. The data3 contains

the total in-patient population except psychiatric cases in Germany. It includes detailed

information on patient level like age, gender, main and secondary diagnosis, procedure codes,

admission and discharge reasons, and the zip code of residence of each patient. Furthermore,

we have hospital characteristics available e.g. ownership type, teaching status, bed capacity,

and the full address of each hospital. We geo-coded the addresses of hospitals and the

centroids of all German ZIP codes4, so we are able to calculate the distance for each patient

to the hospital and distances between hospitals using the Stata command traveltime (Ozimek

and Miles, 2011).

In this study we concentrate on patients with hip fracture. We use the diagnosis and

procedure codes based on the definition of the Federal Office for Quality Assurance (Bun-

desgeschäftsstelle Qualiätssicherung, 2008). We only include patients with a main diagnosis

3The data was used as part of the further development of the DRG-system.
4We assume that all patients with a specific ZIP code area live at the geographic centroid and

patient ZIP codes were based on the home address. Given that the median size of a ZIP code in
Germany is about 27 square kilometers, this assumption seems reasonable.
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of HIP and a matching procedure code. We exclude patients who are younger than 20 years

(n = 133) because those patients might need a special treatment compared to older patients.

Furthermore, we drop patients who have discharge reason “transfer” (n = 9,210). For those

patients we are not able to determine the outcome of the treatment. Finally, we exclude

patients in hospitals treating less than ten cases in the year 2007 (n = 338). We assume

that those hospitals do not usually treat hip fracture patients and hence do not belong to

the regular provision of hip fracture treatments. Our final sample consists of 89,203 patients

treated in 1,155 hospitals.

We use in-hospital mortality5 as outcome measure. Mortality is the most frequently used

outcome measure in volume-outcome studies for two reasons: Mortality has the advantage

that it is robust against coding differences between hospitals. This is because every hospital

records its own data and coding differences might apply between hospitals but mortality is

a clear defined outcome and hence coding differences are not possible. Furthermore, for hip

fracture patients mortality is an approved indicator by the Agency for Healthcare Research

and Quality (AHRQ) which can be used to determine quality differences between hospitals

(Agency for Healthcare Research and Quality, 2007).

Our main explanatory variable is the case volume of each hospital. It varies from 1 to

387 treated hip patients per hospital and year. We assume that patients who are treated in

hospitals with a higher case volume have a lower probability of dying in that hospital. In

our model we use the logarithm of volume (Farley and Ozminkowski, 1992; Hamilton and

Hamilton, 1997).

The outcome of a hospital’s treatment depends not only on the case volume but also on

patient risk factors. We use age, gender, admission reason (scheduled, emergency, transfer),

and the Charlson comorbidity index (CCI) as control variables. We expect that patients

with increasing age, and with more comorbidities have a higher risk to die independent of the

quality of the hospital. The CCI is a frequently used measure for the number and severity

of comorbidities of a patient (Charlson et al., 1987). Another well established method for

risk-adjustment are the Elixhauser comorbidities (Elixhauser et al., 1998). We present results

using both methods in separate analyses. We are using diagnosis codes developed by Quan

et al. (2005) who mapped the original codes from ICD-9 system to the ICD-10 system used

5Unfortunately, we are not able to track patients after discharge with the data available. Hence,
we cannot consider out-of-hospital mortality.
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in Germany. Furthermore, we add dummy variables for admission during winter time6 as

well as for admissions over weekend and public holidays. The first variable captures possible

seasonal patterns during winter time. The latter variable captures weekend and public holiday

effects due to lower staffing levels in comparison to weekdays (Bell and Redelmeier, 2001).

We further differentiate patients with a femoral neck fracture and a pertrochanteric fracture.

As another covariate we use a binary variable which indicates whether a transfer between

departments during the hospital stay has taken place.

It has been shown that, besides the case volume, other hospital characteristics like e.g.

ownership (Milcent, 2005), and teaching status (Ayanian and Weissman, 2002) can influence

the quality of a hospital. Hence we include indicator variables for the ownership type, teaching

status, university hospital, existence of an intensive care unit (ICU), and bed size of the

hospital. It is ex ante not clear how mortality might be affected. On the one hand it is possible

that these hospital characteristics have a structural effect and lower the probability of death.

On the other hand it might be they are correlated with unobserved patient characteristics. If

there is a correlation with the case volume it is possible that hospital characteristics increase

the risk of mortality.

Table 1 shows descriptive statistics of the patient and hospital characteristics. In total

89,203 patients with hip fracture were treated in 1,155 hospitals. Most of the patients were

female (75%) and on average 80 years old. 65% of the patients had one or more Charlson

comorbidities. 28% of the patients were admitted on a weekend and 33% during winter time.

Around 50% of the patients were treated in a public hospital, 56% were treated in a teaching

hospital, and only 4% were treated in a university hospital.

As we have the total in-patient population for Germany we can determine the number

of further hospitals and the number of patients in the area around each hospital. These

variables serve as our instruments (see section 3) and are similar to Seider et al. (2004). The

authors assumed that the hospital case volume depends on the number of patients which live

in the regional area of the hospital and on the number of further hospitals in the regional

area. Consequently, the case volume of a hospital should increase if more patients with a

specific condition live near the hospital and decrease the more hospitals treat this condition

in the regional area.

6This variable is 1, if the admission was in the months November, December, January, or February
and 0 otherwise.
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Table 1: Descriptive statistics of HIP

Mean S.D.

Death 0.063 0.243
ln case volume 4.520 0.566
Femoral neck fracture 0.537 0.499
Male 0.251 0.434
Age 79.564 11.290
Admission reason
Scheduled admission 0.218 0.413
Emergency 0.762 0.426
Transfer 0.020 0.141

Transfer between departments 0.271 0.444
Winter 0.331 0.471
Weekend or holiday admission 0.284 0.451
Charlson comorbidity index
0 0.357 0.479
1-2 0.433 0.496
3-4 0.153 0.360
≥ 5 0.057 0.232

Ownership
Public 0.494 0.500
Private non-profit 0.376 0.484
Private for-profit 0.131 0.337

University hospital 0.038 0.190
Teaching hospital 0.556 0.497
Beds
200 beds 0.197 0.398
201-499 beds 0.478 0.500
≥ 500 beds 0.325 0.468

ICU 0.448 0.497

Number of patients 89,203
Number of hospitals 1,155
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Seider et al. (2004) use the straight-line distances and choose different radii for the po-

tential patients and the number of further hospitals. We have calculated real travel times

by car in minutes. With travel times by car we are able to account for differences in the

infrastructure. We use the number of potential patients who live 0 to 10 minutes, 10 to 20

minutes and 20 to 30 minutes away from the hospital and the number of further hospitals

up to 15 minutes and between 15 and 30 minutes.7 Furthermore, population and hospital

density show substantial variation throughout Germany. For this reason we add indicators

for the settlement structures (SST) to our instrument (BBSR - Bundesinstitut für Bau Stadt-

und Raumforschung, 2012). These indicators differentiate county types by population den-

sity and settlement structure, i.e. they range from agglomerated regions with cities without

county membership and with more than 100,000 inhabitants (SST 1) over urbanized regions

with more than 150 inhabitants per square kilometers (SST 6) to rural regions with less than

100 inhabitants per square kilometers (SST 9). A detailed definition for all SST is given in

the Appendix (see Table A1).

Table 2 shows descriptive statistics of the instruments for whole Germany and differenti-

ated by SST. Taking the perspective of a hospital, on average two further hospitals are within

a 15 minutes’ drive. There are notable differences between the SST—the number of further

hospitals reaches from six in SST 1, over 2 hospitals in SST 2 and SST 5, to 0 hospitals in

SST 3, SST 4, SST 6-9. The number of further hospitals correlates positive with the number

of potential patients. On average, a hospital can find nearly 100 hip fracture patients within

ten minutes in Germany. In SST 1 there are already 210 patients within this radius compared

to less than 30 patients in SST 9.

7These thresholds are somewhat arbitrary. We estimated models with different thresholds but the
models stayed basically the same (see section 5).
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Table 2: Number of potential patients and number of further hospitals by SST

SST Number Number Number of Number of
of of potential patients further hospitals

patients hospitals between . . . between . . .
0 to 10 to 20 to 0 to 15 to

10 min 20 min 30 min 15 min 30 min

SST 1 22,200 247 210 767 1,195 6 21
SST 2 13,052 163 88 429 964 2 16
SST 3 6,139 78 43 150 461 0 6
SST 4 2,506 42 33 86 302 0 5
SST 5 7,568 76 121 205 259 2 4
SST 6 16,735 227 48 114 256 1 4
SST 7 8,424 143 29 50 154 0 3
SST 8 8,372 107 42 63 135 0 2
SST 9 4,207 72 27 35 84 0 1
Overall 89,203 1,155 96 318 580 2 10

3 Methods

We specify our dependent variable yih as a binary variable which indicates whether patient i

has died in hospital h. We estimate the following equation via OLS8:

yih = α0 + ln(vol′)hβA1 + x′
ihβA2 + k′

hβA3 + εih (1)

where ln(vol)h is the logarithm of the case volume, xih are patient characteristics, kh are

hospital characteristics, and εih is a random error term. Equation (1) specifies the volume-

outcome relationship as practice-makes-perfect hypotheses. The parameter βA1 is biased by

reversed causality (selective-referral) and unobserved patient heterogeneity. Hence we have

to eliminate reverse causality and unobserved heterogeneity and find an instrument which is

strongly correlated with the case volume but not with the quality of a hospital and thus with

the error term. Accordingly, we only use the variation of case volume which is uncorrelated

with the error term.

In general, patients choose hospitals which are closer to their residence (Seider et al.,

2004). This implies that the case volume of a hospital depends on the number of potential

patients ph and the number of further hospitals hh in the regional area around each hospital

which we are using as an instrument (see section 2). Conversely, the quality of a hospital

should not have an influence on the potential patients or the number of further hospitals.

8Usually models with a dependent binary variable are estimated with a logit or a probit model.
We estimate all our presented models also in a probit specification (see Appendix Table A2). The
interpretation stays the same.
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Patients’ residences can be considered as exogenous to the hospital quality, because it is

unlikely that patients choose residency on the basis of quality of care in a nearby hospital.

Furthermore, other hospital locations can be viewed as exogenous, because a hospital closure

or opening is a rare event.9

Furthermore, the instruments must not be correlated with unobserved patient hetero-

geneity. We follow Gowrisankaran and Town (1999) by assuming that unobserved severity

of illnesses is uniformly distributed in the population, i.e. the number of potential patients

should not be influenced by unobserved heterogeneity.

We use a two stage least square (2SLS) estimation to eliminate selective-referral and

unobserved severity in equation (1) and focus only on practice-makes-perfect. We specify the

first stage equation (2), where the logarithm of the case volume is regressed on all covariates of

equation (1) and the instruments ph and hh to get ̂ln(vol)ih. In the second stage equation (3)

the fitted values of ln(vol)ih from equationn (2) are used to model the causal effect of volume

on outcome.

ln(vol′)ih = α0 + x′
ihπA1 + k′

hπA2 + p′
hγA1 + h′

hγA2 + s′hγA3 + υih (2)

yih = α0 + ̂ln(vol′)ihβB1 + x′
ihβB2 + k′

hβB3 + νih (3)

The second stage equation (3) differs from the structural model (1) by including fitted

values of ̂ln(vol)ih instead of ln(vol)ih. As outlined, we assume βA1 in equation (1) to be

biased by selective-referral. Hence, after eliminating any effects of selective-referral, a decline

in the case volume effect should be observable. However, if unobserved patient heterogeneity

is another main driving factor, an increase of the volume coefficient in equation (3) is possible.

With the instrumental variable approach it is not possible to separate the effect the selective-

referral bias from the unobserved heterogeneity bias (Hockenberry et al., 2010) but, because

the two biases work in different directions, it is possible to determine the stronger influence.

9It is possible to argue that we are not on the hospital level, but on department level for each
hospital as we analyze one condition only. Hence, it may be that quality of hospital i for a specific
condition like hip fractures influences the number of further hospitals treating the same condition in
the regional area. Some hospitals might be driven out of the market due to outstanding quality of
another hospital, i.e. the number of further hospitals treating the same condition might be endogenous
as well. However, we think even this is a rather rare event. Nevertheless, as a robustness check we use
the number of any further hospital in the regional area of hospital i as instrument regardless whether
they treat hip fracture patients or not. The results do not change.
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4 Results

We find a strong negative effect of case volume on outcomes (p < 0.01) (Table 3). Patients

who are treated in hospitals with a higher case volume have a lower probability of death. Our

variables adjusting for patient characteristics show the expected sign. Older patients have a

higher risk do die, as have male patients. The probability of death increases also for patients

with more comorbidities compared to patients who have no comorbidities. The dummies

for the CCI show a steady increase of this risk, i.e. the patients with a CCI of zero have the

lowest probability of death, followed by patients with one or two comorbidities and so on. The

differences between two adjoining Charlson categories are significant (p < 0.05). Patients who

are admitted during winter time have also a significant higher mortality risk in comparison

to patients who are admitted during the other months. We cannot identify a significant

weekend effect. Being transferred from another hospital increases the probability of death

but being admitted for emergency has no significant effect on mortality compared to patients

who have a scheduled admission. Patients with a femoral neck fracture have a higher risk

of death compared to patients with a pertrochanteric fracture. Moreover, patients who are

transferred during their hospital stay have a higher risk to die compared to patients who stay

at the same department. The ownership of a hospital has no influence on mortality. Patients

who are treated in a teaching hospital or in hospitals with more beds have a higher probability

of death. Patients who are treated in hospitals with an ICU have a lower probability of death

compared to patients without an ICU. These results are in line with prior research (Hentschker

and Mennicken, 2012).

However, the OLS coefficient does only show a correlation between volume and outcome

rather than a causal effect and hence, we turn to the IV estimation results: The first stage

regression (Table A3 in the Appendix) shows that the instruments are separately statistically

significant (p < 0.01) and have also the sign we expect: The more patients with hip fracture

are in the regional area of hospital i, the higher the case volume is and the more hospitals are

around the regional area of hospital i, the lower the case volume of hospital i. The instruments

are also jointly significant with an F-test of 19.7 which is above the general accepted value

of 10 (Stock et al., 2002) and hence, problems with weak instruments do not appear in our

case.10 We also apply a test for endogeneity. We have to reject the null hypothesis that case

10We obtain even an F-value of 42 if we do not control for the county types in our first stage

12



volume is exogenous at the 5% level and conclude that IV regression is necessary.

The IV coefficient (Table 3) reflects the plain effect of volume on outcome. The coefficient

is 1.5 times higher than the OLS coefficient and still highly significant.11 In quantitative

terms, the predicted probability of death decreases by 0.00025 percentage points for every one

percentage increase in case volume for every patient. Our patient and hospital characteristics

besides case volume stay basically the same in the IV model compared to the OLS model.

Table 3: Regression results

OLS IV
Coefficient S.E. Coefficient S.E.

ln case volume −0.0169∗∗∗ (0.0025) −0.0252∗∗∗ (0.0050)
Age 0.0025∗∗∗ (0.0001) 0.0025∗∗∗ (0.0001)
Male 0.0367∗∗∗ (0.0022) 0.0367∗∗∗ (0.0022)
Admission reason: emergency −0.0013 (0.0021) −0.0012 (0.0021)

transfer 0.0284∗∗∗ (0.0077) 0.0280∗∗∗ (0.0076)
Femoral neck fracture 0.0034∗∗ (0.0016) 0.0032∗∗ (0.0016)
Transfer between departments 0.0401∗∗∗ (0.0032) 0.0402∗∗∗ (0.0032)
Winter 0.0053∗∗∗ (0.0017) 0.0053∗∗∗ (0.0017)
Weekend 0.0012 (0.0017) 0.0012 (0.0017)
CCI: 1-2 0.0227∗∗∗ (0.0015) 0.0227∗∗∗ (0.0015)

3-4 0.0662∗∗∗ (0.0030) 0.0663∗∗∗ (0.0030)
≥ 5 0.1369∗∗∗ (0.0058) 0.1368∗∗∗ (0.0058)

Ownership: private not-for-profit −0.0006 (0.0024) −0.0018 (0.0025)
private for-profit 0.0017 (0.0035) 0.0007 (0.0036)

University hospital 0.0068 (0.0072) 0.0048 (0.0071)
Teaching hospital 0.0054∗∗ (0.0026) 0.0074∗∗∗ (0.0028)
Beds: 201-499 0.0081∗∗∗ (0.0031) 0.0114∗∗∗ (0.0036)

≥ 500 0.0107∗∗ (0.0042) 0.0163∗∗∗ (0.0051)
ICU −0.0150∗∗∗ (0.0023) −0.0143∗∗∗ (0.0023)
Constant −0.1166∗∗∗ (0.0119) −0.0842∗∗∗ (0.0204)

Observations 89,203 89,203
Number of hospitals 1,155 1,155

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01; cluster-robust standard errors
computed.

5 Robustness checks

When constructing the instruments we used driving time by car as the measure of distance, i.e.

we take geographic and infrastructural differences into account. This point is often neglected

(e.g. Seider et al., 2004; Tay, 1999), but is especially important for more rural areas because

regression because the F-test is sensitive for the number of variables.
11It has been shown that the 2SLS estimator is consistent but biased and that the bias is increasing

with the number of instruments (Angrist and Pischke, 2009). An alternative is the limited information
maximum likelihood (LIML) estimator which reduces this bias. In our case the results stay the same
and we go further with the 2SLS estimation results.
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straight-line measurements would underestimate access in regions with less comprehensive

infrastructure. Therefore, as a robustness check, we also considered street kilometers and

straight-lines as further measures of distance. Hence, we re-estimated equations (1) - (3)

using instruments derived from street kilometers and straight-line distances. Furthermore,

we varied the arbitrarily set distance thresholds of the instruments discussed in section (2).

In Table (4) we show main statistics from equations (1) - (3) to assess how results depend on

the choice and the thresholds of the instruments.

The coefficient of case volume shows moderate differences in second stage regression, i.e.

the coefficient with straight-line distance is almost 25 % larger than the coefficient with travel

time. Furthermore, while the F-test is always above the accepted threshold 10, the respective

p-value for testing endogeneity of volume shows substantial variation. If we take a strict

threshold of 5% for statistical significance as in Gaynor et al. (2005), we would conclude that

volume is exogenous for specifications (1), (4) and (5) when using the Charlson comorbidity

index for risk-adjustment. The same specifications using Elixhauser diagnoses tend to have

lower p-values. The specification with straight-line distances as instruments always leads to

the conclusion of an endogeneity concern.

As summarized in section 1 it is possible to analyze the volume-outcome relationship

on the patient as well as on the hospital level. In order to compare results between both

levels of analyzes, we estimate the former regressions on the hospital level. To do so, we

need to aggregate the data set, i.e. particularly the patient characteristics, on the hospital

level. Therefore we estimate equation (1) without hospital characteristics and without case

volume using logistic regression (equation (4)). From this equation we calculate the predicted

probability of death for each individual and accumulate them per hospital to obtain the ex-

pected deaths per hospital. The dependent variable on the hospital level is then the observed

expected ratio (O/E ratio), which is above one if the hospital has more deaths than expected

(poor quality) or below one if the hospital has fewer deaths than expected (good quality).

We formulate our estimation models analogue to the previous approach with the basis OLS

regression (equation (5)) and the first stage and second stage equation, equations (6) and (7),
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respectively.

yi = α0 + x′
iβC1 + µi (4)

O/Eh = α0 + ln(vol′)hβD1 + k′
hβD2 + ηh (5)

ln(vol)h = α0 + k′
hπB2 + p′

hγB1 + h′
hγB2 + s′hγB3 + λh (6)

O/Eh = α0 + ̂ln(vol′)hβE1 + k′
hβE2 + κh (7)

Table 5 shows an extract from our main results.12 Basically the results stay the same.

The case volume coefficients show the same sign and direction as in the patient level analysis.

The size of the coefficient differs, but this is because of different dependent variables and

hence different interpretation levels. We also estimate the above regressions and exclude

every hospital which has less than one expected death. This is recommended for statistical

reasons (Ash et al., 2003) and again, results do not change.

Table 5: Estimation results on hospital level

Charlson Elixhauser

ln case volume
OLS coefficent (S.E.) -0.1586*** (-0.0398) -0.1252*** (-0.039)
IV coefficient (S.E.) -0.4695*** (-0.1052) -0.4239*** (-0.103)

Estimation with hospital characteristics Yes Yes
F-test (instrument relevance) 15.304 15.304
Test of endogeneity (p-value) 0.001 0.001
Observations 1,155 1,155

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01.

6 Discussion

The volume-outcome relationship can be explained by two hypotheses which have reverse

causality directions: the practice-makes-perfect hypothesis and the selective-referral hypoth-

esis. The first hypothesis states that through learning effects hospitals obtain a good quality.

The second hypothesis asserts that quality is the reason for a high case volume. To determine

only the effect of practice-makes-perfect it is necessary to exclude selective-referral with an

instrumental variable approach. After exclusion a decline in the volume coefficient is expected

because the effect of having a high case volume due to a good quality is excluded. But in

12Table A5 in the Appendix shows descriptive statistics on the hospital level.
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modeling the volume-outcome relationship also the aspect of unobserved patient heterogene-

ity has to be considered. If we cannot sufficiently control for patient characteristics, the error

term is likely to be correlated with quality and case volume, i.e. unobserved sicker patients

choose or are referred to hospitals providing better quality. These unobserved sicker patients

have also a higher risk of death. Hence, excluding unobserved heterogeneity would yield to

an increase in the case volume coefficient. Following these arguments the pure exclusion of

selective-referral yields to a decline in the case volume coefficient, but the combination of

selective-referral with unobserved patient heterogeneity could yield to an increase in the case

volume coefficient if the latter effect exceeds the selective-referral effect. This is what we

observe in the presented estimations. The interpretation stays the same when we estimate

the models on the hospital level. Hence, at least in this analysis it does not matter if patient

or hospital level data is used.

There are some limitations regarding the data. We have only a cross section available

and, therefore, can only show differences between hospitals. With panel data and enough

variation in case volume, it would have been possible to show effects within hospitals and rule

out unobserved heterogeneity which is constant over time with fixed effects. However, the

included hospital characteristics are predominantly significant and should therefore capture

these effects. Furthermore, we have no information about staffing levels and accordingly, the

case numbers of involved surgeons are missing. Hence, we can only use the case volume per

hospital. We argue that for obtaining a good quality in a hospital the team process is the

key factor.

7 Conclusion

In this paper we find further evidence for a causal relationship from volume to outcome.

We are the first to provide evidence for the practice-makes-perfect hypothesis using German

data. After eliminating the effects of selective-referral in the IV regression, we observe an

increase of about 50% in the coefficient of volume. These results are in line with Seider et al.

(2004) and accordingly Gaynor et al. (2005), who also present results with an increase in

the volume coefficient after using IV. However, both did not give any attention to this result

and only stated that the coefficient of volume should decrease when eliminating selective-
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referral. Gaynor et al. (2005) rejected the null hypothesis of no differences between OLS

and IV regression with a p-value of 0.06 and concluded that volume is exogenous. However,

results in Table 4 show that the p-value is sensitive to the specific type of instrument used.

Hence, we recommend a more conservative approach of using a threshold of 0.10 for testing.

Based on the theoretical outline, the coefficient of volume should decrease after eliminating

selective-referral effects. So far, the international literature is lacking explanations for the

observed, but counterintuitive increase of the volume effect when controlling for selective-

referral. We argue that this downward bias of the OLS coefficient is caused by unobserved

patient heterogeneity.

We could show that the effect of volume is even stronger than in normal OLS regressions.

Hence, there is a possibility that minimum volume standards can achieve the goal of qual-

ity improvement in the hospital sector, at least for the treatment of hip fracture patients.

But before its introduction more analyzes are needed for deriving adequate thresholds and

assessing changes in access to hospital services in different regions.
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A Appendix

Table A1: Definition of settlement structures (SST)

Abbr. Contextual type Differentiated county type Characteristics

SST 1 Agglomerated regions Core cities Cities without county member-
ship > 100,000 inhabitants

SST 2 Very densely populated counties Counties with more than 300
inhabitants/km2

SST 3 Densely populated counties Counties with more than 150
inhabitants/km2

SST 4 Rural counties Counties with less than 150
inhabitants/km2

SST 5 Urbanized regions Core cities Cities without county member-
ship > 100,000 inhabitants

SST 6 Denesely populated counties Counties with more than 150
inhabitants/km2

SST 7 Rural counties Counties with less than 150
inhabitants/km2

SST 8 Rural regions Densely populated rural counties Counties with more than 100
inhabitants/km2

SST 9 Sparsely populated rural counties Counties with less than 100
inhabitants/km2

Source: BBSR - Bundesinstitut für Bau Stadt- und Raumforschung (2012).
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Table A2: Probit Model and IV-Probit

Probit IV-Probit
Coefficient S.E. Coefficient S.E.

ln case volume −0.1494∗∗∗ (0.0217) −0.2315∗∗∗ (0.0465)
Age 0.0320∗∗∗ (0.0009) 0.0321∗∗∗ (0.0009)
Male 0.3071∗∗∗ (0.0167) 0.3071∗∗∗ (0.0166)
Admission reason: emergency −0.0074 (0.0187) −0.0064 (0.0187)

transfer 0.2246∗∗∗ (0.0548) 0.2206∗∗∗ (0.0539)
Femoral neck fracture 0.0202 (0.0140) 0.0181 (0.0141)
Transfer between departments 0.3331∗∗∗ (0.0227) 0.3342∗∗∗ (0.0224)
Winter 0.0435∗∗∗ (0.0148) 0.0425∗∗∗ (0.0148)
Weekend 0.0065 (0.0153) 0.0069 (0.0153)
CCI: 1-2 0.3532∗∗∗ (0.0198) 0.3530∗∗∗ (0.0198)

3-4 0.6375∗∗∗ (0.0233) 0.6375∗∗∗ (0.0232)
≥ 5 0.9705∗∗∗ (0.0288) 0.9689∗∗∗ (0.0288)

Ownership: private not-for-profit −0.0119 (0.0209) −0.0246 (0.0219)
private for-profit 0.0130 (0.0304) 0.0029 (0.0315)

University hospital 0.0489 (0.0651) 0.0275 (0.0643)
Teaching hospital 0.0387∗ (0.0227) 0.0588∗∗ (0.0244)
Beds: 201-499 0.0710∗∗∗ (0.0273) 0.1035∗∗∗ (0.0318)

≥ 500 0.1003∗∗∗ (0.0370) 0.1548∗∗∗ (0.0453)
ICU −0.1553∗∗∗ (0.0215) −0.1471∗∗∗ (0.0218)
Constant −4.1205∗∗∗ (0.1200) −3.7961∗∗∗ (0.2023)

Observations 89,203 89,203
Number of hospitals 1,155 1,155

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01; cluster-robust standard errors
computed.
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Table A3: First stage regression explaining case volume

IV
Coefficient S.E.

pot pat 0to10 0.0027∗∗∗ (0.0003)
pot pat 10to20 0.0006∗∗∗ (0.0001)
pot pat 20to30 0.0003∗∗∗ (0.0001)
hos 0to15 −0.1154∗∗∗ (0.0094)
hos 15to30 −0.0216∗∗∗ (0.0044)
County type 2 0.0114 (0.0518)
County type 3 0.0344 (0.0625)
County type 4 −0.1689∗∗ (0.0766)
County type 5 0.1579∗∗ (0.0783)
County type 6 0.0714 (0.0631)
County type 7 −0.0538 (0.0674)
County type 8 0.0902 (0.0664)
County type 9 −0.0534 (0.0791)
Age 0.0006∗∗∗ (0.0002)
Male 0.0007 (0.0033)
Admission reason: emergency 0.0199 (0.0138)

transfer −0.0234 (0.0332)
Femoral neck fracture −0.0224∗∗∗ (0.0036)
Transfer between departments 0.0256 (0.0163)
Winter −0.0067∗∗ (0.0032)
Weekend 0.0043 (0.0031)
CCI: 1-2 0.0041 (0.0048)

3-4 0.0037 (0.0075)
≥ 5 −0.0053 (0.0100)

Ownership: private not-for-profit −0.1134∗∗∗ (0.0282)
private for-profit −0.1515∗∗∗ (0.0410)
University hospital −0.2108∗∗ (0.0901)
Teaching hospital 0.1649∗∗∗ (0.0306)
Beds: 201-499 0.3722∗∗∗ (0.0366)

≥ 500 0.6004∗∗∗ (0.0496)
ICU 0.0066 (0.0311)
Constant 3.8605∗∗∗ (0.0732)

Observations 89,203
Number of hospitals 1,155

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01;
cluster-robust standard errors computed.
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Table A4: Reduced form regression

IV
Coefficient S.E.

pot pat 0to10 −0.0001∗∗∗ (0.0000)
pot pat 10to20 −0.0000∗∗ (0.0000)
pot pat 20to30 −0.0000∗∗ (0.0000)
hos 0to15 0.0021∗∗∗ (0.0008)
hos 15to30 0.0012∗∗∗ (0.0004)
County type 2 −0.0045 (0.0046)
County type 3 0.0001 (0.0061)
County type 4 0.0076 (0.0086)
County type 5 −0.0034 (0.0058)
County type 6 −0.0095∗ (0.0056)
County type 7 −0.0060 (0.0061)
County type 8 −0.0032 (0.0059)
County type 9 −0.0042 (0.0067)
Age 0.0025∗∗∗ (0.0001)
Male 0.0367∗∗∗ (0.0022)
Admission reason: emergency −0.0021 (0.0022)

transfer 0.0279∗∗∗ (0.0078)
Femoral neck fracture 0.0037∗∗ (0.0016)
Transfer between departments 0.0401∗∗∗ (0.0033)
Winter 0.0054∗∗∗ (0.0017)
Weekend 0.0011 (0.0017)
CCI: 1-2 0.0225∗∗∗ (0.0015)

3-4 0.0661∗∗∗ (0.0030)
≥5 0.1369∗∗∗ (0.0058)

Ownership: private not-for-profit 0.0003 (0.0026)
private for-profit 0.0045 (0.0035)

University hospital 0.0101 (0.0075)
Teaching hospital 0.0035 (0.0026)
Beds: 201-499 0.0008 (0.0029)

≥ 500 −0.0007 (0.0039)
ICU −0.0142∗∗∗ (0.0025)
Constant −0.1768∗∗∗ (0.0084)

Observations 89,203
Number of hospitals 1,155

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01;
cluster-robust standard errors computed.
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Table A5: Descriptive Statistics on hospital level

Mean S.D.

Oberved-expected ratio 1.110 0.727
ln case volume 4.157 0.644
Ownership
Public 0.437 0.496
Private non-profit 0.421 0.494
Private for-profit 0.142 0.349

University hospital 0.033 0.178
Teaching hospital 0.423 0.494
Beds
200 beds 0.322 0.467
201-499 beds 0.466 0.499
≥ 500 beds 0.212 0.409

ICU 0.366 0.482

Number of hospitals 1,155
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