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Abstract

Mixed-data sampling (MIDAS) regressions allow to estimate dynamic equations

that explain a low-frequency variable by high-frequency variables and their lags. To

account for temporal instabilities in this relationship, this paper discusses an exten-

sion to MIDAS with time-varying parameters, which follow random-walk processes.

The non-linear functional forms in the MIDAS regression necessitate the use of non-

linear filtering techniques. In this paper, the Particle filter is used to estimate the

time-varying parameters in the model. Simulations with time-varying DGPs help

to assess the properties of the estimation approach. A real-time application to the

relationship between daily corporate bond spreads and quarterly GDP growth in

the Euro area shows that the leading indicator property of the spreads ahead of

GDP has diminished during the recent crisis. During that period, corporate bond

spreads rather seem to be coincident indicators of GDP growth.

JEL Classification Codes: C51, C53, E37

Keywords: Mixed-data sampling, time-varying parameters, Particle filter, cor-

porate bond spreads, real activity

1 Introduction

Mixed-data sampling (MIDAS) regressions allow to directly estimate dynamic equations

with data sampled at different frequencies. If the differences in sampling frequencies are
∗The opinions expressed in this paper are those of the authors and do not necessarily reflect the views
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huge, functional lag polynomials are employed in order to keep the number of parameters

to be estimated small, see Ghysels, Sinko, and Valkanov (2007). MIDAS is basically

a reduced form single-equation approach and complements more complicated dynamic

models to be estimated in state-space form, see the discussion in Bai, Ghysels and Wright

(2013).

Recent applications of MIDAS regressions can be found in the financial literature, see

for example Ghysels, Rubia, and Valkanov (2009) as well a Engle, Ghysels, and Sohn

(2013) in the context of volatility forecasting and the link between macro fundamentals

and volatility. In the macroeconomic literature, applications are often related to forecast-

ing, see the recent contributions by Monteforte and Moretti (2012), Andreou, Ghysels,

and Kourtellos (2013), and Kuzin, Marcellino, and Schumacher (2011, 2013), as well as

the surveys in Armesto, Engemann, and Owyang (2010), and Andreou, Ghysels, and

Kourtellos (2011).

A general diffi culty in macro applications potentially suitable for the MIDAS approach

is the inherent temporal instability in the relationship between GDP and many indica-

tors. Many papers in the literature document that business cycle indicators typically

possess information content over a certain time period, but have low predictive power in

other periods, see, amongst others, Stock and Watson (2003, 2004), Banerjee and Mar-

cellino (2006), D’Agostino, Giannone, and Surico (2006), Campbell (2007), and Kuzin,

Marcellino, and Schumacher (2013).

To account for temporal instability, this paper extends the MIDAS approach to ac-

count for time-varying parameters. In particular, we let the model parameters evolve as

random walks. Below, the approach will be called time-varying parameter (TVP-) MI-

DAS. In the literature, we can find at least three related approaches: Carriero, Clark, and

Marcellino (2012) estimate a Bayesian mixed-frequency regression model with random-

walk parameters. Compared to their work based on Bayesian shrinkage priors on the

high-frequency lags, this paper is based on MIDAS weighting, which introduces a non-

linearity in the equation. Galvao (2013) proposes smooth transition (ST-) MIDAS, where

a transition function governs the change in some parameters of the MIDAS regression.

Guerin and Marcellino (2013) propose Markov-Switching (MS-) MIDAS. Both approaches

allow for recurrent switches between a small number of regimes over time. In contrast,

the random-walk specification of the model parameters used in this paper implies that

time variation does not occur around regimes and that parameters evolve more freely, see

the general discussion of pros and cons of random-walk time variation in Primiceri (2005).

This approach might be helpful in case recurrent regimes cannot be identified properly in

the data, or if unprecedented one-time events lead to structural breaks. Another motiva-

tion of the random-walk time variation might come from a limited availability of data, in

particular, short time series, which do not contain enough information to disentangle re-

current regimes. The empirical exercise below will face this diffi culty. In practice, we can

expect that the performance of the alternative approaches will depend on the data and the
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kind of temporal instabilities in it. For example, in times of a crisis that evolves differently

as crises in the past, one might favour more general time variation. With respect to the

current crisis in many industrialized countries since 2008, some observers regard it as a

"This time is different" (Reinhard and Rogoff, 2011) case, see also Ng and Wright (2013).

On the other hand, typical business cycle regimes might be better captured with the MS-

or ST-MIDAS. Following these arguments, the different approaches might be regarded as

complementary tools. Compared to the standard MIDAS, the TVP variant could be used

as a tool to check whether the implicit assumption of temporal stability in the standard

MIDAS regression is met or not.

To estimate TVP-MIDAS, we have to account for the non-linearity of the model.

Standard MIDAS is estimated by non-linear least squares (NLS), which is not applicable

in the presence of non-linear functional forms with time variation. Instead, we cast the

MIDAS equation and equations for time variation in the parameters together in state-

space form and estimate the states by the Particle filter. Since the TVP-MIDAS has

not been employed in the literature before, we provide simulation results that assess the

properties of the filter under time-varying data-generating processes (DGPs).

To illustrate the properties of TVP-MIDAS further, we carry out an empirical exercise

for the Euro area, where we investigate the leading properties of corporate bond spreads for

GDP growth. In the recent literature, corporate bond spreads, defined as the difference in

yields between various corporate bonds and government securities of comparable maturity,

are regarded as good leading indicators of economic activity. Recent evidence for the US

by Gilchrist, Yankov, and Zakrajsek (2009) and Faust, Gilchrist, Wright, and Zakrajsek

(2013) indicates that corporate bond spreads contain substantial predictive power for real

economic activity. Andreou et al. (2013) also find similar evidence for the US, taking into

account the high-frequency nature of the spreads in time-constant MIDAS regressions.

Based on different methods, Ng and Wright (2013) and Ng (2013) report declines in the

predictive performance of spreads during the recent crisis in the US. For the Euro area,

there is also increased interest in the information content of corporate bond spreads, see

Buchmann (2011), Nicoletti, Passaro (2012), and Gilchrist, Mojon (2013). However, the

data availability is in general worse in the Euro area compared to the US, as only short

time series for corporate spreads are available. We expand on the existing Euro area

results and discuss the time-varying information content of corporate bond spreads for

GDP growth.

The paper proceeds as follows: In Section 2, time-varying parameter MIDAS is in-

troduced. Section 3 discusses how we can assess the leading properties of high-frequency

indicators in MIDAS. Section 4 discusses the estimation with the Particle filter, and Sec-

tion 5 contains a small simulation exercise to evaluate how well time-varying DGPs can be

estimated from simulated data. Section 5 contains the empirical application to corporate

bond spreads and GDP growth in the Euro area. Section 6 concludes.
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2 Time-varying parameter MIDAS regressions

The time-varying parameter approach expands on the standard MIDAS regression by

Ghysels et al. (2007) based on the exponential Almon lag with normalized weights, see

Marcellino and Guerin (2013) and Galvao (2013) for other MIDAS variants with time

variation. In the MIDAS regression, we explain the low-frequency variable y by the high-

frequency spread sp. If we assume random-walk time variation in MIDAS parameters, we

obtain the following set of equations:

yt = γ + βt

K∑
k=0

c(k,K, θ1,t, θ2,t)L
j/msp

(m)
t + εt (1)

c(k,K, θ1,t, θ2,t) =
exp(θ1,tk

1 + θ2,tk
2)∑K

j=0 exp(θ1,tj
1 + θ2,tj2)

(2)

θi,t = θi,t−1 + εi,t for i = 1, 2 with θ2,t < 0 (3)

βt = βt−1 + εβ,t (4)

with K lags of the high-frequency variable sp(m)t , which is is sampled m times more often

than yt. Time index t refers to the available time periods of the low-frequency variable

y. The difference in sampling frequencies m between y and sp depends on the data at

hand. For example, Andreou et al. (2013) and Galvao (2013) mix quarterly GDP growth

with daily data, which leads to a mixed-frequency problem with m = 60 times more daily

observations of sp(60)t than yt. Equation (1) relates yt in period t to high-frequency lags

of sp(60)t . These lags of the high-frequency variable are denoted by L1/ms(m)t , where the

lag operator is defined as L1/msp(m)t = sp
(m)
t−1/m. Thus, high-frequency time periods are

fractions of low-frequency periods t, see Ghysels et al. (2007).

In (1), γ is a constant, and βt is a regression coeffi cient, which is multiplied by weighted

lags of the high-frequency variable sp(m)t . The weights (2) are defined as the exponential

Almon lag weight function c(k,K, θ1,t, θ2,t) where k = 0, . . . , K, see Ghysels et al. (2007).

Furthermore, they are normalized to sum to one. The parsimonious exponential Almon

specification c(k,K, θ1,t, θ2,t) in (2) allows to approximate K + 1 lag coeffi cients by the

chosen parametric form with two shape parameters θ1,t and θ2,t. Following (3), the shape

parameters evolve as random-walks as well as the regression coeffi cient βt in equation (4).

The stability of the weight function is ensured by the negative of the leading coeffi cient,

in particular, the restriction θ2,t < 0, see Lütkepohl (1981). To impose this restriction, we

estimate the model with a newly defined variable θ∗2,t by using θ2,t = − exp(θ∗2,t) in (1).
The additional equation θ∗2,t = θ∗2,t−1 + ε2,t replaces the equation for θ2,t in (3), see Judge
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et al. (1985):

c(k,K, θ1,t, θ
∗
2,t) =

exp(θ1,tk
1 − exp(θ∗2,t)k2)∑K

j=0 exp(θ1,tj
1 − exp(θ∗2,t)j2)

(5)

θ1,t = θ1,t−1 + ε1,t , θ
∗
2,t = θ∗2,t−1 + ε2,t (6)

The exponential Almon function is known to be quite flexible and can take various shapes

even with two parameters, see Ghysels et al. (2007). By construction of c(k,K, θ1,t, θ
∗
2,t),

the weights sum to one. If we leave this constraint aside, the weights are equal to the

exponential Almon weights that have been introduced to the distributed lag literature by

Lütkepohl (1981).1

The errors εt, εβ,t, ε1,t, and ε2,t are assumed to be mutually independent and follow

normal distributions with mean zero and variance σ2ε and σ
2
β, σ

2
1, and σ

2
2, respectively.

Potential extensions to the TVP-MIDAS model include autoregressive terms as in

Clements and Galvao (2008) or Andreou et al. (2013). Further refinements include

stochastic volatility, which can be introduced to MIDAS as in Carriero et al. (2012).

3 Leading indicators in MIDAS regressions

The main use of TVP-MIDAS below will be the empirical assessment of the leading

properties of business cycle indicators. For this purpose, we need a definition of leading

indicators. A useful definition is provided in Box and Jenkins (1976): If a lag of a predictor

sp receives non-zero weight in a regression, changes in y will be anticipated by changes in

sp, and we can call spt a leading indicator. Related to the MIDAS equation (1) above,

we can investigate the importance of the high-frequency lags Lk/msp(m)t for k = 0, . . . , K.

Typically a graphical inspection of the estimated weights helps to assess, which weights

receive a lot of weight and which don’t.

In addition, as a summary statistic of the leading properties in the MIDAS equation

(1) above, we can compute the high-frequency lead of the indicator, which receives the

maximum weight according to

∂c(k,K, θ1,t, θ
∗
2,t)

∂k
= 0⇔ kmax c,t = −

θ1,t
2(− exp(θ∗2,t))

. (7)

Due to the unimodal shape with two coeffi cients θ1,t and θ
∗
2,t, we generally obtain a unique

solution.2 The lead with maximum weight kmax c,t is measured in terms of high-frequency

lags, for example, days in the case of m = 60 in case we mix quarterly and daily data.

1Other weighting functions include Beta weights in Ghysels et al. (2007), non-exponential Almon in
Drechsel and Scheufele (2013), penalized changes in weights, see Breitung, Elengikal, and Roling (2013),
as well as unrestricted weights in Foroni, Marcellino, and Schumacher (2013).

2If both θ1,t and θ2,t converge to zero, we obtain equal weights and cannot identify a lead with
maximum weight. This flat-weight case is discussed in Andreou et al. (2010).
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Due to the time-varying nature of the model in (1), (5), (6) and (4), kmax c,t can change

over time. Furthermore, we can obtain positive and negative signs of kmax c,t. A positive

sign implies a lead of the indicator ahead of GDP growth, whereas a negative sign implies

a lagging indicator.3 A value of kmax c,t = 0 implies that the indicator is rather coincident.

Note that the computation of the lead with maximum weight kmax c,t only involves the

weight function c(k,K, θ1,t, θ
∗
2,t). A significant effect of a lag of s on y is only established,

if the regression coeffi cient βt is significantly different from zero, which has to be tested.

Compared to regressions based on time-aggregated data, for example quarterly data

only, the MIDAS regression allows a more detailed assessment of the leading indicator.

The lead kmax c,t represents a high-frequency statistic, whereas the lead which attains max-

imum weight in a time-aggregated regression is a low-frequency (e.g. quarterly) statistic.

Thus, we have the opportunity to assess leading behavior of indicators more detailed

with MIDAS than with time-aggregated regressions, depending on the uncertainty of the

estimates.

4 Estimation by the Particle filter

The TVP-MIDAS in equations (1), (5), (6) and (4) can be cast in a non-linear state-space

form with the three-dimensional state vector (βt, θ1,t, θ
∗
2,t). The transition equation in this

model is fully linear. Only the observation equation is non-linear in θ1,t and θ
∗
2,t due to

the exponential Almon lags, see equation (1).

Whereas Linear TVP models are typically estimated using the standard Kalman filter,

we need another solution for the non-linear TVP-MIDAS. In the applications below, I

will make use of the Particle filter by Liu and West (2001). The Particle filter is a

Monte Carlo method for nonlinear filtering, which is based on sequential versions of the

importance sampling paradigm. This technique amounts to simulating samples of states

under an proposal distribution and then approximating the target distributions, which

usually impossible to sample from, by weighting these samples using appropriately defined

importance weights.

The propagation of the samples makes use of the state-space dynamics in the models,

and the weights for the particles are updated against new incoming data. In this the sense,

these algorithms can be implemented sequentially. By defining appropriately a sequence

of proposal distributions, it is not necessary to regenerate the population of samples from

scratch upon the arrival of each new observation.

In this literature, Liu and West (2001) propose to sequentially resample and propagate

particles associated with the states as well as model parameters simultaneously. In our

case, we have to estimate the variances of the shocks σ2ε and σ
2
β, σ

2
1, and σ

2
2 as well as the

3Note that kmax c,t can obtain negative values despite the fact that the MIDAS regression only considers
k = 0, . . . ,K lags of the indicator on the right-hand side. The reason is that kmax c,t is obtained from an
analytical solution based on the estimated θ1 and θ2.
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constant. Estimation of these parameters proceeds in a sequential way in a similar way

as the states. A further attraction of the filter is its generality as it can be implemented

in any state-space model, see Lopes and Tsay (2011) for a review. The details of the

algorithm are described in the Appendix.

Note that the state-space system is non-linear in the states θ1,t and θ
∗
2,t. Thus, it is not

conditionally linear and necessitates the use of approximate filters. However, the Particle

filter could be made more effi cient, if the linear state variables are marginalized. This so-

called Rao-Blackwellization can be implemented by running the standard Kalman filter

to the linear subsystem conditional on the linear states. In the TVP-MIDAS framework

above, this extension is left for future work.

5 Simulations

To get an impression of the quantitative properties of the Particle filter and TVP-MIDAS,

some simulation results are provided. In particular, we want to investigate to what extent

time variation in the DGP can be detected by the estimated model. We simulate R = 500

datasets based on DGPs defined in the TVP-MIDAS equations above for yt with T =

200. The daily indicator st follows an AR(1) process with intermediate autocorrelation

according to

spt = 0.5spt−1/m +
√
0.5εsp,t (8)

where εsp,t is N(0, 1) distributed. We assume m = 60, thus mimicking mixed-data sam-

pling of quarterly and daily data with periods t = 1/60, 2/60, . . . , T − 1/60, T in equation
(8).

The endogenous variable yt is simulated for periods t = 1, 2, 3, . . . , T as defined in

(1), (5), (6) and (4). For the parameters of TVP-MIDAS, we consider different time-

varying weight shapes through θ1,t and θ
∗
2,t and time-varying information contents of the

indicator spt for yt through βt. In the weight function, the maximum lag order is set to

K = 240 days. To define alternative shapes of the weight function and different regression

coeffi cients, we specify two different DGPs:

1. DGP 1: In this DGP, the coeffi cient βt is decreasing over time, implying that the

information content of the indicator for yt goes down over time given normalized

weights. In detail, we define

βt =


0.5 for t = 1, . . . , T/4

−0.003 + βt−1 for t = T/4 + 1, . . . , T × 3/4
0.2 for t = T × 3/4 + 1, . . . , T

(9)

With respect to the shape, we keep the θ1,t and θ
∗
2,t fixed over time. The weight

function has a hump shape weights pattern with a maximum at lag k = 200 days

obtained from θ1,t = 0.133 and θ
∗
2,t = −0.00033 for all t = 1, . . . , T . The resulting
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shape of the weight function is shown in the bottom panels of Figures 1 and 2 below

in green color.

2. DGP 2: The coeffi cient βt is again decreasing over time as in DGP 1. In this DGP,

however, the shape of the weights also change over time. In particular, we simulate

that the lead of the indicator kmax c,t is going down by fixing θ
∗
2,t = −0.00033 for all

t as before, but θ1,t is declining according to

θ1,t =


0.133 for t = 1, . . . , T/4

−0.0011 + θ1,t−1 for t = T/4 + 1, . . . , T × 3/4
0.027 for t = T × 3/4 + 1, . . . , T

(10)

This corresponds to a lead with maximum weight at time t = T × 3/4 + 1 of
kmax c,t = 40 days, which has declined from kmax c,t = 200 days at t = T/4.

The constant in the equation is set to γ = 0.2 for all t. The residual εy,t is normally

distributed with mean zero and the variance is fixed such that the population R2 in the

DGP is equal to 0.66. Given these DGPs, we can simulate {{spt}Tt=1, {yt}Tt=1}Rr=1. For
each replication, the Particle filter is used to estimate TVP-MIDAS. To initialize the

filter, we estimate a time-constant MIDAS regression over the first part of the sample

t = 1, . . . , T/4, whose point estimates provide the starting values of the particle sets. The

initial variances of the shocks in the time-varying parameter equations are all set to 10−5.

The residual covariance provides a starting value for σ2ε in the Particle filter. From the

sampled particle distributions, we compute the mean across particles to obtain a point

estimate of the following quantities: The time-varying parameter βt as well as the weights

c(k,K, θ1,t, θ
∗
2,t) and the corresponding maximum weight lead kmax c,t.

To assess the filter estimates for both DGPs, we compare the 5-th, 50-th and 95-th

percentiles of the simulated distributions across the R replications for estimated βt as

well as the weights c(k,K, θ1,t, θ
∗
2,t) and kmax c,t against the true quantities in the DGP as

defined above. In the two Figures 1 and 2 below, the true quantities are shown in green,

whereas the median as well as the 5-th and 95-th percentiles of the estimated distributions

are shown in blue.

In the simulations, we find no huge biases. The true parameters are close to the median

of the distributions of estimates. The percentiles indicate that the estimation uncertainty

is not too big. When it comes to tracking the time-varying parameters in the DGP, there

is always some lagged adjustment in the estimates over those time periods with a change

in the parameters. However, the magnitude of the deviations is quite small. Overall, the

parameter estimates of TVP-MIDAS with the Particle filter follow the time variation in

the true parameters closely.
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Figure 1: Simulation results, DGP 1
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Figure 2: Simulation results, DGP 2
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6 Empirical application: Corporate bond spreads and

GDP growth in the Euro area

What kind of empirical relationship can we expect from our results? There a various ways

to establish a theoretical motivation for the important role of corporate bond spreads for

real economic activity. An increase in corporate bond spreads might reflect a reduction in

the expected present value of corporate cash flows leading to a cyclical downturn. Using a

modification of the q-theory of investment, Philippon (2009) shows how bond spreads can

be used to construct a market-based measure of Tobin’s q. Increasing credit spreads can

also reflect disruptions in the supply of credit resulting from the worsening in the quality

of corporate balance sheets or of financial intermediaries that supply credit to the firms.

Thus, the financial accelerator by Bernanke et al. (1999) also provides a motivation for

the relationship between corporate bond spreads and real activity. Following these two

lines of arguments, we can expect bond spreads to be counter-cyclical and leading the

business cycle. Below we address whether this is the case in Euro area data following

Buchmann (2011), Nicoletti, Passaro (2012), and Gilchrist, Mojon (2013).

6.1 Data

The GDP time series is quarterly Gross Domestic Product for the Euro area at market

prices (chain-linked volumes), transformed to quarter-on-quarter growth rates. The time

series is also working day and seasonally adjusted, and has been taken from the ECB

Statistical Data Warehouse. The sample starts in 1997Q1 and ends in 2012Q4.

The corporate bond yield series used below are option-adjusted spreads provided by

Merrill Lynch. The indices cover the financial sector (banks and insurance companies),

utility and industrials. Bond spreads are then calculated from corporate bond yields and

the relevant benchmark government bond yield series by Merrill Lynch. The corporate

spreads are available for different rating classes and maturity buckets: In the data available

here, the rating classes include AAA, AA, A, BBB. The maturity buckets range from 1-3,

3-5, 5-7, and 7-10 years. We end up with 20 different yield spreads with all combinations

of rating and maturity buckets. The spread dataset is chosen as in Nicoletti, Passaro

(2012), and Buchmann (2011). However, in contrast to that work, we directly use the

spreads sampled at daily frequency without time aggregation.

6.2 Model and filter setup

The empirical estimation results are based on a specification of TVP-MIDAS, where the

absolute term in the equation is also time-varying. Furthermore, the equation contains
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an autoregressive term with coeffi cient λt:

yt+1 = γt + αtyt + βt

K∑
j=0

exp(θ1,tj
1 − exp(θ∗2,t)j2)∑K

k=0 exp(θ1,tk
1 − exp(θ∗2,t)k2)

Lj/msp
(m)
t + εt+1 (11)

θ1,t = θ1,t−1 + ε1,t , θ
∗
2,t = θ∗2,t−1 + ε2,t (12)

βt = βt−1 + εβ,t, γt = γt−1 + εγ,t, αt = αt−1 + εα,t (13)

As before, the shocks εt, εβ,t, ε1,t, ε2,t, ελ,t, and εγ,t are assumed to follow independent

normal distributions with mean zero and variances σy, σβ, σ1, σ2, σα, and σγ, respectively.

Given this model and data, I want to investigate the relationship between the different

corporate bond spreads and GDP growth in the Euro area. To this end, the estimated

paths of the regression coeffi cient βt, the weights c(k,K, θ1,t, θ
∗
2,t), and the lead with

maximumweight kmax c,t from the Particle filter are examined. Further results are provided

in the Appendix. The results contain the mean over 5000 particles as well as the 5-th and

95-th percentiles of the particle distribution. In the estimation, we use K = 315 days. To

initialize the Particle filter, we again use a MIDAS regressions without time variation in

the parameters as above in the simulations.

6.3 Empirical results

The first set of results is based on one representative corporate spread, namely the AAA

spread with maturity bucket 1-3 years. The rest of the spreads will be covered in the

later parts of the text. In Figure 3, the estimation results for the regression coeffi cient

βt are shown. The green line is the mean over the particles, and dotted blue lines are

the boundaries of the 90% confidence interval derived from the particle distribution. The

Figure shows the expected negative sign of the parameter over the whole sample. Until

2008, the parameter increases in absolute terms from -0.2 to -0.5 and returns to -0.3

afterwards. Apart from these movements, the parameter is in all the periods significantly

different from zero, thus indicating a time-varying but relevant relationship between the

spread and GDP growth. The width of the confidence interval is considerable, indicating

severe estimation uncertainty.

In Figure 4, the evolution of the weights c(k,K, θ1,t, θ
∗
2,t) is shown for three points in

time, namely, 2002Q1, 2007Q1 and 2012Qq1. In each period, the weights are shown as a

function of the lags k = 0, . . . , 315. The green line is the mean over the particles of the

weights, and dotted lines are the boundaries of the 90% confidence interval. In 2002Q1

and 2007Q1, the weights have a maximum at lag 112, which is hardly different from zero.

In 2002Q1, lags greater than 260 days are equal to zero with high probability, whereas in

2007Q1, the uncertainty is very high across all lags. In 2012Q1, the peak of the weights

has shifted towards zero, and the lower 5% bound lies on the zero line. Lags greater than

150 days are equal to zero with high probability. Thus, the effect of the spreads on GDP

12



Figure 3: Evolution of the estimates of the regression coeffi cient over time
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Figure 4: Evolution of the Almon lag weights over time
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growth has become more concentrated on a smaller set of lags in 2012Q1 compared to

the periods 2002Q1 and 2007Q1. In general, the Figures show a considerable uncertainty

surrounding the weights.

To assess the lead of the spread ahead of GDP growth further, the lead at maximum

weight introduced in Section 3 is shown in Figure 5. The vertical axis in the Figure reflects

daily leads or lags of the indicator relative to GDP growth. Positive numbers indicate

leads of the daily indicator ahead of GDP growth, negative numbers a lag. Prior to 2008,

Figure 5: Evolution of the lead with maximum weight over time
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the lead with maximum weight kmax c,t is about one hundred days, where the confidence

interval excludes zero. During and after 2008, the lead of the AAA spread declines sharply

and is insignificantly different from zero. Thus, during the recent crisis, the spread has

turned from a leading into a coincident indicator of GDP, following the definition of Box

and Jenkins (1976).

In the Appendix we provide further results regarding the evolution of the other pa-

rameters in the estimated TVP-MIDAS model. The results indicate that time variation

comes mostly from the weights, whereas the other parameters do not vary as much. To

summarize the empirical findings with the AAA spread and 1-3 years maturity, we can

state that there is a negative relationship between the spread and GDP growth. How-

ever, there is considerable uncertainty as to the exact weighting of high-frequency lags.

Furthermore, during the recent crisis, the lead ahead of GDP growth has diminished.
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Now, we turn to the rest of the spreads. The estimation results for the regression

coeffi cient βt and the lead with maximum weight kmax c,t are summarized for all the spreads

in Table 1. In particular, estimation results are shown for two periods before and after

Table 1: beta and lead with maximum weight over time

βt kmax c,t
2002Q1 2012Q1 2002Q1 2012Q1

AAA 1-3 -0.25 (-0.40,-0.07) -0.33 (-0.42,-0.24) 112.3 (15.7,199.3) -26.8 (-224.9,86.3)
AAA 3-5 -0.28 (-0.42,-0.11) -0.34 (-0.44,-0.23) 107.3 (11.9,206.1) -75.5 (-192.6,50.0)
AAA 5-7 -0.24 (-0.40,-0.06) -0.24 (-0.33,-0.17) 111.3 (12.1,215.2) -65.2 (-193.8,51.2)
AAA 7-10 -0.22 (-0.40,-0.04) -0.01 (-0.07,0.04) 105.6 (11.5,198.4) 101.6 (13.5,189.1)
AA 1-3 -0.31 (-0.54,-0.14) -0.43 (-0.55,-0.31) 120.4 (33.7,211.8) -35.5 (-151.1,57.1)
AA 3-5 -0.08 (-0.21,0.02) 0.00 (-0.10,0.09) 115.1 (16.2,208.1) 107.7 (-5.9,300.5)
AA 5-7 -0.24 (-0.41,-0.06) -0.24 (-0.38,-0.15) 117.9 (19.1,220.2) -10.6 (-123.4,83.2)
AA 7-10 -0.23 (-0.39,-0.06) -0.28 (-0.38,-0.16) 122.9 (22.1,231.7) -74.2 (-193.3,41.4)
A 1-3 -0.25 (-0.42,-0.08) -0.32 (-0.43,-0.19) 100.4 (7.1,201.2) -45.2 (-135.7,34.9)
A 3-5 -0.21 (-0.38,-0.05) -0.24 (-0.34,-0.14) 90.5 (-7.4,191.8) -62.1 (-181.2,58.6)
A 5-7 -0.26 (-0.42,-0.09) -0.42 (-0.51,-0.33) 89.5 (-5.1,191.2) -80.1 (-178.4,16.3)
A 7-10 -0.24 (-0.41,-0.07) -0.38 (-0.48,-0.24) 109.6 (19.4,206.4) -71.8 (-176.3,19.9)
BBB 1-3 -0.20 (-0.35,-0.03) -0.06 (-0.17,0.03) 93.3 (1.8,189.4) 7.1 (-141.9,196.7)
BBB 3-5 -0.27 (-0.42,-0.09) -0.26 (-0.41,-0.10) 112.2 (32.3,205.1) -28.2 (-120.3,65.1)
BBB 5-7 -0.20 (-0.38,-0.03) -0.11 (-0.16,-0.05) 88.6 (-3.1,190.2) 19.2 (-28.3,68.2)
BBB 7-10 -0.18 (-0.36,-0.01) -0.01 (-0.16,0.06) 100.1 (12.4,195.8) 309.4 (-12.6,476.3)

The table contains estmation results for the regression coeffi cient and the lead with maximum weight,
estimated at different points in the sample. The first entry in a row is the name of the spread, followed
by the mean across the particles, whereas the 90% confidence interval bounds are shown in brackets.

the beginning of the recent crisis, namely 2002Q1 and 2012Qq1. In each row of the Table,

the first entry is the name of the spread, followed by the mean of βt and kmax c,t across

the particles, whereas the 90% confidence interval bounds are shown in brackets. When

looking at the coeffi cient βt , we can see that it is in almost all of the cases (apart form

one) significant in quarter 2002Q1, whereas it is insignificant in twelve out of twenty cases

in the period 2012Q1. The lead with maximum weight kmax c,t is significantly different

from zero in all but four cases in 2002Q1, but significant in 2012Q1 in only one case.

Hence, the results are relatively robust across the different maturities and quality

groups of the spreads. The relationship between the spreads and GDP has weakened

during the crisis, but is still significantly negative in the majority of cases. At the same

time, however, the spreads have lost their lead ahead of GDP. Before the crisis, we estimate

a lead of the indicator of broadly 100 days, which has vanished after 2008.

7 Conclusions

This paper discusses mixed-data sampling (MIDAS) regressions with time-varying pa-

rameters (TVP-MIDAS). This approach introduces random-walk time variation to the
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MIDAS approach and thus complements the literature that has recently been focused on

regime switching or smooth transition MIDAS models, see Marcellino and Guerin (2013)

and Galvao (2013). To estimate the non-linear model, the Particle filter with sequential

parameter estimation following Liu and West (2001) is applied. Simulations show that

the Particle filter can estimate the parameters well even if the DGP varies over time in

different ways.

As an empirical application of TVP-MIDAS, we investigate the leading indicator prop-

erties of corporate bond spreads for GDP growth in the Euro area over the last ten years,

including the recent crisis period. In the results, we find a decline in the lead of corporate

bond spreads for GDP growth in the Euro area during the recent crisis. In other words,

corporate bond spreads have been leading indicators of real activity before the crisis, but

during the crisis they have rather become coincident indicators. The results are in line

with findings by Ng and Wright (2013) and Ng (2013) for the US, where also a decline in

the leading properties of corporate bond spreads has been found.
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A The Particle filter by Liu and West (2001)

Assume we have a state-space model with the vector of observables yt and states xt.

Time-varying parameters are part of the state. A vector of parameters which is constant

over time is denoted as φ. The goal of the filter by Liu and West (2001) is to approximate

the posterior

p(xt, φ|Dt) (14)

for both the states xt and the parameters φ. The period-t information is summarized in

Dt = {Dt−1,yt}. The state-space model is specified at each period t by the observation
and transition densities

p(yt|xt,φ), p(xt|xt−1,φ), (15)

respectively, based on the state-space model equations and underlying distributions of

shocks. Sequential Monte Carlo methods aim at sequentially updating Monte Carlo sam-

ple approximations to the sequences of p(xt, φ|Dt), represented by a discrete sample of

points and weights. On observing the new data yt+1, a new sample p(xt+1, φ|Dt+1) is

needed.

To motivate the steps of the filter, Liu and West (2001) rely on the decomposition

p(xt+1, φ|Dt+1) ∝ p(yt+1|xt+1, φ)p(xt+1|φ,Dt)p(φ|Dt) (16)

Samples from the first two terms can be obtained by the auxiliary Particle filter proposed

by Pitt and Shephard (1999). To sample from p(φ|Dt), Liu and West (2001) assume an

artifical random-walk time variation for φ with little variance. As this adds noise to the

estimation, kernel smoothing is applied to reduce the variance of the estimates, see step

3 below. Thus, the filter by Liu and West (2001) sequentially provides particles as well

as parameter samples. In order to follow the evolution of the fixed-parameter values, an

index t is added to φ below. The filter works as follows:

1. Given the set of particles, parameters, and weights for period t− 1

{x(j)t−1, φ
(j)
t−1, w

(j)
t−1}Pj=1 (17)

compute the state and parameter quantities

µ
(j)
t = E(xt|x(j)t−1, φ

(j)
t−1), (18)

m
(j)
t−1 = aφ

(j)
t−1 + (1− a)φt−1, (19)

where φt−1 =
1
P

∑P
j=1 φ

(j)
t−1 and a =

√
1− h2 with h2 = 1 − ((3δ − 1)/2δ)2. The

discount factor δ has to be fixed be the model user. Typical values range between

0.95 to 0.99, see Liu and West (2001). Both in the simulations and empirical appli-

cations, we use δ = 0.95. µ(j)t is an auxiliary estimate of the state xt as in the filter

20



proposed by Pitt and Shephard (1999), see step 2 below. m(j)
t−1 helps to retain the

mean of the fixed parameters posterior in the normal mixture in step 3 below.

2. Sample an integer k from the set {1, . . . , P} with probabilities

g
(j)
t ∝ w

(j)
t−1p(yt|µ

(j)
t ,m

(j)
t−1) (20)

using the observation density.

3. Sample a new parameter from the k-th normal kernel density

φ
(k)
t ∼ N(·|m(k)

t−1, h
2Vt−1), (21)

where h2 is defined in step 1. The variance Vt−1 is defined as Vt−1 = 1
P

∑P
j=1(φ

(j)
t−1−

φt−1)(φ
(j)
t−1 − φt−1)′. The parameters m

(k)
t−1 and h

2 are chosen such that the approxi-

mation of φ has the kernel form p(φ|Dt−1) ≈
∑P

j=1w
(j)
t−1N(·|m

(j)
t−1, h

2Vt−1).

4. Sample a new state particle

x
(k)
t ∼ p(·|x(k)t−1, φ

(k)
t ), (22)

using φ(k)t from step 3 and the transition density.

5. Evaluate the weight corresponding to the k-th particle by

w
(k)
t ∝

p(yt|x(k)t , φ
(k)
t )

p(yt|µ(k)t ,m
(k)
t−1)

(23)

6. Repeat steps 2 to 5 for P particles with {x(k)t , φ
(k)
t , w

(k)
t }Pk=1. Then, go to step 1

again for t = 1, . . . , T .

Having obtained samples from {{x(k)t , φ
(k)
t }Pk=1}Tt=1, we can follow the evolution the

the states and fixed-parameter estimates by computing first and second moments over

particle indices k = 1, . . . , P . To assess the uncertainty surrounding the mean, we can

use the percentiles of the particle distribution to obtain confidence intervals.

For simplicity, the filter description above contained only yt as data. However, includ-

ing exogenous variables as necessary in the TVP-MIDAS regression is straight-forward

to implement. We can also modify the model structure easily to switch certain model

objects between fixed and time-varying For example, we could add stochastic volatility,

which becomes a time-varying state, see Lopes and Tsay (2011).
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B Further empirical results

In Figures 6 and 7, we show the evolution of the full set of parameters in the model

apart from the weights, which are discussed above in the main text.In addition to βt,

Figure 6: Evolution of the time-varying parameters, spread AAA with maturity 1-3 years
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Figure 6 contains the evolution of the parameters γt and λt from the MIDAS regression in

equation (11). The results show a slight upward trend in the constant from 0.09 to 0.19.

The autoregressive parameter changes between 0.15 and 0.25, indicating a low degree

of persistence in GDP. Disruptions in the evolution of these parameters happen in the

culmination of the crisis period 2008 and 2009.

The evolution of the covariances σy, σβ, σ1, σ2, σλ, and σγ are shown in Figure 7. We

can again see some erratic movements in 2008 and 2009, but the estimates are relatively

stable and stabilize again after this period.
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Figure 7: Evolution of the variances parameters, spread AAA with maturity 1-3 years
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