Tol, Richard S. J.; Walsh, Sharon

Working Paper

The impact of climate on tourist destination choice

ESRI Working Paper, No. 423

Provided in Cooperation with:
The Economic and Social Research Institute (ESRI), Dublin

Suggested Citation: Tol, Richard S. J.; Walsh, Sharon (2012) : The impact of climate on tourist destination choice, ESRI Working Paper, No. 423, The Economic and Social Research Institute (ESRI), Dublin

This Version is available at:
http://hdl.handle.net/10419/100242

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
The Impact of Climate on Tourist Destination Choice

Richard S.J. Tola,b,c* and Sharon Walshd

Abstract: We examine the determinants of holiday destination choice for tourists from 182 countries over a fifteen year time period. Our sample is much larger than that used by previous studies. The results are similar. Tourists prefer to stay relatively close to their home country. They like countries that have a long coast and lots of heritage. Tourists dislike poverty, and tourists from richer countries have a greater aversion to poverty. Tourists prefer politically unstable countries (all else being equal). Tourists like countries with high precipitation. Tourists like it hot, but not too hot. Tourists from warmer origins have stronger climate preferences.

Key words: climate; tourism; destination choice

Corresponding author: r.tol@sussex.ac.uk

a Department of Economics, University of Sussex, United Kingdom
b Institute for Environmental Studies, Vrije Universiteit, Amsterdam, The Netherlands
c Department for Spatial Economics, Vrije Universiteit, Amsterdam, The Netherlands
d Economic and Social Research Institute, Dublin, Ireland

ESRI working papers represent un-refereed work-in-progress by researchers who are solely responsible for the content and any views expressed therein. Any comments on these papers will be welcome and should be sent to the author(s) by email. Papers may be downloaded for personal use only.
The Impact of Climate on Tourist Destination Choice

1. Introduction

Climate is a key variable in the destination choice of tourists (Becken and Hay, 2007; Wall and Badke, 1994). Mass tourism continues to be about sun, sea, sand and safety (Aguiló et al., 2005). The older literature on tourism assumed that climate was constant, and thus not particularly interesting (Hamilton and Tol, 2007). Climate is changing, however, and will continue to change. It is now generally acknowledged that tourism will change with the climate, but there is remarkably little agreement how climate change would affect tourists and tourism resorts. This paper contributes a statistical analysis of more and newer data than what was used before.

Studies of the impact of climate change on tourism come in three flavours. Some papers consider biophysical indicators, either at a local (Lin and Matzarakis, 2008; Lopes et al., 2011) or a global scale (Amelung et al., 2007). Unfortunately, such indicators have yet to be validated (Gomez-Martin, 2006). Other papers study the impact of climate change on particular resorts or areas (Abegg and Elsasser, 1996; Scott et al., 2007), thus omitting the competitive nature of destinations. We therefore follow the tradition of the third flavour of research, and study where tourists go and why.

(Maddison, 2001) estimates the impact of climate change on the destination choice of British tourists and finds that British tourists are attracted to climates with an average maximum temperature of 30.7°C. (Lise and Tol, 2002) find that tourists originating in OECD countries prefer a temperature (in the warmest month) of 21°C at their holiday destination and that this preference is largely independent of the tourists’ country of origin. Consequently, climate change will have a significant impact on tourism demand as tourists will travel to different holiday destinations at different times of the year to seek out the climate that meets their individual needs. (Bigano et al., 2006) analyse forty-five countries over the same, single time period and find that tourists have an optimal annual mean temperature of 16.2°C ± 2.05 °C irrespective of the climate of their origin country. However, tourists originating in warmer climates tend to be more particular about their destination choice.

(Bigano et al., 2007; Hamilton et al., 2005a; Hamilton et al., 2005b) use these econometric results to construct a global tourism simulation model to examine the effect of climate change on tourism. Two interesting findings emerge from these studies. Firstly, international tourist arrivals will fall in hotter countries and rise in colder countries under a climate change scenario. This will drive tourists to higher latitudes and altitudes. Secondly, tourists from North-Western Europe, the main origin of international tourists at present, would be more inclined to spend their holiday in their home country, so that the total number of international tourists falls. However, the fall in the number of international tourists brought about by climate change would be negated by population and economic growth. In the worst affected countries, climate change slows down the rate of growth in the tourism sector, but the overall size of the sector remains constant. (Eugenio-Martin and Campos-Soria, 2010) also find that a better climate in the country of origin implies a higher probability of travelling domestically and a lower probability of travelling abroad and that “tourists who live in regions with a poor climate are more willing to accept destinations with a similar climate than tourists who are already living in destinations with a good climate”.
This paper extends on previous work by (Bigano et al., 2006) by introducing a wider array of countries along with a time dimension. The purpose of this paper is to assess the determinants of holiday destination choice for 182 countries analysed across a fifteen year period (1995-2009). (Bigano et al., 2006) used 45 countries and one year of data. The paper is organised as follows. Section 2 outlines the data sources used for each of the variables included in the analysis. Section 3 details the findings for 182 countries, as well as the results of pooled regression analysis. Section 4 provides an interpretation of the optimal temperature and precipitation results. Section 5 discusses and concludes on the findings of the study.

2. The data

This section describes the data sources for the variables used in the analysis. For the dependent variable, tourism data for each country is taken from the UN World Tourism Organisation (WTO). (WTO, 2011) defines a visitor as “a traveller taking a trip to a main destination outside his/her usual environment, for less than a year, for any main purpose other than to be employed by a resident entity in the country or place visited.” On the other hand, “a visitor (domestic, inbound or outbound) is classified as a tourist if his/her trip includes an overnight stay.” As different countries use varying methods of recording tourist arrivals, four measures were used. Tarrbor measures tourist arrivals by recording the number of tourists arriving at the border of a given country. Varrbor measures the number of visitor arrivals at the border of a given country (tourists plus day-trippers). Tarrall measures the number of tourist arrivals at all accommodation types and Tarrohot measures the number of tourist arrivals at hotels and similar types of accommodation.

A number of explanatory variables are used in the regression below. GDP per capita, length of coastline and area are taken from the CIA World Factbook\(^1\). Political stability is from the political stability and absence of violence measure as reported by the World Bank\(^2\). This measure examines the perception of the likelihood that the government will be destabilized or overthrown by unconstitutional or violent means, including domestic violence and terrorism. The political stability index ranges in value from -2.5 to 2.5, with -2.5 indicating the worst level of governance, 0 as the average level and 2.5 as the best governance level. The number of world heritage sites is taken from UNESCO\(^3\). Distance between countries is calculated as the great circles distance between capital cities according to the Times Atlas (Times, 1994).

The model contains both time variant and time invariant independent variables. GDP per capita and political stability are time variant. The other variables such as distance, area, coastline, temperature, precipitation and the number of world heritage sites remain constant over the analysed time period. Temperature and precipitation are constant because we are interested in the impact of the expected weather (or climate) on tourist destination choice, rather than the effect of the actual weather. GDP per capita is used as a proxy for economic well-being. Average annual temperature in degrees Celsius and average annual precipitation in millimetres are used as climate indicators (New et al.

\(^1\) https://www.cia.gov/library/publications/the-world-factbook/
\(^2\) http://info.worldbank.org/governance/wgi/index.asp
\(^3\) http://whc.unesco.org/en/list
2002). We assume that tourists dislike extremes in both temperature and precipitation and so we have also included temperature squared and precipitation squared as explanatory variables. The number of world heritage sites is used as a measure of the cultural attractiveness of a destination country. Area is included because larger countries are assumed to have a greater amount of attractive features and can accommodate a greater number of people. Distance is used as a proxy for time travel and cost, both of which are expected to deter tourists. Coastline length is included because tourists tend to be attracted to sea and political stability is included because instability deters tourists.

3. The results

We estimate the following destination choice model for all countries of origin:

\[
\ln(Y_{d,o,t}) = \alpha_{o,t} + \beta_{1,o,t}T_d + \beta_{2,o,t}T_d^2 + \beta_{3,o,t}P_d + \beta_{4,o,t}P_d^2 + \beta_{5,o,t}A_d + \beta_{6,o,t}\ln(G_{d,t}) + \\
\beta_{7,o,t}C_d + \beta_{8,o,t}PS_{d,t} + \beta_{9,o,t}W_d + \beta_{10,o,t}D_{10.o.t} + \varepsilon_{o,t}
\]

Where;

- \(Y_{d,o,t}\) is the dependent variable, denoting the number of tourist arrivals into a given country \(d\) from a country \(o\) at time \(t\)
- \(T_d\) is the average annual temperature of each destination country in degrees Celsius
- \(P_d\) is the average annual level of precipitation of each destination country in millimetres
- \(A_d\) is the total area of each destination country including both land and sea
- \(G_{d,t}\) is the GDP per capita of each destination country in each year measured in US dollars
- \(C_d\) is the length of the coastline of each destination country measured in kilometres
- \(PS_{d,t}\) is a political stability and absence of violence measure for each destination country in each year, as reported by the World Bank
- \(W_d\) is the number of UNESCO world heritage sites located in each destination country
- \(D_d\) is the distance from each country of origin to each destination country measured in kilometres

Equation (1) was estimated separately for each country and for each year. The parameter estimates were then combined using Bayes’ rule, with an arbitrary result as prior and the rest as data. This procedure is conceptually identical to a random effects panel estimator. While there is a loss of efficiency, there is a gain in flexibility as we can fix parameter estimates over space \(\theta_{i.o.t}=\theta_{i.t}\) as well as over time \(\theta_{i.o.t}=\theta_{i.o}\). For example
where $\sigma_{i,o,t}$ is the standard error the parameter $\theta_{i,o,t}$. Equations (2) and (3) follow from the assumption of Normal errors in Equation (1).

More importantly, we can apply (2) and (3) to nonlinear transformations of the parameters. This would impose a non-linear restriction on the parameters in a panel estimator, which is difficult.

3.1 Pooled regression results

Pooled OLS regressions ($\beta_{i,o,t} = \beta_0$) were conducted and the results are illustrated in Table 1 below. Table 1 includes results for four different tourist measures. Tourist includes just Tarrbor as the measure for Y_i (tourist arrivals). Tourist 2 includes both Tarrbor and Varrbor, Tourist 3 includes Tarrbor, Varrbor and Tarrall and Tourist 4 includes all measures; Tarrbor, Varrbor, Tarrall and Tarrhot.

The coefficients on the linear and quadratic temperature terms are positive and negative respectively, which suggests that tourists have an optimal temperature. The range of t-statistics across the 4 models is 43.90 to 52.32 (linear) and -43.98 to -52.99 (quadratic). Precipitation has varying effects across the four models. The parameter has the expected negative effect on tourist arrivals and is significant at the 1% level under the Tourist 3 and Tourist 4 models, indicating that higher rainfall amounts discourage tourists (range of t-statistics, linear -4.88 to 6.60, quadratic 5.61 to 12.09). However, an insignificant effect is found under the Tourist model and a positive and significant effect is seen under the Tourist 2 model. In line with other studies, such as (Bigano et al. 2006), tourists prefer to visit wealthier countries as shown by the positive coefficient for GDP per capita in all four models. Again, GDP per capita is significant at the 1% level across the four models (range of t-statistics 33.80 to 48.02).
Table 1: Pooled OLS regression results (standard error in brackets)

<table>
<thead>
<tr>
<th></th>
<th>Tourist</th>
<th>Tourist 2</th>
<th>Tourist 3</th>
<th>Tourist 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>0.375</td>
<td>0.282</td>
<td>0.269</td>
<td>0.247</td>
</tr>
<tr>
<td></td>
<td>(0.008)***</td>
<td>(0.006)***</td>
<td>(0.005)***</td>
<td>(0.005)***</td>
</tr>
<tr>
<td>Temperature Squared</td>
<td>-0.012</td>
<td>-0.009</td>
<td>-0.009</td>
<td>-0.008</td>
</tr>
<tr>
<td></td>
<td>(0.0003)***</td>
<td>(0.0002)***</td>
<td>(0.0002)***</td>
<td>(0.0002)***</td>
</tr>
<tr>
<td>Precipitation</td>
<td>0.00008</td>
<td>0.0001</td>
<td>-0.0004</td>
<td>-0.0002</td>
</tr>
<tr>
<td></td>
<td>(0.00006)</td>
<td>(0.00006)*</td>
<td>(0.00006)***</td>
<td>(0.00005)***</td>
</tr>
<tr>
<td>Precipitation Squared</td>
<td>1.58e-07</td>
<td>1.57e-07</td>
<td>9.86e-08</td>
<td>2.03e-07</td>
</tr>
<tr>
<td></td>
<td>(1.91E-08)***</td>
<td>(1.82e-08)***</td>
<td>(1.76e-08)***</td>
<td>(1.68e-08)***</td>
</tr>
<tr>
<td>Area</td>
<td>1.23e-07</td>
<td>1.27e-07</td>
<td>1.12e-07</td>
<td>9.08e-08</td>
</tr>
<tr>
<td></td>
<td>(5.88E-09)***</td>
<td>(4.95e-09)***</td>
<td>(4.35e-09)***</td>
<td>(4.30e-09)***</td>
</tr>
<tr>
<td>World Heritage Sites</td>
<td>0.070</td>
<td>0.079</td>
<td>0.086</td>
<td>0.089</td>
</tr>
<tr>
<td></td>
<td>(0.001)***</td>
<td>(0.001)***</td>
<td>(0.001)***</td>
<td>(0.001)***</td>
</tr>
<tr>
<td>GDP per capita</td>
<td>0.489</td>
<td>0.577</td>
<td>0.595</td>
<td>0.551</td>
</tr>
<tr>
<td></td>
<td>(0.014)***</td>
<td>(0.013)***</td>
<td>(0.012)***</td>
<td>(0.012)***</td>
</tr>
<tr>
<td>Political Stability</td>
<td>-0.100</td>
<td>-0.163</td>
<td>-0.105</td>
<td>-0.054</td>
</tr>
<tr>
<td></td>
<td>(0.015)***</td>
<td>(0.014)***</td>
<td>(0.014)***</td>
<td>(0.013)***</td>
</tr>
<tr>
<td>Coastline</td>
<td>0.00002</td>
<td>0.00001</td>
<td>0.00001</td>
<td>0.00001</td>
</tr>
<tr>
<td></td>
<td>(5.54E-07)***</td>
<td>(3.91e-07)***</td>
<td>(3.54e-07)***</td>
<td>(3.51e-07)***</td>
</tr>
<tr>
<td>Distance</td>
<td>-0.0002</td>
<td>-0.0002</td>
<td>-0.0003</td>
<td>-0.0002</td>
</tr>
<tr>
<td></td>
<td>(2.55E-06)***</td>
<td>(2.36e-06)***</td>
<td>(2.11e-06)***</td>
<td>(2.05e-06)***</td>
</tr>
<tr>
<td>R²</td>
<td>0.24</td>
<td>0.25</td>
<td>0.27</td>
<td>0.25</td>
</tr>
<tr>
<td>N</td>
<td>67378</td>
<td>75564</td>
<td>91496</td>
<td>97691</td>
</tr>
</tbody>
</table>

* p < 0.1; ** p < 0.05; *** p < 0.01

Tourists also favour safer destinations as indicated by the negative effect of political stability and absence of violence index which is significant at the 1% level (range of t-statistics -4.01 to -11.55). The number of world heritage sites, the length of coastline in the destination country and the area of the destination country are all found to have a positive effect on the number of tourist arrivals. The range of t-statistics across the four models is 44.96 to 67.96 (#WHS), 28.66 to 30.59 (Coastline) and 20.96 to 25.82 (Area). Distance to the destination country has a negative effect and is significant at the 1% level in all cases, implying that tourists are deterred by longer travel times and expected higher travel cost. While the pooled OLS models exhibit relatively low explanatory power with an R² value of 0.24 - 0.27 across the four models, the R² values of the individual country regression models are much higher.
3.2 Country-of-origin regression results

Above, we pool all estimates. Here, we consider differences between the countries of origin, pooling over time only ($\delta_{t,o} = \delta_{o}$). We focus our analysis on the Tourist model. Given the number of the countries in this analysis, results are discussed by continent.4

The temperature parameters are jointly significant at the 5% level in most countries. However, some exceptions include: Andorra, Latvia, Cambodia, Bhutan, Jamaica, Bermuda and Puerto Rico. The relationship between temperature and the number of tourists has the expected inverted U-shape in the majority of countries apart from Russia, Bosnia and Herzegovina, Lao, Maldives and Barbados. Precipitation has varying effects across the five continents. The coefficients on the linear and quadratic terms are negative and positive respectively in most European and Oceania countries. However, some interesting exceptions include the UK, Germany, Italy, Spain and Switzerland. No clear pattern emerges in the case of Asia, Africa and America and the parameter is insignificant in about half of the African countries examined.

Area has a positive effect and is significant at the 5% level in almost all countries which suggests that larger countries attract more tourists. The parameter is insignificant in the Netherlands, Austria, Albania, Czech Republic, Slovakia, Lao, Somalia, Madagascar, Puerto Rico and Bermuda. The number of world heritage sites is positive and significant in Europe, Oceania and the Americas apart from Liechtenstein, Monaco, Republic of Moldova, Guadeloupe, Antigua & Barbuda and Fiji where a negative and significant relationship is found. Countries in Asia show positive and negative effects depending on the country of origin, with no discernible pattern. The parameter is positive and significant for roughly two thirds of the African countries included in the analysis. GDP per capita in the destination country has a positive effect and is significant at the 5% level in almost all European countries except for Andorra, Moldova and Liechtenstein where an insignificant result is found. Similar results are found in the Americas, Oceania and Asia. This conforms to previous studies (Bigano et al. 2006) which found that, in general, tourists do not like to witness poverty. Not surprisingly, the parameter is positive and significant in less than half of the African countries examined.

Political stability appears to have mixed effects across European countries. The parameter is negative and significant for countries such as France, Germany, UK, Spain, Italy and Belgium. However, we find a positive and significant effect in countries such as Luxembourg, Croatia, Slovakia, Slovenia and Turkey. The parameter is insignificant in Ireland, Austria, Switzerland, Portugal and Denmark. Political stability has a negative effect (and is significant at the 5% level) for most Asian countries along with the Americas and Oceania. This is in agreement with the assumption that tourists are attracted to more stable countries. No clear pattern emerges in Africa, with roughly half the countries showing an insignificant effect. Coastline has a positive and significant effect on tourist arrivals for most of the countries included in the analysis while distance has a clear negative effect and is significant at the 5% level in almost all countries apart from Macedonia, Liechtenstein,

4 Continents are defined as: Europe, Asia (Middle East), Africa, The Americas and Oceania. We include Russia and Turkey in Europe. https://www.cia.gov/library/publications/the-world-factbook/fields/2145.html?countryName=&countryCode=®ionCode=y
Andorra and Eritrea where a positive and significant result is found. This suggests that international tourists are deterred by long distance holidays.\(^5\)

3.3 Time-dependent results

Here, we consider differences over time, pooling over countries only \((\theta_{i,ct}=\theta_{i,t})\). Again, we focus our analysis on the Tourist model. Results are presented in Table A1.

Temperature and temperature squared are significant at the 1% level across all years. The relationship between temperature and the number of tourist arrivals is also found through all the years, with a large positive coefficient for temperature and a very small negative coefficient for temperature squared. The number of world heritage sites has a large positive effect on tourist numbers and is significant in all years apart from 1995. Similarly, GDP per capita is positive and significant in all years except 2008 and 2009. However, the size of the GDP parameter varies over time. A very small positive effect is found from 2000-2009; all other years show a moderate/strong positive effect on tourist numbers.

The area and length of coastline in the destination country have a very small positive effect on tourist numbers throughout all years. Interestingly, political stability is insignificant in most years apart from 1997, 1999, 2004 and 2005 where a small negative and significant result is found. The linear and quadratic precipitation terms are jointly significant at the 1% level in 1995, 1996, 1997, 2007 and 2008. Mixed effects are found in these years. The parameters are positive and negative respectively in 1995, 1996 and 1997. However, the opposite is the case in 2007 and 2008. Distance to the destination country has a negative, but very small negative impact on tourist arrivals and the parameter is significant at the 1% level across all years.

4. Interpretation

As previously stated, we assume that tourists dislike extremes in both temperature and precipitation, and so we have included temperature squared and precipitation squared as explanatory variables. The optimal temperature is calculated as follows:

\[
(4) \quad T^{opt} = -\frac{\beta_1}{2\beta_2}
\]

Optimal precipitation is calculated in the same way using \(\theta_3\) and \(\theta_4\) from Equation (1). The standard deviation of the optimal temperature is approximated using the first-order Taylor approximation:

\[
(5) \quad \sigma_T^2 = \frac{1}{4\beta_2^2} \sigma_1^2 + \frac{\beta_1^2}{4\beta_2^4} \sigma_2^2 - \frac{\beta_1}{4\beta_2^2} \sigma_{1,2}
\]

We can see from Figure 1a that the optimal temperature varies between 14.60°C and 15.69°C across the four models; a difference that is not significantly different. Figure 1b shows that optimal precipitation ranges from -1871 to 619 millimetres per year. This suggests that countries with high

levels of precipitation are not as attractive to tourists compared to those with low precipitation levels.

![Image of bar charts showing optimal temperatures and precipitations for different tourist models.]

Figure 1a: Optimal temperature for each tourist model using the pooled regression results

Figure 1b: Optimal precipitation for each tourist model using the pooled regression results

At a country level, the optimal temperatures seem to be largely significant and the global average optimal temperature of 15.49°C ± 0.20 is in line with previous studies. Such temperatures are found in countries such as Argentina, Greece, Portugal, Spain, Italy, Monaco, Lebanon and Taiwan. When we examine the optimal precipitation for each country of origin, we find that the global average optimal precipitation is 1,420mm ± 30.83. This precipitation level is found in countries such as Peru, New Caledonia and Dominican Republic. Surprisingly, countries such as Spain, Italy, France, Germany, Portugal and even Ireland are found to be too dry.

To examine the relative importance of temperature against precipitation in determining destination choice, high resolution temperature and precipitation data (New et al., 2002) is used to construct a composite indicator:
The results are presented in Figure 2. What we find is that temperature is a much stronger determinant of tourism demand relative to precipitation. Under current climate conditions, the Mediterranean is a very attractive destination for international tourists. Other attractive regions include the African highlands, South Australia and South Africa. Korea and Lebanon should in principle be attractive to international tourists; however, this is unlikely to be the case in reality. Interestingly, California appears to be an attractive destination, however, Florida does not. Unattractive regions include northern Canada and Russia.
Figure 3: The optimal temperature for the countries of origin; countries of origin are ranked (from lowest to highest) according to their temperature.

Figure 3 shows the relationship between the optimal holiday temperature and the temperature in the country of origin. Similar to earlier studies (Bigano et al. 2006), we find that no relationship exists. In other words, the optimal temperature is independent of what tourists are used to.

Figure 4 shows the relationship between the temperature squared parameter from Equation (1) and the difference between the temperatures in the country of origin and the global average optimal temperature. While all tourists prefer a similar optimal temperature, tourists coming from hotter climates have stronger preferences than those coming from colder climates. That is to say, “regions with poorer climate show higher flexibility in terms of destination choice” (Eugenio-Martin and Campos-Soria 2010).
Figure 4: The coefficient of temperature squared in Equation (1) for the countries of origin against the difference between the temperature in the country of origin and the optimal temperature for that country.

Figure 5: The coefficient of GDP per capita from equation (1) for the countries of origin; countries of origin are ranked (from lowest to highest) according to their GDP per capita.

Figure 5 shows the relationship between GDP per capita in the countries of origin and the GDP parameters from Equation (1). Here we see a clear pattern. Tourists originating in rich countries are more opposed to witnessing poverty compared to those originating in poor countries. Again, this conforms to earlier analysis (Bigano et al. 2006) which found that “people from poor countries are less deterred by poverty, they can less afford holidays in rich countries, and they may not be allowed to travel there”. To examine whether tourists from stable countries are more sensitive to instability, we graph the coefficient of political stability from Equation (1) for all countries of origin against the average political stability index for each country in Figure 6 below.
We find that tourists originating in stable countries do not necessarily have a stronger preference for travelling to stable destinations. This is a surprising result as it suggests that tourists originating in countries such as Sri Lanka and Pakistan have the same preference for travelling to politically stable countries as those originating in Finland and Luxembourg.

5. Conclusions

This paper examines the determinants of holiday destination choice for tourists from 182 countries over a fifteen year time period. We find that destination choice is explained by the socio-economic characteristics of the tourist’s country of origin as well as climate variables. Tourists originating in rich countries are more averse to witnessing poverty compared to those originating in poor countries. Tourists from politically stable countries do not necessarily have a stronger preference for travelling to stable destinations. We find that temperature is a much stronger determinant of destination choice than is precipitation. As a result, the Mediterranean is a very attractive holiday destination under current climate conditions, along with the African highlands, South Australia and South Africa. Korea and Lebanon should in principle be attractive to international tourists; however, this is unlikely to be the case in reality. The average optimal holiday temperature of 15.49°C ± 0.20 is found to be independent of the tourists’ country of origin. In other words, tourists travelling from Canada and Russia prefer the same temperature at their destination choice to those originating in Mali and Maldives. However, when we examine the quadratic temperature term, we find that tourists travelling from colder climates are more flexible in their temperature preference compared to those coming from hot climates.

There are a number of caveats to these results. We ignore heterogeneity – in purpose of travel, season of travel, composition of the group of travellers, their budget, and their taste. This is as a result of the paucity of the data at the global level. Questions of heterogeneity are better
investigated with micro-data. We use national data, both for origin and destination. We not only give equal weight to small and large countries, we also assume that each country is homogeneous. We use explanatory variables that are readily available. There are two puzzling results. Tourists appear to like rain. Introspection suggests that tourists really like lush environments (which requires rain) but prefer to visit them when it is dry (whereas we use total annual precipitation rather than the chance of rain during the tourist season). Tourists also appear to like political instability. This is again probably due to omitted variable bias. Tourists probably do not care much about political instability; it is their personal safety that matters. The fourth main caveat is that we use distance as a proxy for travel time and travel cost.

Nonetheless, our results confirm what other studies have found with much fewer data. Such robustness across studies suggests that the above caveats are unlikely to overturn the main thrust of our results. The average tourist has clear and well-defined climate preferences. Climate change is thus likely to shift the geographic pattern of tourism.

Acknowledgements

We are grateful to Niamh Callaghan and Jackie Hamilton for help with the data and to Seán Lyons for helpful discussion and comments. The European Commission (DG RTD, 6th Framework Programme, ACCESS project) provided financial support.

References

Table A1: Time Dependent Regression Results: 1995-2001 (standard error in round brackets)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>0.819 (0.053)**</td>
<td>0.686 (0.054)**</td>
<td>0.492 (0.052)**</td>
<td>0.243 (0.032)**</td>
<td>0.353 (0.031)**</td>
<td>0.483 (0.028)**</td>
<td>0.369 (0.031)**</td>
</tr>
<tr>
<td>Temperature2</td>
<td>-0.024 (0.002)**</td>
<td>-0.019 (0.002)**</td>
<td>-0.015 (0.002)**</td>
<td>-0.007 (0.001)**</td>
<td>-0.011 (0.001)**</td>
<td>-0.016 (0.0009)**</td>
<td>-0.012 (0.001)**</td>
</tr>
<tr>
<td>Precipitation</td>
<td>0.002 (0.000)**</td>
<td>0.001 (0.000)**</td>
<td>0.001 (0.000)**</td>
<td>0.0005 (0.000)**</td>
<td>0.000012 (0.000)**</td>
<td>-0.00008 (0.000)**</td>
<td>0.0002 (0.000)**</td>
</tr>
<tr>
<td>Precipitation2</td>
<td>-5.10e-07 (8.49e-08)**</td>
<td>-2.36e-07 (8.51e-08)**</td>
<td>-2.28e-07 (8.36e-08)**</td>
<td>-1.87e-09 (7.22e-08)**</td>
<td>-0.00 (7.12e-08)**</td>
<td>2.29e-07 (6.85e-08)**</td>
<td>1.34e-07 (6.94e-08)**</td>
</tr>
<tr>
<td>Area</td>
<td>2.80e-07 (3.10e-08)**</td>
<td>1.71e-07 (2.63e-08)**</td>
<td>9.28e-08 (2.30e-08)**</td>
<td>8.03e-08 (2.22e-08)**</td>
<td>0.00 (2.23e-08)**</td>
<td>1.30e-07 (2.20e-08)**</td>
<td>1.34e-07 (2.20e-08)**</td>
</tr>
<tr>
<td>#WHS</td>
<td>0.014 (0.009)</td>
<td>0.048 (0.008)**</td>
<td>0.061 (0.006)**</td>
<td>0.068 (0.006)**</td>
<td>0.071 (0.006)**</td>
<td>0.074 (0.006)**</td>
<td>0.073 (0.006)**</td>
</tr>
<tr>
<td>GDP</td>
<td>0.576 (0.067)**</td>
<td>0.495 (0.069)**</td>
<td>0.694 (0.065)**</td>
<td>0.802 (0.059)**</td>
<td>0.650 (0.058)**</td>
<td>0.336 (0.055)**</td>
<td>0.502 (0.060)**</td>
</tr>
<tr>
<td>Political Stability</td>
<td>0.005 (0.073)</td>
<td>-0.175 (0.072)**</td>
<td>-0.325 (0.068)**</td>
<td>-0.091 (0.062)**</td>
<td>-0.176 (0.060)**</td>
<td>0.060 (0.058)**</td>
<td>0.010 (0.059)</td>
</tr>
<tr>
<td>Coastline</td>
<td>0.00005 (3.29e-06)**</td>
<td>0.00005 (3.49e-06)**</td>
<td>0.00004 (3.43e-06)**</td>
<td>0.00002 (2.51e-06)**</td>
<td>0.0003 (2.45e-06)**</td>
<td>0.00002 (1.81e-06)**</td>
<td>0.00001 (2.00e-06)**</td>
</tr>
<tr>
<td>Distance</td>
<td>-0.0002 (0.000)**</td>
<td>-0.0002 (0.000)**</td>
<td>-0.0002 (0.000)**</td>
<td>-0.0002 (0.000)**</td>
<td>-0.0002 (9.62e-06)**</td>
<td>-0.0002 (9.11e-06)**</td>
<td>-0.0002 (9.38e-06)**</td>
</tr>
<tr>
<td>R2</td>
<td>0.27</td>
<td>0.24</td>
<td>0.24</td>
<td>0.26</td>
<td>0.27</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>N</td>
<td>3211</td>
<td>3566</td>
<td>3955</td>
<td>4277</td>
<td>4645</td>
<td>5450</td>
<td>5005</td>
</tr>
</tbody>
</table>

* p < 0.1; ** p < 0.05; *** p < 0.01
Table A1: Time Dependent Regression Results: 2002-2009 (standard error in brackets)

<table>
<thead>
<tr>
<th></th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.344</td>
<td>0.412</td>
<td>0.331</td>
<td>0.309</td>
<td>0.370</td>
<td>0.357</td>
<td>0.414</td>
<td>0.530</td>
</tr>
<tr>
<td>(0.032)***</td>
<td>(0.032)***</td>
<td>(0.032)***</td>
<td>(0.032)***</td>
<td>(0.030)***</td>
<td>(0.031)***</td>
<td>(0.029)***</td>
<td>(0.055)***</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>-0.012</td>
<td>-0.014</td>
<td>-0.011</td>
<td>-0.010</td>
<td>-0.013</td>
<td>-0.012</td>
<td>-0.014</td>
<td>-0.016</td>
</tr>
<tr>
<td>(0.001)***</td>
<td>(0.001)***</td>
<td>(0.001)***</td>
<td>(0.001)***</td>
<td>(0.001)***</td>
<td>(0.001)***</td>
<td>(0.0009)***</td>
<td>(0.002)***</td>
<td></td>
</tr>
<tr>
<td>Precipitation</td>
<td>0.0004</td>
<td>0.0002</td>
<td>0.0001</td>
<td>-0.0002</td>
<td>-0.0003</td>
<td>-0.0005</td>
<td>-0.0009</td>
<td>0.0007</td>
</tr>
<tr>
<td>(0.0002)</td>
<td>(0.0002)</td>
<td>(0.0002)</td>
<td>(0.0002)</td>
<td>(0.0002)</td>
<td>(0.0002)</td>
<td>(0.0002)</td>
<td>(0.0003)</td>
<td></td>
</tr>
<tr>
<td>Precipitation</td>
<td>9.88e-08</td>
<td>8.96e-08</td>
<td>1.21e-07</td>
<td>2.51e-07</td>
<td>2.83e-07</td>
<td>3.15e-07</td>
<td>5.46e-07</td>
<td>2.33e-07</td>
</tr>
<tr>
<td>(6.97e-08)</td>
<td>(6.99e-08)</td>
<td>(7.19e-08)</td>
<td>(6.96e-08)***</td>
<td>(6.89e-08)***</td>
<td>(6.90e-08)***</td>
<td>(7.95e-08)***</td>
<td>(9.34e-08)**</td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>1.29e-07</td>
<td>1.31e-07</td>
<td>1.19e-07</td>
<td>1.02e-07</td>
<td>1.03e-07</td>
<td>1.09e-07</td>
<td>1.24e-07</td>
<td>8.40e-08</td>
</tr>
<tr>
<td>(2.23e-08)***</td>
<td>(2.23e-08)***</td>
<td>(2.25e-08)***</td>
<td>(2.21e-08)***</td>
<td>(2.16e-08)***</td>
<td>(2.16e-08)***</td>
<td>(2.16e-08)***</td>
<td>(2.41e-08)***</td>
<td></td>
</tr>
<tr>
<td>#WHS</td>
<td>0.073</td>
<td>0.064</td>
<td>0.069</td>
<td>0.077</td>
<td>0.078</td>
<td>0.076</td>
<td>0.075</td>
<td>0.079</td>
</tr>
<tr>
<td>(0.006)***</td>
<td>(0.006)***</td>
<td>(0.006)***</td>
<td>(0.006)***</td>
<td>(0.006)***</td>
<td>(0.006)***</td>
<td>(0.006)***</td>
<td>(0.006)***</td>
<td></td>
</tr>
<tr>
<td>GDP</td>
<td>0.391</td>
<td>0.293</td>
<td>0.421</td>
<td>0.499</td>
<td>0.278</td>
<td>0.294</td>
<td>0.070</td>
<td>0.013</td>
</tr>
<tr>
<td>(0.059)***</td>
<td>(0.061)***</td>
<td>(0.063)***</td>
<td>(0.060)***</td>
<td>(0.056)***</td>
<td>(0.056)***</td>
<td>(0.054)</td>
<td>(0.061)</td>
<td></td>
</tr>
<tr>
<td>Political Stability</td>
<td>-0.003</td>
<td>0.086</td>
<td>-0.190</td>
<td>-0.150</td>
<td>0.077</td>
<td>0.077</td>
<td>-0.018</td>
<td>-0.072</td>
</tr>
<tr>
<td>(0.058)</td>
<td>(0.059)</td>
<td>(0.066)***</td>
<td>(0.062)**</td>
<td>(0.055)</td>
<td>(0.053)</td>
<td>(0.059)</td>
<td>(0.069)</td>
<td></td>
</tr>
<tr>
<td>Coastline</td>
<td>0.00001</td>
<td>0.00002</td>
<td>0.00001</td>
<td>0.00001</td>
<td>0.00001</td>
<td>0.00001</td>
<td>0.00002</td>
<td>0.00008</td>
</tr>
<tr>
<td>(2.00e-06)***</td>
<td>(1.99e-06)***</td>
<td>(2.02e-06)***</td>
<td>(1.98e-06)***</td>
<td>(1.92e-06)***</td>
<td>(1.94e-06)***</td>
<td>(1.89e-06)***</td>
<td>(7.61e-06)***</td>
<td></td>
</tr>
<tr>
<td>Distance</td>
<td>-0.0002</td>
<td>-0.0002</td>
<td>-0.0002</td>
<td>-0.0002</td>
<td>-0.0002</td>
<td>-0.0002</td>
<td>-0.0002</td>
<td>-0.0002</td>
</tr>
<tr>
<td>(9.43e-06)***</td>
<td>(9.43e-06)***</td>
<td>(9.27e-06)***</td>
<td>(9.21e-06)***</td>
<td>(9.20e-06)***</td>
<td>(9.54e-06)***</td>
<td>(9.0001)***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R²</td>
<td>0.24</td>
<td>0.25</td>
<td>0.25</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
<td>0.27</td>
</tr>
<tr>
<td>N</td>
<td>4955</td>
<td>4801</td>
<td>4713</td>
<td>4928</td>
<td>4957</td>
<td>4930</td>
<td>4620</td>
<td>3365</td>
</tr>
</tbody>
</table>

* p < 0.1; ** p < 0.05; *** p < 0.01
<table>
<thead>
<tr>
<th>Year</th>
<th>Number</th>
<th>Title/Author(s)</th>
</tr>
</thead>
</table>
| 2012 | 422 | Trends in Air Pollution in Ireland: A Decomposition Analysis
Richard S.J. Tol |
| | 421 | Electrical Appliance Ownership and Usage in Ireland
Eimear Leahy, Seán Lyons and Sharon Walsh |
| | 420 | Trade, Energy, and Carbon Dioxide: An Analysis for the Two Economies of Ireland
Marie Hyland, Anne Jennings and Richard S.J. Tol |
| | 419 | To Convergence and Beyond? Human Capital, Economic Adjustment and a Return to Growth
John FitzGerald |
| 2011 | 418 | The Origins of the Common Travel Area between Ireland and the United Kingdom and its Fate in an Era of Governmental Concern about Undocumented Migration and International Terrorism
Elizabeth Meehan |
| | 417 | Telecommunications Consumers: A Behavioural Economic Analysis
Pete Lunn |
| | 416 | Optimal interconnection and renewable targets in North-West Europe
Muireann A. Lynch, Mark J. O’Malley and Richard S.J. Tol |
| | 415 | Restoring Credibility in Policy Making in Ireland
John FitzGerald |
| | 414 | The Impact of Changes in Educational Attainment on Life Expectancy in Ireland
John FitzGerald, David Byrne and Nusa Zneiderl |
| | 413 | Poverty Traps and Climate Change
Richard S.J. Tol |
| | 412 | UK Tourists, The Great Recession and Irish Tourism Policy
Niamh Callaghan and Richard S.J. Tol |
| | 411 | Disasters and Development: Natural Disasters, Credit Constraints and Economic Growth
Thomas K.J. McDermott, Frank Barry, Richard S.J. Tol |

For earlier Working Papers see
http://www.esri.ie/publications/search_for_a_working_pape/search_results/index.xml