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Abstract
We present a model of bargaining in which a committee searches over the policy

space, successively amending the default by voting over proposals. Bargaining ends
when proposers are unable or unwilling to amend the existing default, which is then
implemented. We characterize the policies which can be implemented from any initial
default in a pure strategy stationary Markov perfect equilibrium for an interesting class
of environments including multi-dimensional and infinite policy spaces. Minimum-
winning coalitions may not form, and a player who does not propose may nevertheless
earn all of the surplus from agreement. The set of immovable policies (which are
implemented, once reached as default) forms a weakly stable set; and conversely, any
weakly stable set is supported by some equilibrium. If the policy space is well ordered
then the committee implements the ideal policy of the last proposer in a subset of a
weakly stable set. However, this result does not generalize to other cases, allowing
us to explore the effects of protocol manipulation. Variations in the quota and in
the set of proposers may have surprising effects on the set of immovable policies.
We also show that equilibria of our model are contemporaneous perfect ε-equilibria
of a related model of repeated implementation with an evolving default; and that
immovable policies in semi-Markovian equilibria form the largest consistent set.

JEL classification: C78, D71, D72.

Keywords: bargaining, committee voting, evolving default, stable set.

1 Introduction

The task of a committee is to select a policy to implement from some policy space. As
Compte and Jehiel (2010) note, committees in effect search over the policy space by en-
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dogenously drawing policies/proposals, and implement a proposal according to a stopping
rule. Congress and the FOMC instance committees which stop deliberating as soon as some
proposal wins a final vote, while the EU’s Council of Ministers (henceforth ‘the Council’)
reaches a decision by final vote when the issue must be addressed urgently or some gov-
ernment wants to signal to its domestic audience (cf. Heisenberg (2005)). Conventional
bargaining models, like Rubinstein (1982) and Baron and Ferejohn (1989), focus on such
committees: the game ends when some proposal wins against the status quo. However,
an important class of committees do not use a final vote stopping rule. In particular, the
Council reaches more than 80% of its decisions without a final vote, including on issues as
controversial as trade and budgetary policy (cf. Hayes-Renshaw et al. (2006) and Mattila
(2009)). Analogously, insiders report that the Bundesbank and the ECB decide on the
interest rate without a final vote. Anecdotal evidence suggests that proceedings end (and
a policy is implemented) in such committees when discussion grinds to a halt.

We present and analyze a model of decision making without final voting, in which
the committee entertains a single policy at a time. The game is played by proposers and
voters: some players may both propose and vote. The game starts with an initial default.
Players have the opportunity to propose amendments to the default in a fixed sequence
(the protocol), which can depend on the ongoing default. If a winning coalition of voters
accepts the proposal then the default is amended; if you like, the committee takes a new
policy seriously. The new default may then in turn be amended. A default is implemented
when all of the proposers have failed to amend it: either because they have chosen not
to propose an alternative or because their proposals have not secured sufficient support
from voters. (This is what we mean by discussion grinding to a halt.) In light of evidence
that the Council takes urgent decisions by final vote, we suppose that payoffs in the game
only depend on the policy implemented.1 Two aspects of this noncooperative game are
worth highlighting. First, preferences and the sets of winning coalitions and of proposers
determine an underlying cooperative game (independently of the protocol and the initial
default). Second, the agenda is endogenous in two senses here: chosen proposals determine
both the policies on the agenda and the order in which they are considered.

Our main results describe the policies which can be reached in a pure strategy stationary
Markov equilibrium from any initial default and for any protocol. We use an algorithmic

1This model in fact describes the way that we (a committee of two with a unanimity quota) have
written this paper: we have worked with a running draft (the default), which we have only changed when
we agreed that a new version improved on the default; and we have only circulated the paper when we
have been unable to find any revision which improves on the current version.

2



technique, which exploits a relationship between equilibria of the game and a solution
concept for the underlying cooperative game:

Any equilibrium determines a function, which maps from any initial default to the
implemented policy. Stationarity implies that any policy in the range of this mapping
is ‘immovable’: the equilibrium prescribes that this policy is implemented whenever it is
the initial default. We show that the immovable policies form a weakly stable set in a
related simple game (Proposition 2). We obtain the related simple game by restricting
the set of winning coalitions to those which contain a proposer; and a weakly stable set of
policies satisfies the same strict internal stability conditions as a von Neumann-Morgenstern
(henceforth ‘vNM’) stable set, but external stability is weakened to allow for weak social
preference.2 We also obtain a converse result. Specifically, for any closed weakly stable
set, we construct equilibria whose immovable policies are exactly that weakly stable set
(Proposition 1).3

Equilibrium outcomes have some surprising properties. We demonstrate by example
that a winning coalition may amend a default to a policy which is implemented, leaving
all coalition members worse off than at the initial default; all players may earn a surplus
in a majority-rule divide the dollar game; and a player who does not propose may earn all
of the surplus from agreement.

Our algorithmic technique reveals that equilibrium outcomes depend on the order in
which players can propose (the protocol) and on the set of winning coalitions, which are
determined both by the set of proposers and by the voters who can amend a default.
Accordingly, we exploit the characterization results (Propositions 1 and 2) to study how
variations in the protocol and the winning coalition affect the policy implemented from
any initial default.

We start by considering how a committee chair can affect the policy reached from a
given default by changing the protocol for a fixed set of proposers. Changing protocols may
affect the policy reached from a given default. However we show, strikingly, that the chair
can only affect the policy implemented by changing the order in which players propose at
the initial default. Furthermore, varying the order in which a given set of proposers move
does not affect the set of winning coalitions or of weakly stable sets; so the image of an
equilibrium is unchanged. Accordingly, fix an equilibrium whose immovable policies are a

2Every vNM stable set is therefore weakly stable.
3This result provides micro-foundations of weakly stable sets as a byproduct of our analysis. Proposi-

tions 1 and 2 imply that the policies which can be implemented in any equilibrium is the union of weakly
stable sets.
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given weakly stable set. If the policy space is well ordered (no player is indifferent between
any two policies) and there is a unique weakly stable set then a chair who proposes cannot
improve on a protocol in which she proposes last. This result does not generalize to games
in which a player may be indifferent between policies or there are several weakly stable
sets: the chair may then be best off when another player proposes last.

We then study the implications of varying the set of winning coalitions via changes
in the quota and in the set of proposers. According to a natural conjecture, increasing
the quota expands the set of immovable policies because coalitions which could destabi-
lize policies are no longer winning with a larger quota.4 We provide conditions for this
conjecture to be true; but we also show that increasing the quota may contract the set
of immovable policies. The basis for this surprising result is that changes in the set of
winning coalitions have potentially conflicting effects on the internal and external stability
conditions for a set of policies to be weakly stable. Variations in the set of proposers can
have analogously surprising results. We show by example that a player may be worse off
if she is given the opportunity to propose. The intuition again turns on the implications
of changing winning coalitions for the structure of weakly stable sets.

We end the paper by extending our analysis in three directions:
According to our model, players only receive (undiscounted) payoffs when a policy is

implemented. However, our model has essentially the same game tree as a model without
a stopping rule in which either the current default or an agreed policy is implemented each
round and becomes the new default; and players earn the net present value of the stream
of utilities that accrue from the implemented policies. One might therefore conjecture that
equilibria in our model are the limit of equilibria in the alternative model with repeated
implementation as players become more patient. This conjecture is true if the policy space
is finite and well ordered. Indeed, equilibrium strategy combinations in our model are
then also equilibria of the related model when players are patient enough. More generally,
we show that, for every ε > 0, an equilibrium strategy combination in our model is a
contemporaneous perfect ε-equilibrium of the model with repeated implementation when
players are patient enough.

Any weakly stable set is contained in the largest consistent set. We provide weaker
conditions on the stationarity of strategies under which any equilibrium’s immovable poli-
cies are a consistent set, and the union of immovable policies coincides with the largest
consistent set.

4Arguments of this sort have been repeatedly used during the prolonged debates over qualified majority
voting in the Council.
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Finally, we extend our results to an open rule bargaining game in the spirit of Baron
and Ferejohn (1989), where a policy is implemented if and only if a proposer successfully
moves the previous question. We show that any weakly stable set can be supported in an
open rule bargaining game, and the policy set supported by any equilibrium must satisfy
internal stability. However, there may be equilibria that support policy sets which fail
external stability.

After reviewing the related literature in the next subsection, we present the model in
Section 2. We characterize equilibria in Section 3, and use our results to explain policies
chosen by the Council. In Section 4, we explore how the policy implemented varies with the
protocol and with the set of winning coalitions. In Section 5, we provide micro-foundations
for the largest consistent set, construct contemporaneous perfect ε-equilibria in games with
repeated implementation, and analyze our open rule bargaining model. We conclude in
Section 6, and briefly discuss variants on our model with bargaining round the table; non-
singleton proposals; refinements; and mixed strategy equilibria. We relegate longer proofs
to an Appendix.

Related literature

The literature contains various related models of bargaining with an evolving default in
which a policy is only implemented once negotiations end:

In Bernheim et al (2006), the policy space is finite and well ordered. The default is
amended over a finite number of rounds, and the default at the end of the last round
is implemented. Any Condorcet winner of the original game is implemented if there are
enough proposers or at least one proposer top ranks the Condorcet winner. Bernheim et
al also show that the last proposer’s ideal policy (her own project alone) is implemented
in a pork barrel example without a Condorcet winner. We allow for an infinite number of
rounds, but equilibria in our model with a well ordered policy space and a unique weakly
stable set also exhibit the power of the last word. The analogy between our results relies
on our use of backward induction arguments which, in Bernheim et al’s model, start with
the exogenously fixed last proposal. Our argument, by contrast, relies on our stopping
rule: a default which is not amended by any proposer is implemented, ending the game.
In further contrast to Bernheim et al, and to the rest of the literature surveyed below, we
allow for an infinite policy space without requiring that it be well ordered.

Harsanyi (1974) provides micro-foundations for vNM stable sets by presenting a bar-
gaining model in which a policy is only implemented when a default is not amended.
Each equilibrium of this model supports a vNM stable set, as in our model. However, in
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contrast to Bernheim et al (2006) and this paper, a chair selects coalitions which simulta-
neously propose policies, and her payoff depends on the number of times that the default
is amended. Harsanyi’s model therefore allows any policy in the vNM stable set which so-
cially dominates the initial default to be implemented in equilibrium: for players and the
chair respectively only care about the implemented policy and the number of amendments.
By contrast, we are primarily interested in the policy implemented from a given initial de-
fault. Our approach yields much tighter predictions about the implemented policy, and
also allows us to address issues of protocol manipulation. We compare Harsanyi’s model
with a variant on our model with a dynamic protocol in Appendix A.2.5

Harsanyi argues that vNM stability does not adequately capture social dominance in
non-simple games, where a policy might be indirectly but not directly dominated. Chwe
(1994) picks up this theme, arguing that only policies outside the largest consistent set
can be excluded when players are far-sighted. Chwe also sketches a view of committees
akin to our interpretation, with the important difference that he treats bargaining itself
cooperatively. Our results provide noncooperative foundations for the largest consistent set
in simple games. The contrast to weakly stable sets turns on the stationarity of strategies,
rather than on far-sightedness.

Our model is also related to Baron and Ferejohn’s (1989) open rule game, where ran-
domly selected proposers can amend the existing default. In contrast to Bernheim et al
(2006), this game can last indefinitely; but, unlike our model, the game only ends when
a player proposes moving the previous question (viz. the current default). The difference
in stopping rules is crucial, as many of our results rely on backward induction arguments
which do not apply to open rule bargaining. As noted above, we study a version of open
rule bargaining which extends our model, but is not restricted to the distributive problems
which Baron and Ferejohn consider.6 We show that an immovable policy in our model is
also immovable in the open rule bargaining game, but that the converse does not hold.
In further contrast, Baron and Ferejohn show that a supra-minimal majority may earn a
share of a fixed pie, provided that players are impatient enough: the proposer fears that
an excluded player will be selected to propose. In our model, patient players may all earn
a share of the pie.

Following Baron (1996), a recent literature has studied equilibria of games with repeated
5In contrast to Harsanyi (1974) and this paper, Hortala-Vallve (forthcoming) studies play in a related

model without a weakly stable set.
6In this sense, our model also generalizes Volden and Wiseman’s (2007) variant on Baron and Ferejohn

(1989).
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implementation (as described in the last subsection). Each round ends with a final vote,
but the game continues with a new status quo/default. The most closely related paper
is Acemoglu et al (forthcoming), which essentially shares our game tree, but allows the
set of winning coalitions to depend on the default.7 Acemoglu et al prove existence when
social preferences are acyclic and the policy space is finite, and demonstrate (in an online
Appendix) that the limiting policies constitute the unique vNM stable set and the largest
consistent set.8 We focus on characterization, rather than existence results, but explore a
much larger class of policy spaces which includes non-acyclic social preferences. To see why
we eschew existence results, consider games with a well ordered policy space. Any weakly
stable set is then vNM stable; so existence of an equilibrium in our model is equivalent
to existence of a vNM stable set in simple games. It is well known that vNM stable sets
may not exist, even if the policy space is finite (e.g. when there are Condorcet cycles or in
Bernheim et al’s (2006) pork barrel model), but vNM stable sets have been characterized
for some games with infinite policy spaces, such as three player divide the dollar games.9

More general conditions for existence remain an open question. We sidestep this issue by
characterizing those equilibria which exist; and this approach allows us to study a much
wider class of policy spaces.

Given our approach, Anesi (2010) is related most closely to this paper. Anesi demon-
strates that that any vNM stable set is the absorbing set of some Markov perfect equilibria
in a legislative bargaining game with a finite, well ordered policy space, random proposers
and repeated implementation.10 We extend Anesi (2010) in two respects. First, the model
provides bargaining foundations for weakly stable sets in a larger class of environments,
allowing for infinite policy spaces that are not well ordered. Second, we obtain a com-
plete equivalence between the class of weakly stable sets and the class of absorbing sets of
Markov perfect equilibria when the policy space is finite and well ordered.11

7Acemoglu et al. allow for some exogenous proposals (and exploit this possibility in their proofs).
8Von Neumann and Morgenstern (1944) 65.7 prove existence and uniqueness of vNM stable sets under

Acemoglu et al’s conditions. See Duggan and Kalandrakis (2011, forthcoming) and Kalandrakis (2004)
and (2010) for existence results in related models.

9Ordeshook (1986) discusses these issues; Hirai (2009) provides some recent results. More generally,
Lucas (1992) surveys the literature on vNM stable sets.

10Acemoglu et al (forthcoming) show, in an online Appendix, that equilibria in their model support the
unique stable set, which coincides with the largest consistent set.

11Anesi only proves that the former is a subset of the latter, demonstrating by example that the legislature
may choose policies outside stable sets when proposers are chosen randomly. Anesi (2006) obtains the
equivalence between vNM stable sets and absorbing sets of equilibrium processes of coalition formation
(cf. Konishi and Ray (2003)) in a cooperative model of committee voting over a finite, well ordered
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Diermeier and Fong (2011) study a game with repeated implementation in which a
single player can propose (so the induced social preference relations are acyclic), and the
policy space is finite, but not necessarily well ordered. Their game form is therefore the
same as a special case of our model. In contrast to our approach, Diermeier and Fong
focus on equilibria in which an indifferent voter always votes in favor of the proposal. This
has important implications for predicted solutions, as instanced by their benchmark case,
in which three players bargain over division of a pie. If any division were feasible then
this game has a pair of weakly stable sets, in each of which the proposer shares the pie
exclusively with one of the other players. Any equilibrium outcome in our model must lie
in one of these sets. Diermeier and Fong’s tie-breaking rule eliminates both of these weakly
stable sets, which immediately implies that any steady state policy must give each player
a share of the pie. Diermeier and Fong also provide an existence proof for their game;
von Neumann and Morgenstern’s (1944) argument (cf. footnote 8 above) implies that our
version of Diermeier and Fong’s game also has a unique equilibrium.12

Our assumption that the default can be amended recalls a literature (surveyed by
Austen-Smith and Banks (2005)) in which players vote successively over a finite, well
ordered agenda. (Our algorithmic approach highlights the similarities.) This literature has
largely focused on successive elimination and amendment agendas, in which a default is
implemented when it (respectively) beats the next contender and all subsequent contenders.
Duggan (2006) is related most closely to our paper. He assumes that players first add
policies to an amendment agenda according to some protocol, and the committee then
votes over the agenda; so the agenda is endogenous in our sense.13 In contrast, our model
integrates proposing and voting; a given policy may be repeatedly placed on the agenda,
which need not be finite; and the default is implemented when it has not been amended.14

We follow the literature by considering how a chair could manipulate the agenda — though
in our model, the chair directly manipulates the protocol (the order in which proposers are
recognized) because the agenda itself is endogenous.

policy space. Our model provides noncooperative bargaining foundations for vNM stable sets under these
conditions.

12Other related papers include Kalandrakis (2004, 2009), Battaglini and Coate (2007, 2008), Duggan
and Kalandrakis (2011, forthcoming), Dziuda and Loeper (2010), Battaglini and Palfrey (2011).

13Dutta et al (2004) consider endogenous agenda formation in a less structured model, which is not
based on a specific game form or protocol.

14Our model therefore integrates features of successive elimination and amendment agendas.
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2 The model

We consider a finite committee consisting of m ≥ 1 proposers, M ≡ {1, . . . ,m}, and n ≥ 2

voters, N ≡ {1, . . . , n}. The set of committee members, or players, is thus C ≡ M ∪ N .
A player may be both a proposer and a voter, but we also allow for the possibility that
M∩N = ∅. Our model therefore encompasses the Council of Ministers, where the European
Commission makes all proposals but cannot vote, and most AGMs, where management
propose corporate policies to shareholders who then vote (cf. Matsusaka and Ozbas (2012)).

Let X be a compact metric space of policies, which may be finite or a subspace of finite-
dimensional Euclidean space. The preferences of each player i ∈ C on X are represented
by a weak order ≽i. Let ≻i and ∼i denote the asymmetric and symmetric parts of ≽i,
respectively. We will say that the policy space is well ordered if every player has a linear
order over X. We assume that preferences are continuous. Specifically:

Assumption A0. Continuous Preferences: For all i ∈ C, and all x ∈ X, the upper and
lower contour sets of x associated with ≽i are closed.

The committee has to reach a collective choice from X, with initial default policy
x0 ∈ X. Decision making takes place as follows. Each of a (possibly) infinite number of
discrete rounds, indexed by t = 1, 2, . . ., starts in the shadow of an ongoing default policy
xt−1. For each possible default x ∈ X, there is a fixed protocol πx : {1, . . . ,mx} → M ,
mx ∈ N, that determines the order in which the proposers (i.e. the players in M) are given
the opportunity to propose policies to amend the ongoing default. That is, when x ∈ X

is the current default, protocol πx gives proposer πx(k) the kth opportunity to amend x

for each k ∈ {1, . . . ,mx}. Each proposer i ∈M has at least one opportunity to amend the
default in every round:

∣∣π−1
x (i)

∣∣ ≥ 1 for all i ∈M and all x ∈ X. We denote the collection
of protocols by π ≡ {πx}x∈X .

The outcome of a vote depends on the set of winning coalitions of voters W ⊆ 2N \{∅}.
Throughout, we make the following assumption:

Assumption A1. W is

(i) monotonic: S ∈W and N ⊇ S′ ⊇ S implies S′ ∈W; and

(ii) proper: S ∈W implies (N \ S) /∈W.

In words: (i) every superset of a winning coalition is winning, and (ii) a coalition and its
complement cannot both be winning.

Bargaining is then represented as follows:15

15A similar bargaining process is used in Acemoglu et al. (forthcoming).
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1. If the kth proposer, πxt−1(k), is given the opportunity to make a proposal, she proposes
ytk ∈ X.

2. a) If ytk ̸= xt−1 then ytk is put to an immediate vote against xt−1. Members of N

sequentially vote ‘yes’ or ‘no’ (in an arbitrary order). If the set of players who voted
‘yes’ is an element of W then ytk is accepted; otherwise it is rejected and xt−1 remains
the default.

b) If ytk = xt−1 (i.e. the proposer ‘passes’) then there is no voting and xt−1 remains
the default.

3. a) If ytk ̸= xt−1 is accepted then it displaces xt−1 as the default policy and the round
ends.

b) If ytk ̸= xt−1 is rejected or if there is no voting because ytk = xt−1 and k < mxt−1 ,
then the game moves to Step 1 with k increased by 1; if k = mxt−1 then xt−1 is
implemented and the game ends.

Players only care about the policy which is eventually implemented, rather than the
route from the initial default to the implemented policy. When comparing two different
paths, each player i ∈ C thus prefers the one yielding the best final policy outcome with
respect to ≽i. Bargaining indefinitely makes all players worse off than if any policy is
implemented after a finite number of rounds.16 This assumption is consistent with the
conventional claim that the Council is worst off when it fails to decide (e.g. Thomson
(2011)). Let Γ

(
π, x0

)
be the bargaining game defined by this process.

Following the lead of the previous literature, our main focus will be on subgame perfect
equilibria of Γ(π, x0) in which players use pure stationary Markov strategies. A strategy
consists of two components, one specifying a player’s choice when given the opportunity
to propose, the other specifying a voter’s choice after a proposal is made. In proposal
stages, strategies only depend on the default and the identity of the remaining proposers
in the current round; in voting stages, strategies only depend on the current default, the
proposal just made, votes already cast, and the remaining proposers in the current round.
Unless otherwise stated, we will refer to stationary Markov pure strategy equilibria as

16This assumption precludes indefinite bargaining and ensures that the one-shot deviation principle
applies even though the game is not continuous at infinity. The principle would hold in games with a finite
policy space if payoffs were discounted by the number of rounds, and players were patient enough. Our
main results would still be true in such games if, in addition, we assumed that the policy space is well
ordered.
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‘equilibria.’17

Our restriction to pure strategies precludes existence in some well known cases, such as
the Condorcet Paradox; in other cases, there may be multiple equilibria. We will discuss the
implications of allowing for mixed strategy equilibria and of refining our solution concept
in the Conclusion.

Any stationary Markov strategy σ generates an outcome function fσ, which assigns
to every x ∈ X and every k ∈ {1, . . . ,mx} the unique final outcome fσ(x, k) eventually
implemented (given σ) when x is the ongoing default and the kth proposer is about to
move (in any round t). We are particularly interested in fσ

(
x0, 1

)
, which describes the

final policy outcome of the game from any initial default x0 ∈ X when players act according
to σ. As we will often refer to it in what follows, we will sometimes abuse notation and
write fσ

(
x0

)
instead of fσ

(
x0, 1

)
. The characterization of this function for all possible

equilibria of Γ
(
π, x0

)
is the subject matter of the next section.

3 Equilibrium characterization

3.1 Preliminaries

There are two principal sorts of questions we want to address: the first concerns the
determination of equilibrium behavior and policy outcomes from any initial default; the
second concerns how institutional details affect the set of policy outcomes. We address the
former in this section, and postpone the latter to Section 4.

First of all, we need to modify the collection of winning coalitions, W, in order to
obtain a collection of coalitions that better accounts for the distribution of power among
committee members. Let W ≡ {S ⊆ C : (S ∩N) ∈W & (S ∩M) ̸= ∅}. That is, a coali-
tion S belongs to W if the voters in S constitute a winning coalition and S includes at
least one proposer. Note that W inherits monotonicity and properness from W.

We define two social preference relations, which we call P -dominance and R-dominance
respectively, as follows: for all x, y ∈ X,

xPy ⇐⇒ ∃S ∈ W : x ≻i y , ∀i ∈ S ,

xRy ⇐⇒ ∃S ∈ W : x ≽i y , ∀i ∈ S .

A subset of policies V ⊆ X is said to be P -internally stable if and only if it satisfies
17In Section 5.2, we will consider strategies that are measurable with respect to other elements in the

history of the game.
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(ISP ) ∀x, y ∈ V : ¬(xPy).

Furthermore, Y is said to be R-externally stable if and only if it satisfies

(ESR) ∀x ∈ X \ V , ∃y ∈ V : yRx.

We say that V is a weakly stable set if and only if it is both P -internally stable and
R-externally stable. The collection of weakly stable sets is denoted by V.

Weakly stable sets will play a central role in the analysis to follow. Before we proceed
any further, it is therefore worth discussing some of their properties. First of all, a vNM
stable set is a weakly stable set which is P -externally stable: that is, it satisfies a variant
of (ESR) in which R is replaced by P . Conversely, if the policy space X is well ordered
(i.e., if all the ≽i’s are linear orders) then V corresponds to the collection of vNM stable
sets. This is not true when X is not well ordered: there may be policy sets that are weakly
stable but not vNM stable, as the following example illustrates:

Example 3.1. Let M = N = {1, 2, 3}, X = {x, y, z} and every pair of players is
winning, with preference orderings z ≻1 x ≻1 y, y ≻2 x ∼2 z, and x ∼3 y ≻3 z. It is easy
to confirm that yPz, and that {x, z} and {y} are weakly but not vNM stable. By contrast,
{x, y} is vNM stable.

�

The predictive power of weakly stability, like vNM stability, depends on other parame-
ters of the model: there may be a unique and small weakly stable set (e.g. any Condorcet
winner); there may be a unique but large weakly stable set (e.g. every division of the
pie in two-player bargaining: see Example 3.2 below); there may be several weakly stable
sets (e.g. in three-player divide the pie bargaining: cf. Ordeshook (1986) Ch 9.2); and no
weakly stable set need exist (e.g. in the Condorcet Paradox example). Finally, it is read-
ily checked that, under our assumptions: a weakly stable set may contain weakly Pareto
dominated policies; and the closure of a weakly stable set is itself weakly stable.

We end this subsection with some additional notation. For any binary relation Q

on X, x ∈ X and any subset Y ⊆ X, we use the notation Q(x) ≡ {y ∈ X : yQx},
QY (x) ≡ {y ∈ Y : yQx}, and M(Q,Y ) ≡ {y ∈ Y : ∀y′ ∈ Y \ {y} , y′Qy implies yQy′}.
We will refer to the elements of the latter set as the Q-maximal policies in Y .

3.2 Computation

We now turn to our main purpose in this section, which is to describe an algorithmic
procedure capable of finding the set of possible equilibrium policy outcomes from any
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initial default x0 ∈ X.
Our procedure starts with a weakly stable set V ∈ V. It then constructs a tree Tπ (V, x)

— whose nodes are elements of V ∪{x} — as follows. The initial node of Tπ (V, x) is x. If
x /∈ V then the successors of x in the tree are obtained in mx steps k = mx,mx− 1, . . . , 1:

• k = mx: The set of immediate successors of x is

sπmx
(V, x) ≡

∪
Y⊆RV (x)

M
(
≽πx(mx), PV (x) ∪ {x} ∪ Y

)
.

• 1 ≤ k ≤ mx − 1: If sπk+1 (V, x) ̸= ∅ then, for each yk+1 ∈ sπk+1 (V, x), the set of immediate
successors of yk+1 is

sπk (V, yk+1) ≡
∪

Y⊆RV (yk+1)

M
(
≽πx(k), PV (yk+1) ∪ {yk+1} ∪ Y

)
.

If x ∈ V then the tree has a single path in which all nodes are equal to x: sπk (V, x) = {x}
for each k = 1, . . . ,mx.

Having constructed the tree Tπ (V, x) with the above procedure, we obtain a (possibly
empty) set of terminal nodes of paths of length mx. Let F π(V, x) be the set of terminal
nodes that belong to V : that is, y ∈ F π(V, x) if and only if there exists a sequence
(y1, . . . , ymx+1) such that y1 = y ∈ V , ymx+1 = x, and yk ∈ sπk (V, yk+1) for each k =

1, . . . ,mx.
Before we proceed any further, it may be helpful to illustrate this construction by

exploiting Example 3.1 above.

Example 3.1 (continued). Suppose that the initial default is x0 = y, and that the
protocol is defined as πw(i) = i for all w ∈ {x, y, z} and all i ∈ M — in words: players
propose in the order 1, 2, 3 at every default. The tree Tπ ({x, z}, y) is depicted in Figure
1 — recall that {x, z} is a weakly stable set. The set of immediate successors of the initial
node, y, is sπ3 ({x, z}, y) = {x, y}. Indeed, P{x,z}(y) = ∅ and R{x,z}(y) = {x}. As player 3 is
the last proposer, the definition of sπ3 ({x, z}, y) implies that sπ3 ({x, z}, y) = M (≽3, {y})∪
M (≽3, {x, y}) = {y} ∪ {x, y} = {x, y} (recall that x and y are player 3’s ideal policies).
Following the dashed path in Figure 1, consider now the set of immediate successors of
node x ∈ sπ3 ({x, z}, y). Note first that P{x,z}(x) = ∅ and R{x,z}(x) = {x, z}. Hence,
given that player 2 is the second proposer, sπ2 ({x, z}, x) = M (≽2, {x})∪M (≽2, {x, z}) =
{x}∪{x, z} = {x, z} (proposer 2 is indifferent between the two policies in {x, z}). Finally,
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x z x yx z

Figure 1: Tree Tπ ({x, z}, y)

the set of immediate successors of node x ∈ sπ2 ({x, z}, x) is sπ1 ({x, z}, x) = M (≽1, {x}) ∪
M (≽1, {x, z}) = {x} ∪ {z} = {x, z}: x and z are final nodes of tree Tπ ({x, z}, y). This
completes the description of the dotted paths in Figure 1. One could apply the same
procedure and intuition to the other paths of Tπ ({x, z}, y), so as to obtain F π ({x, z}, y) =
{x, z} (recall that F π ({x, z}, y) only selects the terminal nodes that belong to {x, z}).

�

Our first result states that the construction of tree Tπ
(
V, x0

)
, and therefore of F π (V, x),

generates equilibrium policies of game Γ
(
π, x0

)
.

Proposition 1. Suppose that V is the closure of a weakly stable set, and let f ∈ V X be a
selection of F π(V, ·): f(x) ∈ F π(V, x) for all x ∈ X. There exists an equilibrium σ such
that fσ(x) = f(x) for all x ∈ X. Hence,

∪
x∈X fσ(x) = V .

This proposition says that, if V is the closure of a weakly stable set (and is therefore
a weakly stable set itself) then any selection f(·) of F π(V, ·) is an equilibrium outcome of
Γ
(
π, x0

)
. Put differently, Proposition 1 says that the final nodes of length-mx paths in

tree Tπ (V, x) are equilibrium policy outcomes of continuation games starting with x as the
initial default. In particular, all policies in F π(V, x0) are equilibrium outcomes of Γ

(
π, x0

)
.

14



Proposition 1 thus implies that the closure of any weakly stable set V is ‘immovable’ in the
sense that there is an equilibrium σ of Γ

(
π, x0

)
such that the union of fσ(x) over x ∈ X

is V : that is, exactly the initial defaults in V are not amended in that equilibrium. We
will say that the equilibrium supports V in such a case. We assume that V is the closure
of a weakly stable set to ensure that F π(V, x) is nonempty: if V is not closed then the set
M

(
≽πx(k), PV (yk+1) ∪ {yk+1} ∪ Y

)
may be empty.

Inspection of the proof of Proposition 1 reveals that these equilibria have a no-delay
property: a policy in V is implemented in no more than two rounds. The intuition behind
the construction of these equilibria is as follows. Let x /∈ V be the ongoing default in
a given round t, and let (y1, . . . , ymx+1), with y1 = y ∈ V , be a path of tree Tπ (V, x).
Suppose that all players believe that policies in V and only these policies are immovable:
if a policy outside V is voted up and becomes the new default then it will be amended to a
policy in V , which will never be amended. Hence, when considering possible amendments
to the current default x /∈ V , proposers only consider policies in V . Suppose that the mxth
proposer, πx(mx), is given the opportunity to make a proposal in this round. The set of
policies she can induce includes the default x (if she passes, the unamended default will be
implemented) and the set of policies in V that winning coalitions are willing to accept — her
‘acceptance set’ to use the language of the previous literature. The latter set must include
PV (x). Indeed, if an offer y in V is accepted then it will be implemented; if it is rejected
then x will be implemented. By subgame perfection, voters who strictly prefer y to x must
therefore vote ‘yes’. Voters who are indifferent between x and y may vote either ‘yes’ or ‘no’.
Thus, the last proposer’s acceptance set is of the form PV (x)∪Y , where the set Y ⊆ RV (x)

describes the voting behavior of indifferent voters. For instance, a situation where indif-
ferent voters always vote ‘no’ can be described by setting Y = ∅, while a situation where
indifferent voters always vote ‘yes’ can be described by setting Y = RV (x). As V satisfies
(ESR), there must exist a nonempty Y ⊆ RV (x) and therefore a nonempty acceptance set
for the last proposer. In our equilibrium construction, Y is such that ymx is the proposer’s
ideal policy in PV (x)∪Y ∪{x}: ymx ∈M

(
≽πx(mx), PV (x) ∪ Y ∪ {x}

)
⊆ sπmx

(V, x), where
ymx = x stands either for ‘pass’ or for a proposal outside the acceptance set (which is
then voted down). It is consequently optimal for her to choose ymx . Now consider the
(mx − 1)th proposer’s choice. She faces the same problem as the mxth proposer, except
that x must be replaced by ymx : players anticipate that if the (mx − 1)th proposer’s pro-
posal is rejected then ymx will be the final policy outcome. Hence, her acceptance set
is of the form PV (ymx) ∪ Y , where Y ⊆ RV (ymx) is such that she optimally chooses
ymx−1 ∈ M

(
≽πx(mx−1), PV (ymx) ∪ Y ∪ {ymx}

)
⊆ sπmx−1 (V, ymx). Moving backward, we
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can repeatedly apply the same reasoning to all proposers until the first, πx(1), whose choice
y1 is in F π(V, x) ⊆ V .

Now suppose that the ongoing default x belongs to V . Voters anticipate that amending
x to any other policy y will eventually lead to the implementation of a policy xy in V . In
our equilibrium, proposers only make and voters only accept a proposal y if they strictly
prefer xy to x. As V satisfies (ISP ), every coalition S ∈ W comprises a player who weakly
prefers x to xy. This makes any proposal y unsuccessful, so that each proposer k optimally
passes (i.e., she chooses yk(x) = x). This confirms players’ beliefs (assumed at the start of
the previous paragraph) that policies in V are immovable, thus completing the description
of the equilibrium. As the same construction applies in any round t, and in particular in
round 1, this equilibrium is no-delay.

Proposition 1 prompts the following question: Can there be equilibria of Γ
(
π, x0

)
(including equilibria with delay) whose outcomes do not belong to F π(V, x0)? The next
proposition answers this question in the negative.

Proposition 2. If σ is an equilibrium of Γ
(
π, x0

)
then there exists V ∈ V such that

fσ(x) ∈ F π(V, x) for all x ∈ X. Hence, V =
∪

x∈X fσ(x).

To prove Propositions 1 and 2, we establish stronger results. First, weak stability of
V implies that, for every x ∈ X and every length-mx path (x, ym(x), . . . , y1(x)) of tree
Tπ (V, x) with y1(x) ∈ V , there exists an equilibrium σ such that fσ (x, k) = yk(x) for
each k ∈ {1, . . . ,mx}. Second, for every equilibrium σ of Γ

(
π, x0

)
and every x ∈ X, there

exists a weakly stable set V and a length-mx path (x, ym(x), . . . , y1(x)) of Tπ (V, x), with
y1(x) ∈ V , such that yk(x) = fσ(x, k) for each k ∈ {1, . . . ,mx}. Thus, the construction
of trees associated with weakly stable sets also provides a complete characterization of
equilibrium behavior both on and off equilibrium paths.

Propositions 1 and 2 jointly yield a complete characterization of the set of policy
outcomes that can be reached from any particular default policy x0 ∈ X. We prove
Propositions 1 and 2 (and the subsequent Propositions) in the Appendix.

These two propositions provide, as a by-product of our analysis, a new bargaining
interpretation for (weakly) stable sets in voting games. In contrast to the existing literature
(e.g., Harsanyi (1974) and Anesi (2010)), these microfoundations extend to situations with
both non-transferable utility and an infinite policy space.

Furthermore, they have a number of implications which will prove useful below. We
end this subsection by detailing these properties:
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Corollary 1. Let Σ∗ (π, x0) be the set of equilibria of Γ
(
π, x0

)
. The set of equilibrium

policy outcomes in Γ
(
π, x0

)
is given by∪

σ∈Σ∗(π,x0)

fσ
(
x0

)
=

∪
V ∈V

F π
(
V, x0

)
.

An immediate implication of this result is that the set of policy outcomes that can
result from all equilibria and from all initial defaults is the union of all weakly stable sets.
Put differently, a policy in X can be obtained as the policy outcome of the bargaining
game from some initial default if and only if it belongs to some weakly stable set.

Our analysis above reveals that there may be equilibrium multiplicity at two levels in
the bargaining game (for a given protocol π). First, Proposition 1 says that any weakly
stable set can be supported by an equilibrium. The possible multiplicity of weakly stable
sets may thus be a source of equilibrium multiplicity. Second, Proposition 1 also implies
that, for a given weakly stable set V ∈ V , any terminal node of tree Tπ

(
V, x0

)
is the policy

outcome of some equilibrium of Γ
(
π, x0

)
. Hence, each weakly stable set may contain several

equilibrium policies. The issue of equilibrium refinement is discussed more extensively in
Section 6.2. In particular, Observation 5 shows that Markov trembling hand perfection
(Acemoglu et al, 2009) leaves the set of equilibrium policies unchanged.

On the other hand, Propositions 1 and 2 allow us to provide sufficient conditions for a
unique equilibrium:

Corollary 2. a) Γ
(
π, x0

)
has a unique equilibrium outcome if there is a unique weakly

stable set and X is well ordered;
b) Any Condorcet winner is implemented in every equilibrium of Γ

(
π, x0

)
, for every

x0 ∈ X.

Both parts follow from our algorithm. If the premise of part a) holds then each node
in the tree has a unique successor; and any Condorcet winner must constitute the unique
weakly stable set. The premise of part a) is sufficient, rather than necessary, as our next
example demonstrates:

Example 3.2. Suppose that two players (1 and 2) can divide a pie, earning their share
of the pie, if and only if they both agree; that player 1 proposes before player 2 in each
round; and that both players earn 0 at the initial default (x0). If x1 denotes player 1’s
share then the policy space consists of x0 and every x1 ∈ [0, 1]. This policy space is not
well ordered because each player is indifferent between x0 and a division which yields her
none of the pie. There is a unique weakly stable set, consisting of every division of the pie.
Γ
(
π, x0

)
then has a unique equilibrium outcome in which player 2 takes the whole pie.
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This is, of course, an equilibrium outcome of the conventional final-vote bargaining game
with patient players. More interestingly, it is also the only equilibrium outcome of such a
game when payoffs are discounted after each round (rather than each proposal): for any
common discount factor.

�

The collection of weakly stable sets in a game only depends on the protocol via M , the
set of proposers. Propositions 1 and 2 imply that variations in the protocol do not affect
the set of policies which can be implemented across initial defaults. However, as we will see
in Section 4, variations in the protocol π may affect the policies which can be implemented
from a given initial default — i.e., from Corollary 1:

∪
V ∈V F π

(
V, x0

)
. Interestingly, the

next result states that this set only depends on the protocol at the initial default: πx0 .
To see this, observe that, for any weakly stable set V and any initial default x0, the tree
Tπ

(
V, x0

)
, and therefore the selection of terminal nodes F π

(
V, x0

)
, only depend on πx0 .

Indeed, the construction of the tree reveals that all equilibrium policies can be reached in
one bargaining round and, in that round, each proposer i ∈ M chooses her ideal policies
from a set which is independent of the protocol.

Corollary 3. Let π1 ≡
{
π1
x

}
and π2 ≡

{
π2
x

}
be two protocols. If π1

x0 = π2
x0 then

F π1 (
V, x0

)
= F π2 (

V, x0
)

.

Corollaries 1 and 3 thus jointly imply that the set of equilibrium policies only depends
on the protocol at the initial default. In all equilibria supporting V ∈ V, proposers and
voters anticipate in round 1 that policies in V , and only those policies, are immovable: once
reached, they must be implemented. In particular, each proposer k faces an ‘acceptance
set’ of the form Ak = PV (yk+1) ∪ {yk+1} ∪ Y , where yk+1 is the policy that will be
implemented if she fails to amend x0 and Y is some subset of RV (yk+1): any proposal in
Ak is accepted. If the kth proposer amends x0 in round 1 then the equilibrium path must
lead to the implementation of her ideal policy in Ak (which is independent of the protocol).
If protocols in future rounds (i.e. {πx}x̸=x0) induced equilibrium paths not leading to the
implementation of the kth proposer’s ideal policy in Ak, then she could profitably deviate
by offering this policy — which would be accepted — directly in round 1.

3.3 Some quirky properties of the equilibrium correspondence

In this subsection, we illustrate some interesting properties of the equilibria of Γ
(
π, x0

)
via a couple of examples which will also prove useful in subsequent sections.
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Example 3.3. Suppose that M = N = {1, 2, 3}, and that any two players can agree
to any division of a dollar: W =W = {S ⊆ N : |S| ≥ 2}. Take any point x̄ = (x̄1, x̄2, x̄3)

in the 2-dimensional simplex ∆ ≡
{
(x1, x2, x3) ∈ R3

+ : x1 + x2 + x3 = 1
}

at which some
player (say, 1) earns less than 50c: x̄1 ≤ 1/2. It is well known that

V (x̄1) = {x ∈ ∆ : x2 + x3 = 1− x̄1}

is a vNM (and therefore weakly) stable set: cf. Ordeshook (1986) Ch 9.2; so the union
of weakly stable sets for this game is the entire simplex. This would remain true if we
changed M to {1, 2}: W — and therefore V — remains unchanged as long as at least two
players can propose. Combined with Proposition 1, this observation implies that a player
who cannot propose may nevertheless earn the entire dollar in some equilibrium of a game
whose initial default is no agreement (x0 = (0, 0, 0)). By contrast, a player who cannot
propose earns 0 in Baron and Ferejohn’s (1989) closed rule model, and in their open rule
game with patient enough players. Furthermore, any policy in the interior of the triangle
may be implemented in an equilibrium. Specifically, suppose (without loss of generality)
that x̄ belongs to the interior of the simplex and that players propose in the order 1, 2, 3, at
every default. Using tree Tπ

(
x0, V (x̄1)

)
, it is readily checked that there is an equilibrium

in which, at the initial default,

• player 3 (the last proposer) would propose (x̄1, 0, 1− x̄1), player 2 would propose
(x̄1, 1− x̄1, 0), and player 1 (the first proposer) proposes x̄;

• the first proposal is accepted: players 1 and 3 vote in favor of x, while player 2 votes
against any proposal y such that y2 ≤ 1− x̄1.

The first proposal is successful in this equilibrium, and it secures the votes of exactly
two players. The voting pattern on this proposal satisfies the size principle, yet the three
players each earn a share of the dollar. These properties also hold in Baron and Ferejohn’s
(1989) open rule game with impatient players, and in Diermeier and Fong’s (2011) three-
player bargaining game with a single proposer (because of their tie-breaking rule: cf.
Section 1.2 above). By contrast, the two properties fail in Baron and Ferejohn’s (1989)
closed rule game and the open rule game with patient players, where the final vote satisfies
the size principle, but the dissenting voter earns nothing.

�

Example 3.1 (continued). In the last subsection, we constructed tree Tπ ({x, z}, y)
for Example 3.1 when players propose in the order 1, 2, 3. Two of the paths in Figure
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1 have z as a terminal node. Proposition 1 then implies that Γ(π, y) has an equilibrium
in which z is implemented. Preferences in this example imply that y P -dominates z. We
therefore conclude that a committee can implement a policy which is P -dominated by the
initial default. This property must hold in Bernheim et al’s (2006) benchmark pork barrel
model as the last proposer’s ideal policy is implemented; but it does not hold in Diermeier
and Fong (2011), and it violates Acemoglu et al’s (forthcoming) Desirability Axiom.

�

We record the arguments in this subsection as

Observation 1. a) A player who does not propose may nevertheless earn all of the surplus
from agreement;

b) All players in a majority-rule divide the dollar game may earn a positive surplus in
equilibrium;

c) The members of some winning coalition may all strictly prefer the initial default x0

to the final policy outcome.

3.4 The model at work

We end this section by illustrating how our model can serve as a workhorse to generate
insights for interesting real-world problems. Specifically, we show that our results can
explain the power of a proposer who cannot vote in a model based on the Council of
Ministers. According to this model, the European Commission (EC ) cannot vote, but
is the only proposer; all other members of the Council (N = {1, . . . , n}) can vote. The
default is amended if a proposal secures a qualified majority of votes. We take the quota
to be a bare majority to simplify exposition: W = {S ⊆ N : |S| > n/2}, with n odd.18

According to Thomson (2011) Ch 7, controversial issues addressed by the Council can
be modeled as scalars — so that X ⊆ R — and, for typical issues, the initial default and
the EC ’s ideal policy span all of the voters’ ideal policies.19 We adopt these assumptions,
and additionally suppose that each player’s preference ordering is single-peaked on X. We
write player i’s ideal policy as xi, with countries ordered such that i < j ⇒ xi ≤ xj for

18In fact, contrary to our model, voting members can propose a policy, which amends the default if it
secures all votes.

19Strictly speaking, this ordering refers to observable policy positions; but Thomson argues (Ch 6) that
these positions can be explained by government’s characteristics, so ideal policies are ordered in the same
way as policy positions. For example, positions on integration issues are explained by domestic opinion on
EU membership.
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all voters i and j, and write µ for the median voter. Finally, we suppose for concreteness
that x0 < x1 < xn < xEC ; and, more substantively, that players’ preferences satisfy the
single-crossing property.

We characterize the set of equilibrium policies in this model by following the procedure
described above. First, we modify the collection of winning coalitions to account for the
EC ’s proposal power, thus obtainingW = {S ⊆ C : (S ∩N) ∈W & S ∋ EC}. Using this
collection of winning coalitions, it is easy to confirm that V = [xµ, xEC ] is the unique
weakly stable set. Corollary 1 then implies that we can find the set of equilibrium policies
by using tree Tπ

(
V, x0

)
.

The immediate successor node of x0 in the tree must be EC ’s ideal policy in RV

(
x0

)
∪{

x0
}
: in the last proposal of a round, EC (who is the sole and therefore last proposer)

would amend the initial default to its ideal policy among those in V that dominate the
default. By construction, this policy is uniquely defined as x∗ = min

{
xEC , x

′
µ

}
, where

x′µ > xµ is the policy that makes the median voter indifferent to the initial default (i.e.
x′µ ∼µ x0.) If x∗ has a successor node in Tπ

(
V, x0

)
(i.e., if EC can propose more than

once) then this node must be unique and equal to x∗ itself because x∗ ≻EC x for all
x ∈ RV (x∗) \ {x∗}. Consequently, x∗ is the unique equilibrium policy. This example
illustrates the possible power of a player who can propose, but not vote. (Example 3.3
above illustrates the power of a player who can vote, but not propose.) Though the EC
cannot vote, the equilibrium policy is closer to its ideal policy than the median voter’s
ideal policy xµ (indeed: xµ < x∗ ≤ xEC). In particular, if x′µ ≥ xEC then the equilibrium
policy coincides with the EC ’s ideal policy and, therefore, exceeds all voters’ ideal policies.
These results are consistent with Schmidt (2000), who argues that EC proposal power can
explain why implemented policy has been more integrationist than the ideal policies of the
Council’s voting members.

4 Comparative statics

In this section, we consider how variations in the model’s parameters affect the policies
that are implemented from any initial default. In Section 4.1, we explore the effect of
changing the protocol on the policies implemented in a given weakly stable set. In Section
4.2, we focus on the implications of changes in the set of weakly stable sets.
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4.1 The protocol

Thus far, we have studied play in games with a fixed protocol. In this subsection, we study
situations in which a player, the chair, chooses a protocol π after observing the initial
default x0; and the game Γ

(
π, x0

)
is then played. As the chair’s choice of protocols only

affects her payoff via πx0 (Corollary 3), the chair cannot improve on selecting a protocol
which is constant across X.20 Hence, we can without loss of generality restrict attention
to constant protocols.

The chair’s choice will depend on her expectation of behavior in Γ
(
π, x0

)
and, therefore,

on her predictions of equilibrium policies in that game for every protocol π. Though the
potential multiplicity of equilibria makes the comparative statics analysis of equilibrium
policies delicate, the following result allows us to draw general conclusions about the chair’s
preferences over protocols in the well ordered case.

Proposition 3. If X is well ordered then, for every equilibrium σ of Γ
(
π, x0

)
and any

x /∈ fσ (X):
fσ (x) = M

(
≻π(k), R(x) ∩ fσ (X)

)
,

where k ≡ max
{
l ∈ {1, . . . ,mx} : M

(
≻π(l), R(x) ∩ fσ (X)

)
≻π(l) x

}
.

In Proposition 3, the kth proposer is the last proposer among those who have an
incentive to amend the ongoing default x in equilibrium σ: namely those who strictly
prefer some equilibrium policy that is ‘reachable’ to the default. We will refer to any such
proposer as an ‘amender’ of x. Proposition 3 says that the ideal policy in R(x) ∩ V of
the last amender according to π is implemented in every equilibrium σ ∈ Σ∗ (π, x0) which
supports V .

Take any fixed protocol in which the chair is not the last proposer, and consider some
equilibrium σ of that game. Now consider a protocol in which the chair proposes last.
Proposition 3 implies that this game has an equilibrium in which the chair is at least
as well off, and better off if she is an amender of x. The relevant equilibrium supports
the same weakly stable set as σ so existence of an equilibrium in the first game implies
existence of an equilibrium when the chair proposes last.

Proposition 3 does not imply that the chair cannot lose if she changes to a protocol
in which she proposes last because there may be several weakly stable sets, and therefore
a multiplicity of equilibrium outcomes. However, we can strengthen results in the last

20Corollary 3 also applies in a different ‘dynamic’ game where the chair selects the next proposer imme-
diately after each vote which does not end the game (see Appendix A.2 for a formal proof).

22



paragraph if there is a unique weakly stable set (say, V ); so Corollary 2 implies that there
is a unique equilibrium policy for every protocol. In such cases, there is room for protocol
manipulation, except in the rather unlikely case where all amenders of x0 share the same
ideal policy among those in R

(
x0

)
∩ V . Furthermore, proposing last is an advantageous

position in the following sense:

• If the chair is an amender of x0 then she can never improve on any protocol in which
she proposes last: she is at least as well off when she proposes last as when she
proposes earlier;

• If the chair is not an amender of x0 then she does not lose anything by selecting
herself as the last proposer: if another protocol is optimal for her then there is a
protocol in which she proposes last which is also optimal.

These features are reminiscent of the ‘power of the last word’ in Bernheim et al’s
(2006) pork barrel model: they show that the last proposer’s ideal policy is implemented
in every equilibrium. However, there are important differences between our respective
results. In particular, Proposition 3 implies that the last amender gets her best policy in
some weakly stable set that R-dominates the initial default rather than her best policy.
This difference reflects an important distinction between our respective use of backward
induction arguments. In Bernheim et al, the game must end after the last proposal; in our
model, any amendment must lead to the implementation of a policy in a weakly stable set.
More generally, Bernheim et al’s result relies on the pork barrel structure and the existence
of winning coalitions which exclude some players. This allows the final proposer to play
off putative members of the winning coalition. Proposition 3, by contrast, allows for cases
in which only the grand coalition is winning: e.g. in variants on Example 3.2 where the
pie can only be split in a finite number of proportions.

Do the conclusions above carry over to cases in which the policy space is not well
ordered? As the next example reveals, the answer is no, even if there is a unique weakly
stable set: a chair who is an amender can improve on a protocol in which she is the last
proposer.

Example 4.1. Let M = N = {1, 2, 3, 4, 5, 6} and X = {x, v1, v2, v3}. Preferences
over X are given by: v3 ≻1 v2 ∼1 v1 ≻1 x; v2 ≻2 v1 ≻2 x ≻2 v3; x ≻3 v2 ≻3 v3 ≻3 v1;
x ≻4 v3 ≻4 v2 ≻4 v1; v3 ∼5 v1 ≻5 x ≻5 v2; v1 ≻6 x ≻6 v2 ≻6 v3. Assume that preferences
are aggregated by majority rule: W is the collection of majority coalitions. It is easily
checked that the unique weakly stable set here is V = {v1, v2, v3}.
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Suppose the initial default is x0 = x. Consider first a protocol π1 in which players
1 and 2 are the penultimate and last proposers, respectively. If player 2 were given the
opportunity to make the last proposal in the first round then she would amend the default
x with v1: v1 is the only policy in V that P -dominates (and is not P -dominated by) x,
and v1 ≻2 x. If player 1 were given the opportunity to make the penultimate proposal
then voters would only vote ‘yes’ if they preferred player 1’s proposal to v1. Assuming
that indifferent voters vote ‘yes’, player 1 would successfully propose her ideal policy in
R (v1) ∩ V = V , which is v3. Since no policy in V \ {v3} R-dominates v3 (except v3

itself), proposers who appear before player 2 in protocol π1 cannot prevent v3 from being
implemented (using the language of the tree: all successor nodes of v3 are equal to v3).
Thus, the worst policy of the last amender of x is implemented in equilibrium.

Now consider another protocol, say π2, in which players 2 and 1 are the penultimate
and last proposers, respectively. Using the same argument as in the previous paragraph,
one can show that v2 is the unique equilibrium policy when indifferent voters vote ‘yes’.
Thus, if player 2 is the chair (and she anticipates that indifferent voters accept proposals)
then she strictly prefers protocol π2 to protocol π1.21 By the same logic, she strictly prefers
any protocol in which she makes the last two proposals to π1: the chair’s ideal policy is
also implemented by such a protocol.

�

This example shows that when the policy space is not well ordered:
(i) The chair may optimally choose to make the last two proposals, thereby strictly

improving on a protocol in which she only proposes last.22

(ii) The chair may optimally choose to (only) make the penultimate proposal, thereby
strictly improving on a protocol in which she only proposes last. This contrasts with the
equilibria in Bernheim et al (2006) and with our results for well ordered X and a unique
weakly stable set, where each amender is at least as well off proposing last.

We summarize the discussion above in

Observation 2. Suppose that there is a unique weakly stable set. If the policy space is
well ordered then the chair is at least as well off proposing last as in any other protocol.
However, if the policy space is not well ordered then the chair may prefer to make the last
two or the penultimate proposals over only proposing last.

21If she anticipates that indifferent voters reject proposals then she is indifferent between π1 and π2, for
v1 is the unique equilibrium policy in both cases.

22This result should not be confused with Diermeier and Fong’s (2011) demonstration that a single
proposer is at least as well off making a take it or leave it offer as playing their game.
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4.2 The set of winning coalitions

Thus far, we have considered how varying the protocol affects play for a given set of
weakly stable sets. In this subsection, we explore the effects of changing the set of winning
coalitions, and thereby the weakly stable sets. We consider two reasons why the winning
coalitions might change: in Section 4.2.1, we study the effects of increasing the quota; in
Section 4.2.2, we consider how changing the number of proposers affects play.

4.2.1 Quotas

In conventional bargaining models with spatial preferences on the real line, an increase in
the quota makes voters with more extreme preferences decisive. The committee can only
amend a default if the decisive voters agree; so committees with a greater quota have a
larger gridlock interval. In Black’s (1958) words:

“The larger the size of majority needed to arrive at a new decision on a topic,
the smaller will be the likelihood of the committee selecting a decision that
alters the existing state of affairs” p. 99.

We will discuss this conjecture in the context of our model with an arbitrary policy space.
We say that Γ

(
π, x0

)
is a quota game if the collection of winning coalitions (of vot-

ers) W is of the form Ws ≡ {S ⊆ N : |S| ≥ s} with s ≥ n+1
2 . Our goal is thus to

study how the set of equilibrium policies of a quota game is affected by an increase
in the quota. Given the collection of winning coalitions (of voters) Ws, we can define
the corresponding social preference relations Rs and Ps, and the corresponding collec-
tion of weakly stable sets Vs as we did in Section 3. In light of our characterization
results, the conjecture above can be reformulated as: q > r implies that

∪
Vr ⊆

∪
Vq

(where
∪
Vs ≡ {v ∈ X : v ∈ V for some V ∈ Vs}). In other words, an increase in the

quota (weakly) expands the union of immovable policies. We will refer to this property as
conventional wisdom.

It is easy to show that conventional wisdom holds if there is enough conflict of interest
that X is a weakly stable set or if there is enough common interest that there is a Condorcet
winner (which must be the only weakly stable set) with the higher quota. On the other
hand, conventional wisdom would fail if some policy is in a weakly stable set if and only if
the quota is lower. We provide an example below with a finite, well ordered policy space
which satisfies the stronger property that

∪
Vq ⊂

∪
Vr: an increase in the quota contracts

the union of immovable policies.
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The intuition for this result is that an increase in the quota makes it easier for a given
set of policies to satisfy internal stability, but more difficult for that set to satisfy external
stability. However, this intuition does not fully explain the result because the union of
weakly stable sets is not necessarily weakly stable:

Example 4.2. Let M = N = {1, 2, 3, 4, 5, 6}, X = {w, x, y, z}, and w ≻i x ≻i y ≻i z

for i = 1, 2, y ≻i z ≻i w ≻i x for i = 3, 4, z ≻5 w ≻5 x ≻5 y, and x ≻6 y ≻6 z ≻6 w.
Suppose first that the quota is 4. Applying the definition of weakly stable sets, it is readily
checked that there are two weakly stable sets in this case: {w, y} and {x, z}; so

∪
V4 = X.

Note that x and z cannot form a weakly stable set with w and y because the internal
stability condition, (ISP4), would fail: wP4x, zP4w, xP4y, and yP4z.

Now suppose that the quota becomes 5. As wP5x and yP5z, internal stability (ISP5)
does not allow for more weakly stable sets than before the increase in the quota. Further-
more, the increase in the quota implies that {x, z} no longer satisfies external stability:
while zP4w and xP4y, ¬ (zP5w) and ¬ (xP5y). As a result, {w, y} is now the only weakly
stable set (as w and y P5-dominate x and z, respectively). Thus, conventional wisdom
fails in this example in the strong sense that an increase in the quota contracts the union
of immovable policies: {w, y} =

∪
V5 ⊂

∪
V4 = X.

�

We summarize the arguments above in

Proposition 4. Suppose that Γ
(
π, x0

)
is a quota game. An increase in the quota weakly

expands the set of equilibrium decisions if there is a Condorcet winner for the higher quota
or if X is a weakly stable set. However, an increase in the quota may contract the set of
equilibrium decisions in other intermediate cases.

Black’s conjecture underlay a series of reforms in the EU, which introduced qualified
majority voting (QMV) in the Council of Ministers to expedite legislation. Our anal-
ysis above suggests an alternative perspective: if Council proceedings corresponded to
our model then introduction of QMV might, perversely, have prevented the Council from
amending the initial default. This may help to explain why the introduction of QMV has
not significantly reduced the 80% of legislation that the Council has passed without a final
vote: cf. Heisenberg (2005).
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4.2.2 Adding proposers

It is widely believed that players can never lose if they are given the opportunity to propose:
for a proposer could always make an offer which will be rejected. This argument has been
influential, for example, in the design of regulatory agencies, which are required to include
stakeholders in their decision making process; and the argument is correct in our model
for any fixed weakly stable set. However, adding a proposer can change the set of coalitions
in W, and thereby the weakly stable sets. Consequently, as we argue below, a player may
be worse off if she is given the opportunity to propose.

We will henceforth focus on the special case where there is initially a single proposer
(say, player 1): both for expositional convenience and in order to compare our results with
Diermeier and Fong (2011), who study a model with repeated implementation. They show
that the single proposer may be worse off when she has the opportunity to propose in several
rounds than when she proposes once in the game. This property is clearly impossible in
our model: on the one hand, adding another proposal by player 1 does not change the set
of weakly stable sets; on the other hand, player 1 could pass at her first opportunity to
propose. Indeed, Example 4.1 above demonstrates that a player may prefer to make the
last two proposals than just the last proposal in each round. The same argument implies
that the set of policies which can be implemented in some equilibrium is unchanged by
adding another proposer (say, player 2) with the same preferences as player 1.

Adding a proposer with different preferences from player 1 may affect play for various
reasons:

• In Section 3.3, we used Example 3.3 to demonstrate that a player who does not
propose may earn all of the surplus in an equilibrium. Adding another proposer does
not change the weakly stable sets; and there are then equilibria in which the new
proposer earns less than all of the surplus.

• In Section 4.1.2, we demonstrated that, for given weakly stable sets, player 1 may be
better off if player 2 proposes before her, provided that X is not well ordered.

We will now demonstrate by example that adding a proposal by player 2 may make
player 1 better off and player 2 worse off because of changes in the weakly stable sets, even
if X is well ordered, and there is a unique weakly stable set for each set of proposers (so
that each associated game has a unique equilibrium policy):.

Example 4.3. Let N = {1, 2, 3, 4, 5} and X = {w, x, y, z}. Preferences over X are
given by: z ≻1 y ≻1 w ≻1 x; x ≻2 y ≻2 z ≻2 w; z ≻3 w ≻3 x ≻3 y; w ≻4 x ≻4 y ≻4 z;

27



and x ≻5 w ≻5 y ≻5 z. Assume that the initial default is x0 = x and that defaults are
amended by majority rule: W is the collection of majority coalitions.

Suppose first that player 1 is the only proposer (i.e. M = {1}). This implies that W
is the collection of majority coalitions that include 1: W = {S ∈W : 1 ∈ S}. It is readily
checked that the unique weakly stable set here is V = {x, y, z}. Proposition 2 then implies
that x is the unique equilibrium policy. Intuitively, since no policy in V is preferred to x

by a majority coalition, it is impossible for 1 to amend it. Consequently, the proposer’s
worst policy must be implemented.

Now suppose that player 2 is given the opportunity to make a proposal after player
1, so that the set of proposers becomes M ′ = {1, 2}. The collection of winning coalitions
W ′ = {S ∈W : {1, 2} ∩ S ̸= ∅}, thus yielding a unique weakly stable set V ′ = {w, y}. The
second (and last) proposer, player 2, would never amend the initial default x, which is her
ideal policy, in equilibrium. Anticipating this, voters accept the first proposer’s proposal if
and only if they prefer the latter to x. Player 1 will therefore amend x to her ideal policy
in R(x) ∩ V ′, which is w. This implies that w, player 2’s worst policy in X, is now the
unique equilibrium policy. In contrast, player 1 is now strictly better off, as w ≻1 x.

�

Examples in which a player may be worse off when given the opportunity to propose
are easy to concoct in final voting games with a finite horizon. In such games, the intuition
is simple. The last amender cannot commit to pass. Her predecessor may therefore amend
the default to the last amender’s disadvantage, knowing that the latter would otherwise
amend the default. In Example 4.3, however, the logic is different: for the initial default
x is player 2’s ideal policy and, therefore, player 1 does not expect her to amend it.

The problem for player 2 is that she cannot commit to pass at all possible defaults.
Adding player 2 to the set of proposers changes the P -dominance relation and, conse-
quently, the set of immovable policies which player 1 can successfully propose in equilib-
rium. In particular, player 1’s ideal policy z, which was initially immovable, would now be
amended to y by player 2 (off the equilibrium path). This in turn makes player 2’s worst
policy w immovable: changing w to z would lead to y being implemented, thus making a
majority of voters (i.e. players 4, 5, and 6) worse off. Moreover, w is the only immovable
policy which is majority preferred to the initial default x. In the first round, it is thus
optimal for player 1 to propose w, which is accepted and never amended.

We record the conclusion from this example as

Observation 3. A player may be strictly worse off if she is given the opportunity to
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propose.

Corporate governance reform often aims to extend shareholders’ scope to propose poli-
cies. Opponents (e.g. the Business Roundtable) argue that it is disadvantageous to give
such power to uninformed shareholders. Observation 3 shows that this property may also
hold when shareholders are informed.23 This is consistent with evidence that allowing
shareholders to propose has a negative and/or insignificant effect on shareholder value.
(See, for example, Akyol et al (2010) and Larcker et al (2011) on proxy access.)

5 Extensions

5.1 Implementation

According to the model analyzed above, payoffs only depend on the policy (if any) that
is eventually implemented, at which point the game ends. In a variant on our model,
bargaining continues indefinitely; but payoffs are determined by the policy implemented.
Equilibrium outcomes in this related model clearly correspond to equilibrium outcomes in
our model because play after implementation is payoff-irrelevant. The extensive form in this
variant is exactly that studied in the literature on repeated implementation, where players
earn a per-round utility which is determined by the ongoing default, and payoffs are the
net present value of the utilities earned each round. Consequently, for any fixed strategy
combination, each player’s payoff in a repeated implementation model with a common
discount factor δ ≃ 1 is close to that in the variant on our model. This observation suggests
that there is δ < 1 such that an equilibrium strategy combination in our model (or, more
precisely, in the related model) might be an equilibrium in the repeated implementation
model. We explore such an intuition in this subsection.

More specifically, we consider a variant of Γ
(
π, x0

)
in which the bargaining process

continues ad infinitum. At the end of each round t ∈ N, default policy xt is implemented
and each player i receives an instantaneous payoff (1 − δ)ui

(
xt
)
, where δ ∈ (0, 1) is the

common discount factor and ui ∈ RX is a continuous utility function which represents ≽i

— Assumption A0 guarantees that such a utility function exists. Thus, player i’s payoff
from a sequence of defaults

{
xt
}∞
t=1

is (1 − δ)
∑∞

t=1 δ
t−1ui

(
xt
)
. We will refer to such a

game as Γδ
(
π, x0

)
, and will say that an equilibrium of Γδ

(
π, x0

)
is ‘absorbing’ if there is a

23The proposal which is put to the AGM for a final vote is typically negotiated by shareholders and
management prior to the meeting. Our model refers to these negotiations, rather than to the final vote
itself.
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round T such that xt = xT for every subsequent round: t > T .24 We abuse terminology in
this subsection by identifying equilibria in our model with equilibria in the related model
with continued (but payoff-irrelevant) bargaining.

Our next result confirms the intuition above in the finite, well ordered case.

Proposition 5. If X is finite and well ordered then there exists δ̄ ∈ (0, 1) such that the
following statement is true whenever δ > δ̄: σ is an equilibrium of Γ

(
π, x0

)
if and only if

it is an absorbing stationary Markov equilibrium of Γδ
(
π, x0

)
.

As δ becomes arbitrarily close to 1, player i’s discounted payoff from a (converging)
sequence of defaults

{
xt
}

becomes arbitrarily close to her instantaneous payoff from the
limit policy, say xT :

∞∑
t=1

δt−1ui
(
xt
)
→ ui

(
xT

)
as δ → 1 .

The assumption that X is finite and well ordered thus guarantees that there exists a
sufficiently large δ < 1 (δ̄) such that players evaluate sequences of defaults similarly in
absorbing equilibria of Γδ

(
π, x0

)
and Γ

(
π, x0

)
: only final (or limit) policies matter. Put

differently, x ≻i y if and only if player i strictly prefers any sequence of defaults converging
to x to any sequence converging to y in the repeated implementation model. This may not
be true if X comprises a continuum: even though δ is close to 1 and x ≻i y, ui(x)− ui(y)

may be so small that player i prefers the sequence of defaults leading to y over that leading
to x.

Furthermore, as the following example illustrates, Proposition 5 does not hold when X

not well ordered.
Example 3.3 (continued). Consider again the divide-the-dollar game from Example

3.3. Recall that the set of policies (x1, x2, x3) ∈ ∆ at which player 1 earns 50c, V (1/2),
is a weakly stable set. From Proposition 1, therefore, there are equilibria of Γ

(
π, x0

)
that

support V (1/2). In particular, the equilibrium σ constructed in the proof of Proposition 1
prescribes the committee to implement a policy in V (1/2) without delay: in any subgame
starting with an ongoing default x /∈ V (1/2), x is amended to some vx ∈ V (1/2) in the
first round.

Nevertheless, irrespective of the value of δ, σ is not an equilibrium of Γδ
(
π, x0

)
.

To see this, consider a round in which the ongoing default is v0 ≡ (1/2, 1/2, 1/2) ∈
24Existence and characterization of absorbing equilibria in legislative bargaining games with repeated

implementation are discussed in Acemoglu et al (forthcoming), Anesi (2010) and Diermeier and Fong
(2011).
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V (1/2). Suppose that player 1 (if given the opportunity to amend v1) proposes y =

(1/2 + ϵ/2, 1/2− ϵ, 1/2 + ϵ/2) for any small and positive ϵ. If player 1’s proposal were ac-
cepted then, by construction of σ, a policy vy ∈ R(y)∪V (1/2) would be implemented in all
future periods. As vy must R-dominate y, it must be of the form vy = (1/2, 1/2− ϵ+ γ2, 1/2 + ϵ/2 + γ3)

where γi ≥ 0 and γ2 + γ3 = ϵ/2. Hence, players 1 and 3 receive higher payoffs when they
accept 1’s offer to amend v0 to y than when they reject it:

(1− δ)u1 (y) + δu1 (vy) =
1 + (1− δ)ϵ

2
>

1

2
= u1 (v0) ,

and
(1− δ)u3 (y) + δu3 (vy) =

1 + ϵ

2
+ δγ3 >

1

2
= u3 (v0) .

This proves that player 1 has a profitable deviation from σ1 and, therefore, that σ is not
an equilibrium of Γδ

(
π, x0

)
.

�

If we weaken the equilibrium concept by only requiring approximate best responses,
however, we can obtain an analog of Proposition 5 in terms of equilibrium policies. Indeed,
Proposition 6 below states that the set of immovable policies in any equilibrium of Γ

(
π, x0

)
is also the set of absorbing policies in some contemporaneous perfect ε-equilibrium (Mailath
et al., 2005) of Γδ

(
π, x0

)
when δ is close enough to 1.

Proposition 6. For any ε > 0, there exists δε < 1 such that the following statement is true
for all δ > δε: If σ is an equilibrium of Γ

(
π, x0

)
then there is an absorbing contemporaneous

perfect ε-equilibrium of Γδ
(
π, x0

)
whose absorbing policy from any ongoing default x ∈ X

is fσ(x).

Proposition 6 thus implies that every policy which can be implemented in our game,
the union of weakly stable sets, is a possible policy outcome in a contemporaneous perfect
ε-equilibrium of the game with repeated implementation.

5.2 The largest consistent set

In this subsection, we study the relation between our framework and that in Chwe (1994).
Although the latter’s approach to farsighted coalitional stability is cooperative, it is closely
related to ours: as in our model, when a coalition S contemplates a deviation from the
ongoing default, its members anticipate (and only take into account) the final outcome
that will result from the sequence of deviations triggered by S’s initial deviation. Chwe
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argues that the outcomes that are immune to these farsighted coalitional deviations should
satisfy a consistency condition, which in the context of our paper is defined as follows:

Say that a set of policies Z ⊆ X is consistent if and only if the following is true for all
z ∈ Z: for any x ∈ X and S ∈ W, there exists z′ ∈ Z, where z′ = x or z′Rx, such that
z ≽i z

′ for some i ∈ S. The closure of any consistent set is therefore consistent.
In words, any element z of a consistent set Z is ‘stable’ in the sense that each winning

coalition S anticipates that a deviation from z will eventually lead to another policy z′

in Z which makes at least one member of S worse off. Interestingly, Chwe (1994) shows
that there exists a largest consistent set, Z: Z consistent implies Z ⊆ Z and Z is itself
consistent. Thus, Z comprises all the policies that are immune to farsighted coalitional
deviations.

Our next goal is to study the relationship of our bargaining model to the largest con-
sistent set. We have analyzed the model in previous sections by characterizing its Markov
stationary equilibria. We have shown that every Markov stationary equilibrium imple-
ments a weakly stable set. Although it is readily checked that a weakly stable must be
consistent and, therefore, a subset of the largest consistent set, the converse is not true:
a consistent set may not be weakly stable, so that in general Z /∈ V. In this subsection,
we weaken stationarity, and show that the ensuing set of equilibria supports the largest
consistent set.

To do so, we first need some definitions. In general, a history at some stage of the game
describes all that has transpired in the previous rounds and stages (the sequence of defaults
and proposers, their respective proposals and the associated pattern of votes). We call a
‘partial round-t history’ any list

(
x0, S1, x1, . . . , St−1, xt−1

)
where Ss ∈ W stands for the

winning coalition which amended xs−1 to xs. Let Ht be the set of round-t partial histories
— H1 ≡

{
x0

}
being the null history — and let H ≡

∪∞
t=1H

t be the set of partial histories.
We define a ‘semi-Markovian’ strategy as an analog of a stationary Markov strategy where
partial histories play the role of the ongoing default. More specifically: in proposal stages,
strategies only depend on the partial history and the identity of the remaining proposers
in the current round; in voting stages, strategies only depend on the partial history, the
proposal just made, the votes already cast thereon, and the remaining proposers in the
current round.

As in the case of stationary Markov strategies, we can now associate outcome functions
with semi-Markovian strategies. Any semi-Markovian strategy σ generates an outcome
function ϕσ, which assigns to every partial history h ∈ H and every k ∈ {1, . . . ,mxt−1}
the unique final outcome ϕσ(h, k) eventually implemented (given σ) when h is the current
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partial history and the kth proposer is about to move. We are particularly interested in
ϕσ

(
x0, 1

)
, which describes the policy implemented in Γ

(
π, x0

)
if players act according to

σ. We will sometimes abuse notation by writing ϕσ
(
x0

)
instead of ϕσ

(
x0, 1

)
.

We now turn to the characterization of semi-Markovian equilibria — i.e., subgame
perfect equilibria of Γ

(
π, x0

)
in which all players use semi-Markovian strategies. It turns

out that the tree construction introduced in Section 3 can also be applied to consistent sets
to obtain semi-Markovian equilibria. More specifically, if Z is a consistent set then each
length mx0 path of tree T

(
Z, x0

)
ending with a policy in Z describes behavior in round 1

in some semi-Markovian equilibrium. Hence, there exists a semi-Markovian equilibrium σ

in which a policy in Z is ‘agreed on’ immediately: if the initial default x0 belongs to Z, it
is implemented at the end of round 1; otherwise, it is amended to some policy in Z that is
implemented at the end of round 2. Our next result mirrors Proposition 1.

Proposition 7. Suppose that Z is the closure of a consistent set, and let f ∈ ZX be any
selection of F π(Z, ·): f(x) ∈ F π(Z, x) for all x ∈ X. There exists a collection {σx}x∈X
such that, for all x ∈ X, σx is a semi-Markovian equilibrium of Γ (π, x) and ϕσx (x) = f (x).
Hence,

∪
x∈X ϕσx(x) = Z.

The last part of the statement in the proposition says that, for any consistent set Z

and initial default x0, we can construct an equilibrium of Γ
(
π, x0

)
, σ, such that the final

policy outcome reached from x0 must belong to Z. Inspection of the proof (in Appendix
A.1) reveals that more is true: the final policy outcome reached from any partial history
h ∈ H must belong to Z; so that ϕσ(H) ≡

∪
h∈H ϕσ(h, 1) = Z. The next result establishes

that the converse is also true.

Proposition 8. If σ is a semi-Markovian equilibrium then ϕσ(H) ≡
∪

h∈H ϕσ(h, 1) is a
consistent set.

Thus, for any semi-Makovian equilibrium, the set of policy outcomes that can be
reached from all possible partial histories is a consistent set and, therefore, a subset of
the largest consistent set Z: ϕσ(H) ⊆ Z for all semi-Markovian equilibria σ. Furthermore,
we know from Proposition 7 that any policy z ∈ Z is the outcome of a semi-Markovian
equilibrium of Γ (π, z). Consequently, we have

Corollary 4. Let ΣNM
(
π, x0

)
be the set of semi-Markovian equilibria of Γ

(
π, x0

)
. The

set of all semi-Markovian equilibrium policy outcomes that can be obtained from any initial
default in X coincides with the largest consistent set:∪

x0∈X

∪
σ∈ΣNM (π,x0)

ϕσ
(
x0

)
= Z .
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Thus, the predictions of our noncooperative bargaining framework coincide with those
of Chwe’s (1994) largest consistent set when we use semi-Markovian strategies. This result
provides noncooperative foundations for the largest consistent set, extending Proposition
8 in Acemoglu et al. (forthcoming) to non-acyclic preferences.

5.3 Open rule bargaining

Thus far, we have focused on games which end when no proposer amends a default. We
have demonstrated that there is an equilibrium which supports the closure of any weakly
stable set, and that every equilibrium supports a weakly stable set (Propositions 1 and
2 above). Baron and Ferejohn’s (1989) open rule model has a different stopping rule.
Their game only ends when a proposer successfully ‘moves the previous question’: putting
the existing default to an up-down vote. In further contrast to our model, a new round
starts at default x if no proposer in {1, ...,mx} has amended x or successfully moved x

(the previous question). In this subsection, we argue that Proposition 1 holds, but that
Proposition 2 fails in this variant on our model, which we dub open rule bargaining. (In
contrast to Baron and Ferejohn’s version, where proposers are selected at random, the
protocol determines the fixed order in which players propose in any round.)

We can prove the analog of Proposition 1 by constructing an equilibrium strategy
combination which supports any weakly stable set V :

If the default (x) is outside V then it is R-dominated by some policy y∗(x) ∈ V , so
let any k ∈M who prefers y∗(x) over x propose the former, and any other proposer pass;
and if x ∈ V then let every proposer move the previous question. To simplify subsequent
exposition, write y∗(x) = x whenever default x ∈ V . This means, in particular, that y∗(x)
is in V for any default x. We now turn to voting behavior. Suppose, first, that some
k ∈ M has proposed to amend x to y. If y = y∗(x) then let i vote for y if and only if i
weakly prefers y over x; and if y ̸= y∗(x) then let i vote for y if and only if i strictly prefers
y∗(y) over y∗(x). Finally, if some k ∈ M has moved the previous question then i votes in
favor if and only if i weakly prefers y∗(x) over x. It is easy to confirm that this strategy
combination forms an equilibrium, at which defaults in V are implemented, and defaults
outside V are amended to a policy in V which is then implemented.

The argument above implies that the constructed strategy combination supports V , by
analogy to Proposition 1 above. Furthermore, any policy set supported by an equilibrium
must satisfy internal stability, else a proposer could profitably deviate to amending some
policy in the set. However, equilibria may support sets of policies which are not externally
stable. To see this, consider Example 3.2, where two players bargaining over division
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of a pie. The only weakly stable set is the set of divisions, but the following strategy
combination is an equilibrium. If the default (x) does not entail equal division of the pie
(1/2) then a player who gets less than 1/2 proposes amending x to 1/2, while any other
player passes; and both players vote in favor when 1/2 is moved. Any player who gets less
than 1/2 at y vetoes amending x to y, and also votes against if y is moved.

In sum,

Observation 4. Any weakly stable set can be supported in an open rule bargaining game,
and the policy set supported by any equilibrium must satisfy internal stability. However,
there may be equilibria that support policy sets which fail external stability.

6 Conclusion

We have presented a model of bargaining in which the committee takes a single policy
seriously at any time, and implements this policy if none of the proposers is willing or
able to amend it. We have characterized the policies which can reached from any initial
default, and shown that every equilibrium of the model supports a weakly stable set. We
have provided conditions for a chair to manipulate the protocol, showing that she cannot
improve on proposing last if the policy space is well ordered and there is a unique weakly
stable set. We have also shown, inter alia, that an increase in the quota can contract
the union of immovable policies. In the remainder of this section, we will discuss some
directions in which our model and our analysis could be extended:

6.1 Changing the model

Round the table bargaining

According to our model, there is a fixed protocol at every default, specifying the order in
which proposers move. This assumption and the Markovian solution concept preclude a
natural stopping rule: proposers sit round a table, and the first proposer in any new round
sits next to the player who amended the previous default. This is inconsistent with our ap-
proach because we identify ‘states’ with ‘defaults’ when defining Markovian strategies. We
could obtain analogous results for bargaining round the table by appropriately redefining
a state.
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Multi-issue bargaining

We have supposed that a proposal must be a single policy. In some negotiations, it seems
natural to suppose that players can provisionally agree to subsets of the policy space: e.g.
when each dimension of the policy space represents an issue. Problems of this sort have
been analyzed in the literature (cf. Winter (1997)) on the additional supposition that
issues which have been agreed upon are no longer on the table. The history of the Oslo
Process suggests that this supposition is problematic: no partial agreement is finalized
until all issues have been addressed. An extension of our model could address this feature:
proposals are subsets of the policy space, but the game can only end when a proposal
which specifies a single point is agreed (and not amended).

6.2 Changing the solution concept

Mixed strategy equilibria

We have argued that every (pure strategy) equilibrium supports a weakly stable set. In
cases like the Condorcet Paradox, there is no weakly stable set, and therefore no equilib-
rium. However, mixed strategy equilibria may exist. Consider, for example, a symmetric
version of the Condorcet Paradox with three policies and three proposers/voters, each of
whom earn 0, 1 or 2 from any policy. There is a mixed strategy Markov perfect equilibrium
in which each player proposes her top ranked policy, and a single voter mixes between ac-
cepting and rejecting each proposal. According to this equilibrium, each policy is equally
likely to be implemented at any default. Play on the equilibrium path almost surely ends
with implementation of some policy. (We provide further details in Appendix A.3.) It
would be interesting to extend our analysis to mixed strategy equilibria.

Refinements

Although weakly stable sets may not exist, simple games often have multiple weakly stable
sets, implying equilibrium multiplicity in our noncooperative game. One possible approach
is to focus on equilibria which support cooperative refinements of V , such as Wilson’s (1971)
main simple stable sets. However, this approach seems unattractive in a noncooperative
setting. As policies in weakly stable sets are (weakly) Pareto efficient, commonly used
refinements which are based on Pareto perfection and renegotiation-proofness have no
bite in our bargaining game without discounting. Acemoglu et al (2009) have recently
developed an equilibrium refinement concept for voting and agenda-setting games like
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ours: Markov Trembling Hand Perfect Equilibrium (MTHPE). A (stationary Markov)
equilibrium σ is Markov trembling-hand perfect if and only if there is some sequence
of totally mixed stationary Markov strategies

{
σk

}
such that σk → σ and σ prescribes

each ‘agent’ — MTHPE is defined in the agent-strategic form — a best response to her
opponents’ perturbed strategies in σk for all k = 1, . . . ,∞.

We end with an observation, which shows that restricting attention to MTHPEs will
typically not reduce the set of equilibrium outcomes in our game.

Observation 5. If X is finite and well ordered then the set of (pure strategy) MTHPE
policies coincides with the set of equilibrium policies (and is therefore the union of weakly
stable sets).

The proof of this observation (which is provided in Appendix A.4) shows that something
even stronger is true: for every weakly stable set V ∈ V, there is a (pure strategy) MTHPE
σ that supports V : fσ = V . This reinforces the noncooperative foundations that our
bargaining model provides for weakly stable sets. We conjecture that equilibria in our
model would survive other plausible refinements.

A Appendix

A.1 Proofs of Propositions

Proof of Proposition 1

Let V ∈ V, and let f ∈ V X be a selection of F π(V, ·). By construction of F π(V, x), for
every x ∈ X, there exists a vector (y1(x), . . . , ymx+1(x)) such that:
• if x ∈ V , then f(x) = y1(x) = . . . = ymx+1(x) = x;
• if x /∈ V , then f(x) = y1(x) ∈ V , x = ymx+1(x), and yk(x) ∈ sπk (V, yk+1(x)) for

each k = 1, . . . ,mx. The latter condition implies that yk(x) is one the kth proposer’s ideal
policies in a set Ak (V, yk+1(x)) ≡ PV (yk+1(x))∪{yk+1(x)}∪Y , where Y ⊆ RV (yk+1(x)).

We now define voting behavior in the putative equilibrium strategy profile σ. If the
ongoing default is x ∈ X then player i = πx(k) proposes yk(x) (if given the opportunity)
with yk(x) = x being interpreted as ‘pass’. Therefore, all proposers pass when the current
default belongs to V .

When the ongoing default is x and the kth proposer has just proposed to change x to
y ̸= x, σ prescribes player i to vote ‘yes’ if and only if one of the following conditions hold:
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(A) x ∈ V and y1(y) ≻i x;

(B) x /∈ V , y1(y) ∈ Ak (V, yk+1(x)), and y1(y) ≽i yk+1(x);

(C) x /∈ V , y1(y) /∈ Ak (V, yk+1(x)), and y1(y) ≻i yk+1(x).

To prove the proposition, we proceed in three steps. The first step shows that fσ(x, 1) =

f(x) for all x ∈ X. Step 2 shows that there is no voting stage in which a voter has a
profitable one-shot deviation from σ. Step 3 demonstrates that there is no proposal stage
in which a proposer has a profitable one-shot deviation from σ. Steps 2 and 3 jointly imply
that no player has a profitable one-shot deviation from σ. This proves that no player
can profitably deviate from σ in a finite number of stages. Finally, as infinite bargaining
sequences constitute the worst outcomes for all players, this proves that σ is an equilibrium.

Step 1: fσ(x) ≡ fσ(x, 1) = y1(x) for all x ∈ X and, in particular, fσ(x) = x for all
x ∈ V .

Consider an arbitrary round t starting with default xt−1 = x. If x ∈ V , then the result
is trivial: all proposers pass and x is implemented at the end of the round. Suppose then
that x /∈ V . Let l = max{k ∈ {1, . . . ,mx} : yk(x) ̸= yk+1(x)} (external stability ensures
that this set is nonempty), and suppose that the lth proposer is given the opportunity to
make a proposal. By construction of (y1(x), . . . , ym+1(x)), this implies that yl(x) ∈ V and
therefore yl(x) = y1 (yl(x)) ∈ Al (V, yl+1(x)), where ymx(x) ≡ x. The definition of voting
strategies (condition (B)) then implies that all members of {i ∈ N : yl(x) ≽i yl+1(x)} vote
‘yes’, so that yl(x) = xt. As xt = yl(x) ∈ V , all proposers pass in round t+ 1 and yl(x) is
implemented.

Now consider the (l − 1)th proposer. Suppose that she is given the opportunity to
make a proposal. If she passes (so yl−1(x) = yl(x)) then, by construction, yl−1(x) is
implemented at the end of the next round. If she proposes an amendment then she
must propose yl−1(x) ∈ Al−1 (V, yl(x)). By definition of Al−1 (V, yl(x)), this implies that
{i ∈ N : yl−1(x) ≽i yl(x)} ∈W; so condition (B) implies that yl−1(x) is accepted and im-
plemented at the end of the next round. In sum, yl−1(x) is accepted and implemented at
the end of the next round.

Repeating this argument recursively for every l = 1, . . . , l−2, we obtain that fσ(x, 1) =

y1(x). This proves that fσ(x, 1) = f(x) for all x ∈ X.

Step 2: Consider a proposal y by the kth proposer when the ongoing default is x ̸= y. σi

prescribes i ∈ N to vote ‘yes’ whenever fσ(y, 1) ≻i f
σ (x, k + 1), and to vote ‘no’ whenever

fσ (x, k + 1) ≻i f
σ(y, 1).
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From Step 1, we know that fσ(y, 1) = y1(y) ∈ V .
Any x ∈ V is implemented at the end of round t if the kth proposer fails to amend it:

for, by definition of the proposer strategies, all the remaining proposers will pass. Hence,
fσ (x, k + 1) = x. Consequently, fσ(y, 1) ≻i fσ (x, k + 1) is equivalent to y1(y) ≻i x,
which in turn implies that player i must vote ‘yes’ (condition (A) in the definition of
voting strategies). Similarly, fσ (x, k + 1) ≻i f

σ(y, 1) implies that x ≻i y1(y). Hence, i
must vote ‘no’.

If x /∈ V , then fσ (x, k + 1) = yk+1(x). To see this, suppose first that no proposer
l > k amends x. We then have yk+1(x) = . . . = ymx(x) = x = fσ (x, k + 1). Now suppose
that the lth proposer is the next proposer (after the kth) to make a successful proposal,
yl(x) ̸= x. By construction, this implies that yk+1(x) = . . . = yl(x) ∈ V . Consequently,
fσ (x, k + 1) = fσ (yl(x), 1) = yl(x) = yk+1(x).

Thus, fσ(y, 1) ≻i fσ (x, k + 1) implies that y1(y) ≻i yk+1(x). Conditions (B) and
(C) in the definition of voting strategies then imply that player i votes ‘yes’. Similarly,
fσ (x, k + 1) ≻i f

σ(y, 1) implies that she votes ‘no’.

Step 3: In any proposal stage with ongoing default x, the kth proposer cannot gain by
offering some y ̸= yk(x) and conforming to σπx(k) thereafter.

If x ∈ V then σ prescribes the kth proposer to pass (i.e., yk(x) = x). If she has
a profitable deviation at this stage, then she must be able to amend x to some y such
that fσ(y, 1) = y1(y) ≻πx(k) x. Indeed, if she does not deviate then all the remaining
proposers will pass (yl(x) = x for all l) and x will then be the final outcome. As proposal
y is successful, Condition (A) in the definition of voting strategies implies that there is a
winning coalition whose members all strictly prefer y1(y) ∈ V to x ∈ V . This is impossible
because V satisfies (ISP ).

If x /∈ V then σ prescribes the kth proposer to propose yk(x) ∈ AV
k (yk+1(x)) (where

yk(x) = x means that she should pass). Suppose that, instead, she proposes some y ̸=
yk(x). The resulting outcome will be fσ(y, 1) = y1(y) if y is a successful proposal (i.e.
y1(y) ∈ RV (yk+1(x))), and fσ(y, 1) = yk+1(x) otherwise. Such a deviation cannot be
profitable because yk(x) is ≽πx(k)-maximal in [RV (yk+1(x)) ∪ {yk+1(x)}].

Proof of Proposition 2

The proof of Proposition 2 hinges on the following lemma.

Lemma 1. If σ is an equilibrium of Γ
(
π, x0

)
then fσ(X) ≡

∪
x∈X fσ (x) is a weakly stable

set.
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Proof: Let σ be an equilibrium of Γ
(
π, x0

)
. To prove the lemma, we must show that

fσ(X) satisfies (ISP ) and (ESR).
(ISP ). If |fσ(X)| = 1 then P -internal stability is trivial; so suppose that |fσ(X)| ≥ 2.

Imagine that fσ(X) does not satisfy (ISP ). This implies that there are two policies in
fσ(X), say x and y, such that xPy. By definition of fσ(X), x and y are fixed points of
fσ(·, 1). An immediate consequence of xPy is therefore that there is a winning coalition
S ∈ W such that fσ(x, 1) ≻i f

σ(y, 1) for every i ∈ S. But this implies that any proposer
in S could amend y to x, contrary to our supposition that σ is an equilibrium of Γ

(
π, x0

)
.

(ESR). Suppose that fσ(X) does not satisfy (ESR). This implies that there exists a
policy x /∈ fσ(X) such that, for all y ∈ fσ(X), ¬ (yRx). In particular, ¬ [fσ(y, 1)Rx] for
all y ∈ fσ(X). Consequently, in any S ∈ W and for any y ∈ fσ(X), there is at least one
player who strictly prefers x to fσ(y, 1).

Now consider the continuation game which starts with x as the ongoing default policy.
Suppose that the last potential proposer, πx (mx), is given the opportunity to amend x

with some policy y ̸= x. Players anticipate that fσ(y, 1) ∈ fσ(X) will eventually be imple-
mented if x is amended, and that x will be implemented otherwise. As no winning coalition
including proposer πx (mx) would support the amendment, x should be implemented. As
a consequence, another proposer must amend x in equilibrium.

Now consider πx (mx − 1). We can repeat the same reasoning as with πx (mx). If
πx (mx − 1) offers to change x to some policy y ̸= x, all committee members will anticipate
that this will lead to fσ(y, 1) being the final outcome if the amendment is voted up, and to x

being implemented otherwise. Again, no winning coalition would support the amendment
and x would be implemented. Repeating this argument recursively until the first proposer
πx(1), we obtain the desired contradiction.

�

We now return to the main proposition. Let σ = (σi)i∈N be an equilibrium of Γ
(
π, x0

)
.

From Lemma 1, we know that there exists V ∈ V such that fσ(X) = V . Evidently, for all
x ∈ V , we have {fσ(x, 1)} = {x} = F π(V, x).

Now consider an arbitrary x /∈ V , and an arbitrary round starting with x as the ongoing
default. Suppose that (possibly off the equilibrium path) the mxth proposer is given the
opportunity to amend x. When she offers a policy y ̸= x, voters compare fσ(y, 1) ∈ V

with x. Voter i must therefore vote ‘yes’ if fσ(y, 1) ≻i x, may vote either ‘yes’ or ‘no’ if
fσ(y, 1) ∼i x, and must vote ‘no’ otherwise. The acceptance set faced by the mxth proposer
— i.e., the set of policies y ̸= x that would be accepted by a winning coalition to amend x
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— must then be the set of policies y such that fσ(y, 1) belongs to [PV (x) ∪ Y ] ⊆ V , where
Y is some (possibly empty) subset of RV (x). As a consequence, if σπx(mx) prescribes
the mxth proposer to amend x with ȳmx ̸= x, then fσ (x,mx) = fσ (ȳmx , 1) must be
≽πx(mx)-maximal in [PV (x) ∪ Y ∪ {x}] (x is always feasible to the mxth proposer, for she
can always pass). If σπx(mx) prescribes the mxth proposer not to amend x — i.e. to pass
or to make an unsuccessful proposal — then fσ (x,mx) = x must be ≽πx(mx)-maximal in
[PV (x) ∪ Y ∪ {x}]. This proves that ymx ≡ fσ (x,mx) ∈ sπm(V, x).

Proceeding recursively, one can use the same argument to show that, for each k =

1, . . . ,mx − 1, yk ≡ fσ (x, k) ∈ sπk(V, x): just substitute yk+1 for x in the argument above.
Since x /∈ V = fσ(X), there must be some proposer k who amends x, so that fσ (x, k) ̸=
x. This proves that the finite sequence (y1, . . . , ymx , x) ≡ (fσ(x, 1), . . . , fσ (x,mx) , x)

constitutes a path of tree Tπ(V, x) whose terminal node belongs to V . Hence, fσ(x) ∈
F π(V, x).

Proof of Proposition 3

Let σ be an equilibrium. Proposition 2 implies that there must be some weakly stable set
V such that fσ (X) = V . Consider the kth proposer as defined in the statement of the
proposition. If she failed to amend the ongoing default x then nobody else would, and x

would be implemented at the end of the round. As she strictly prefers her ideal policy in
the set of equilibrium policy outcomes that dominate x — i.e.: M

(
≻π(l), R(x) ∩ fσ (X)

)
— to x, she must successfully propose that policy in equilibrium.

We therefore need to show that no proposer who is given the opportunity to amend x

before the kth proposer can successfully do so. Suppose first that the (k − 1)th proposer
successfully offers some policy y. This implies there is a winning coalition in W whose
members all strictly prefer fσ (y, 1) ∈ V to M

(
≻π(l), R(x) ∩ fσ (X)

)
∈ V : a contradiction

with V satisfying (ISP ). Applying this argument recursively from the (k − 2)th proposer
until the first, we obtain the result.

Proof of Proposition 5

We first construct δ̄. For each i ∈ C and every pair (x, y) ∈ X2 such that ui(x) > ui(y),
let

Ψi (x, y, δ) ≡ min
Tx,Ty∈{1,...,|X|}

δTxui(x) +
(
1− δTx

)
ui − δTyui(y)−

(
1− δTy

)
ūi ,

where ūi ≡ maxx∈X ui(x) and ui ≡ minx∈X ui(x). Since Ψi (x, y, δ) → ui(x) − ui(y) > 0

as δ → 1, there exists δi(x, y) ∈ [0, 1) such that Ψi (x, y, δ) > 0 for all δ > δi(x, y). From
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now on, we assume that

δ > δ̄ ≡ max
i∈N

max
x,y∈X:x≻iy

δi(x, y) ∈ (0, 1) .

Suppose, first, that σ is an equilibrium of Γ
(
π, x0

)
. This implies that, at any stage of

this game, no player i has a profitable one-shot deviation from σi (given σ−i). Consider an
arbitrary stage of Γ

(
π, x0

)
, and let x be the final policy outcome if i does not deviate from

σi in that stage. Hence, any other policy outcome y ̸= x she could induce by a one-shot
deviation satisfies: ui(y) < ui(x). Suppose that, contrary to the statement of the result, i
has a profitable one-shot deviation at the same stage in Γδ

(
π, x0

)
. This implies that there

are two finite sequences {xt}t=1,...,Tx
and {yt}t=1,...,Ty

, and a policy y ∈ X such that

(1− δ)

Ty∑
t=1

δt−1ui (yt) + δTyui(y) > (1− δ)

Tx∑
t=1

δt−1ui (xt) + δTxui(x)

and ui(y) < ui(x) (recall that a one-stage deviation from an equilibrium strategy in
Γ
(
π, x0

)
must converge in a finite number of rounds). This is impossible when δ > δ̄.

By the one-shot deviation principle, σ is then an absorbing stationary Markov equilibrium
of Γδ

(
π, x0

)
.

Now suppose that σ is an absorbing stationary Markov equilibrium of Γδ
(
π, x0

)
. This

implies that no player i has a profitable one-shot deviation from σi (given σ−i) at any stage
of this game. Consider an arbitrary stage of Γδ

(
π, x0

)
, and let {xt}t=1,...,Tx+1 be the finite

sequence of policy outcomes (with x = xTx+1 being implemented indefinitely) if i does not
deviate from σi at that stage. Hence, any other sequence {yt}t=1,...,Ty+1 (with y = yTy+1

being implemented indefinitely) she could induce by a one-shot deviation satisfies:

(1− δ)

Ty∑
t=1

δt−1ui (yt) + δTyui (y) ≤ (1− δ)

Tx∑
t=1

δt−1ui (xt) + δTxui(x) .

This inequality implies that ui(x) > ui(y). To see this, suppose instead that ui(y) > ui(x).
δ > δ̄ then implies that Ψi(y, x, δ) > 0, so that

(1− δ)

Ty∑
t=1

δt−1ui (yt) + δTyui (y)−

[
(1− δ)

Tx∑
t=1

δt−1ui (xt)− δTxui(x)

]
≥ Ψi(y, x, δ) > 0 ;

a contradiction. At the equivalent stage in game Γ
(
π, x0

)
, ui(x) > ui(y) clearly implies

that player i has no profitable one-shot deviation in this stage. This in turn implies that
player i cannot profitably deviate from σi in a finite number of stages. Finally, as infinite
bargaining sequences constitute the worst outcomes for all legislators in Γ

(
π, x0

)
, this

proves that σ is an equilibrium of Γ
(
π, x0

)
.
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Proof of Proposition 6

Let σ be an equilibrium of Γ
(
π, x0

)
. By Proposition 2, the outcome function induced by

σ, fσ(·), is a selection of F π(V, ·) where V is the weakly stable set supported by σ. Using
the construction in the proof of Proposition 1, we can construct an equilibrium σ̄ that
implements the same selection of F π(V, ·) without any delay; that is, f σ̄(x) = fσ(x) for
all x ∈ X. In other words, while σ may prescribe a sequence of amendments that leads to
fσ(x, k), σ̄ prescribes the kth proposer to directly offer fσ(x, k) for any ongoing default
x ∈ X. This offer is always accepted by a winning coalition of voters, so that it never takes
more than a round to reach an agreement in any subgame. To prove Proposition 6, we will
now show that σ̄ is a contemporaneous perfect ε-equilibrium of Γδ

(
π, x0

)
for all ε > 0.

Fix ε > 0. We first construct δε. For each i ∈ N and every pair (x, y) ∈ X2 such that
ui(x) ≥ ui(y), let

Λi (x, y, δ) ≡ δui(x) + (1− δ)ui − δui(y)− (1− δ) ūi .

Since Λi (x, y, δ) → ui(x) − ui(y) ≥ 0 as δ → 1, δεi (x, y) ≡ max {d : Λi (x, y, δ) + ε ≤ 0} is
well defined and less than 1. From now on, we assume that

δ > δε ≡ max
i∈N

max
x,y∈X:x≽iy

δi(x, y) < 1 .

(As X is compact and ≽i is continuous,
{
(x, y) ∈ X2 : x ≽i y

}
is compact.)

As σ̄ is an equilibrium of Γ
(
π, x0

)
, no player i has a profitable one-shot deviation from

σ̄i (given σ̄−i) at any stage of this game,. Consider an arbitrary stage of Γ
(
π, x0

)
with

current default x0, and let x be the final policy outcome if i does not deviate from σ̄i

in that stage. Hence, any other policy outcome y ̸= x she could induce by a one-shot
deviation satisfies: ui(y) ≤ ui(x). Suppose that, contrary to the statement of the result, i
has a profitable one-shot deviation, which amends the default to y0 at the same stage in
Γδ

(
π, x0

)
(taking the ‘deviation cost’ ε into account). Let σ̄ prescribe implementation of

policy y in this subgame. This implies that

(1− δ)ui (y0) + δui(y)− ε > (1− δ)ui (x0) + δui(x)

and ui(y) ≤ ui(x). This is impossible when δ > δε. Hence, σ̄ is a contemporaneous perfect
ε-equilibrium of Γδ

(
π, x0

)
.

Proof of Proposition 7

The first part of the proof puts in place some mathematical machinery that will be handy
when we come to construct the equilibrium σ. In what follows, we will indulge in a slight
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abuse of terminology by referring to partial histories as ‘histories’. Moreover, we denote by(
ht, S, y

)
the concatenation of the round-t history ht followed by a round in which coalition

S ∈ W amends xt−1 to y.
Let Z be the closure of a consistent set, and let f ∈ ZX be a selection of F π(Z, ·). We

will use a sequence (τl) ∈ (N ∪ {∅})∞ to construct σ. For a given history,25 each element of
this sequence must be thought of as a round in which players (both proposers and voters)
changed the default in accordance with σ. Given a round-t history h ∈ Ht, we define the
sequence (τl) and proposal strategies as follows:
• l = 1: τ1 is the first round in which an element of Z became the new default; if that

has not happened so far, then we write τ1 = ∅ and say that h ∈ H1. That is, H1 is the
set of histories in H at which no element of Z has ever been offered and accepted. (Note
that this was the case at the start of round τ1, so that h ∈ H1 when t = τ1.)

We now define proposal strategies at any history h ∈ H1. Let x = xt−1 be the ongoing
default at history h. By construction of H1, therefore, x /∈ Z. From the construction
of F π(Z, x), there exists a vector (z1(h), . . . , zmx+1(h)) such that: f(x) = z1(h) ∈ Z,
x = zmx+1(h), and zk(h) ∈ sπk (Z, zk+1(h)) for each k = 1, . . . ,mx. The latter condition
implies that zk(h) is one of the kth proposer’s ideal policies in a set Ak (Z, zk+1(h)) ≡
PZ (zk+1(h)) ∪ {zk+1(h)} ∪ Yk(h), where Yk(h) ⊆ RZ (zk+1(h)).

If h ∈ H1 then σi prescribes player i = πx(k) to propose zk(h) if zk(h) ̸= zk+1(h), and
to pass if zk(h) = zk+1(h).

• l ≥ 2: τl is the first round after τl−1 at which an element of

Zl ≡
{
z ∈ Z : xτl−1 ≽i z for some i ∈ Sτl−1+1

}
became the new default; if that has not happened so far then we let τl = ∅. In particular,
if h is a round-t history such that τl = ∅ ̸= τl−1 and t ̸= τl−1 + 1 then we write h ∈ Hl.
By definition of τl−1, xτl−1 ∈ Z. Since Z is consistent, Zl ∩ {z ∈ Z : zRx} is nonempty for
all x ∈ X. Using the tree Tπ

(
Zl, x

t−1
)
, we can then obtain a vector (y1(h), . . . , ymx+1(h))

such that: x = zmx+1(h), and zk(h) ∈ sπk (Zl, zk+1(h)) for each k = 1, . . . ,mx. The
latter condition implies that zk(h) is one of the kth proposer’s ideal policies in a set
Ak (Zl, zk+1(h)) ≡ PZl

(zk+1(h)) ∪ {zk+1(h)} ∪ Yk(h), where Yk(h) ⊆ RZl
(zk+1(h)).

If h ∈ Hl then σi prescribes player i = πx(k) to propose zk(h) if zk(h) ̸= zk+1(h), and
to pass if zk(h) = zk+1(h). The idea behind this construction is that the kth proposer tries
to “punish” at least one of the “deviators” in Sτl−1+1 for not rejecting the proposer’s offer
to amend xτl−1 in round τl−1 + 1.

25To simplify the notation, we omit the sequence’s dependence on the history under consideration.
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So far, we have been silent about proposals at period-t histories such that t = τl + 1

(so that xt−1 = xτl). We denote the set of such histories by H0. At any history h ∈ H0,
the ongoing default should be implemented: σi prescribes player i = πx(k) to pass. For
expositional convenience, we will sometimes say that i proposes zk(h) = x. Since {Hl}∞l=0

is a partition of H, the description of proposal strategies is complete.
We now turn to voting strategies. At a round-t history h ∈ Ht, following a proposal

y ̸= xt−1 by the kth proposer, σi prescribes voter i to act as follows:

(A) If h ∈ H0 (i.e.: t = τl + 1 for some l ∈ N) then i votes ‘yes’ iff z1(h, S, y) ≻i x
t−1 for

any winning coalition S ∋ i;

(B) if h ∈ Hl (i.e.: τl−1 + 1 < t ≤ τl), l ̸= 0, and y ∈ Ak (Zl, zk+1(h)) then i votes ‘yes’ iff
y ≽i zk+1(h);

(C) if h ∈ Hl (i.e.: τl−1 + 1 < t ≤ τl), l ̸= 0, and y /∈ Ak (Zl, zk+1(h)) then i votes ‘yes’ iff
z1(h, S, y) ≻i zk+1(h) for any winning coalition S ∋ i;

where Z1 ≡ Z.
We establish the statement of Proposition 7 via a series of claims. The first two claims

provide useful characterization results about equilibrium policy outcomes. Claim 3 shows
that fσ(x) = f(x) for all x ∈ X. Claim 4 shows that there is no voting stage in which a
voter, say i, has a profitable one-shot deviation from σi. Claim 5 demonstrates that there
is no proposal stage in which a proposer, say j, has a profitable one-shot deviation from
σj . Claims 4 and 5 jointly show that no voter has a profitable one-shot deviation from
σ. This proves that no player can profitably deviate from σ in a finite number of stages.
Finally, as infinite bargaining sequences constitute the worst outcomes for all players, this
proves that σ is an equilibrium.

Claim 1: Consider the round following a history h ∈ H, and suppose the kth proposer
has just moved. If she has made no proposal or if her proposal is rejected, then the final
outcome will be zk+1(h).

Proof: If h ∈ H0, then the claim is trivial: zk+1(h) = . . . = zm+1(h) = xt−1 (all the
remaining proposers pass). Accordingly, suppose that h ∈ Hl with l ̸= 0. Since the kth
proposer has not amended x, the (k + 1)th proposer is given the opportunity to make a
proposal. By definition of proposal strategies, she proposes zk+1(h) if zk+1(h) ̸= zk+2(h),
and passes otherwise. If zk+1(h) ̸= zk+2(h) then zk+1(h)Rzk+2(h). Condition (B) in the
definition of voting strategies then ensures that proposal zk+1(h) ∈ Ak (Zl, zk+1(h)) is
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accepted. As a consequence, the history at the start of the next round belongs to H0, so
that all proposers pass and zk+1(h) is implemented at the end of that round.

If zk+1(h) = zk+2(h) then the (k + 2)th proposer is given the opportunity to make a
proposal. We can apply the same argument as above to show that either zk+1(h) = zk+2(h)

(̸= zk+3(h)) is implemented in the next round or zk+1(h) = zk+2(h) = zk+3(h). Going on
until the mxth proposer, we obtain the claim.

Claim 2: Let ϕσ(h; k) be the unique final outcome eventually enacted (given σ) when,
after history h ∈ H, the kth proposer is about to move. For all h ∈ H, ϕσ(h; k) = zk(h).
In particular, if h ∈ H0 then ϕσ(h; k) = zk(h) = xt−1.

Proof: If zk(h) ̸= zk+1(h) then zk(h) ∈ Zl. Condition (B) in the definition of voting
strategies then ensures that the kth proposer’s offer, zk(h) ∈ Ak (Zl, zk+1(h)), is accepted.
Therefore, the history at the start of the next round belongs to H0, so that all proposers
pass and zk(h) is implemented at the end of that round.

If zk(h) = zk+1(h) then, by definition of proposal strategies, the kth proposer passes.
From Claim 1, zk(h) = zk+1(h) is then the final outcome.

Claim 3: fσ
(
x0

)
= z1

(
x0

)
= f

(
x0

)
for all x0 ∈ X = H1.

Proof: Suppose first that the initial default (x0) is an element of Z: viz. zk
(
x0

)
= x0

for any proposer k. No proposer then offers to amend x0, which is implemented at the end
of round 1: fσ

(
x0

)
= x0 = z1

(
x0

)
= f

(
x0

)
.

Now suppose that x0 is not a member of Z, so that x0 ∈ H1. Since z1
(
x0

)
= f

(
x0

)
∈

F π
(
Z, x0

)
⊆ Z, at least one proposer tries to amend x0. The first proposer who does

so, say πx0(k), offers zk
(
x0

)
Rzk+1

(
x0

)
which, by condition (B) in the definition of voting

strategies, is accepted. This implies that τ1 = 1, which in turn implies that zk
(
x0

)
is never

amended and is therefore implemented at the end of round 2. By definition of proposal
strategies, zl

(
x0

)
= zk

(
x0

)
for all proposers l < k who do not try to amend x0. Hence,

fσ
(
x0

)
= zk

(
x0

)
= z1

(
x0

)
= f

(
x0

)
.

As this is true for any x0 ∈ X, this proves that fσ (X) ≡
{
fσ

(
x0

)
: x0 ∈ X

}
={

z1
(
x0

)
: x0 ∈ X

}
= Z.

Claim 4: Let h ∈ Ht. Suppose the kth proposer has made proposal y ̸= xt−1. Let
S−
i be the set of players who have already voted ‘yes’ when it is i’s turn to vote, and

let S+
i be the set of voters j who will vote after i and are prescribed to vote ‘yes’ by σj.

If S ≡ S−
i ∪ {i} ∪ S+

i is a winning coalition then σi prescribes i to vote ‘yes’ only if
ϕσ(h, S, y; 1) ≽i ϕ

σ (h; k + 1), and to vote ‘no’ only if ϕσ (h; k + 1) ≽i ϕ
σ(h, S, y; 1).
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Proof: Claim 2 immediately implies that ϕσ(h, S, y; 1) = z1 (h, S, y) for all y ̸= xt−1,
and ϕσ (h; k + 1) = zk+1(h).

Suppose first that h ∈ H0. If player i votes ‘yes’ then, by condition (A), z1 (h, S, y) ≻i

xt−1. Claim 2 implies that xt−1 = zk(h) = ϕσ(h; k). Hence, z1 (h, S, y) ≻i xt−1 im-
plies ϕσ(h, S, y; 1) ≻i ϕσ (h; k + 1) and, therefore, that ϕσ(h, S, y; 1) ≽i ϕσ (h; k + 1). If
player i votes ‘no’ then, by condition (A), xt−1 ≻i z1 (h, S, y). This in turn implies that
ϕσ (h; k + 1) ≽i ϕ

σ(h, S, y; 1).
Now suppose that h ∈ Hl for some l ∈ N and that y ∈ Ak (Zl, zk+1(h)). If player i votes

‘yes’ then, by condition (B), y ≽i zk+1(h) = ϕσ (h; k + 1). Since y ∈ Ak (Zl, zk+1(h)) ⊆ Zl,
history (hS, y) ∈ H0, which in turn implies that ϕσ(h, S, y; 1) = y (all proposers will pass
at a history in H0). Hence, ϕσ(h, S, y; 1) ≽i ϕ

σ (h; k + 1). If player i votes ‘no’ then, by
condition (B), zk+1(h) ≻i y. This in turn implies that ϕσ (h; k + 1) ≻i ϕ

σ(h, S, y; 1) and,
therefore, that ϕσ (h; k + 1) ≽i ϕ

σ(h, S, y; 1).
Finally, suppose that h ∈ Hl for some l ∈ N and that y /∈ Ak (Zl, zk+1(h)). If player i

votes ‘yes’ then, by condition (C), z1(h, S, y) ≻i zk+1(h). This implies that ϕσ(h, S, y; 1) ≻i

ϕσ (h; k + 1) and, therefore, that ϕσ(h, S, y; 1) ≽i ϕσ (h; k + 1). Similarly, if i votes ‘no’
then (C) implies that zk+1(h) ≽i z1(h, S, y) and then ϕσ (h; k + 1) ≽i ϕ

σ(h, S, y; 1).

Claim 5: Let h ∈ Ht be a history ending with default xt−1 = x. At this history, the
kth proposer cannot gain by deviating from σπx(k) at that stage and conforming to σπx(k)

thereafter.
Let i = πx(k).
Suppose first that h ∈ H0 (or, equivalently, t − 1 = τl): viz. σ dictates all proposers

to pass at h. Consequently, if i conforms to σi then the final policy outcome will be
xt−1 = xτl = zk+1(h). Hence, i can only profitably deviate by amending xt−1 with some
policy y such that y ≻i x

t−1. However, for any S ∈ W , history (h, k, S, y) belongs to Hl+1.
Claim 2 then implies that

ϕσ(h, S, y) = z1(h, S, y) ∈ Zl+1 ≡ {z ∈ Z : xτl = zk+1(h) ≽j z for some j ∈ S} .

Therefore, for each coalition S ∈ W , there is at least one member of S who weakly prefers
zk+1(h) to z1(h, S, y). Condition (C) guarantees that any proposal y ̸= xt−1 would be
rejected; so that i cannot profitably deviate from passing.

Now suppose that h ∈ Hl for some l ∈ N. Any proposal y such that ϕσ(h, S, y; 1) =

z1(h, S, y) /∈ Ak (Zl, zk+1(h)) must be unsuccessful. Indeed, condition (C) in the definition
of voting histories implies that voters only vote ‘yes’ if they strictly prefer z1(h, S, y) ∈ Zl
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to zk+1(h). As PZl
(zk+1(h)) ⊆ Ak (Zl, zk+1(h)), every winning coalition includes at least

one player who votes ‘no’. Thus, as zk(h) is ≽i-maximal in Ak (Zl, zk+1(h)) ⊇ {zk+1(h)},
player i cannot improve on proposing zk(h) when zk(h) ̸= zk+1(h), and passing otherwise.

Proof of Proposition 8

Let σ be a semi-Markovian equilibrium. Suppose that, contrary to the statement of Propo-
sition 8, ϕσ(H) is not a consistent set. This implies that there exist o ∈ ϕσ(H), x ∈ X,
and S ∈ W such that, for all o′ ∈ ϕσ(H), one of the following conditions is true:

(a) o′ = x and o′ ≻i o for all i ∈ S;
(b) o′Rx and o′ ≻i o for all i ∈ S;
(c) ¬ (o′Rx).
Now consider a history h ∈ H at which, instead of following σ and implementing o at

the end of the round, some players have deviated as follows: a proposer πo(k) in S has
proposed to amend o with x and all members of S have voted ‘yes’. This deviation yields
a new outcome o′ ∈ ϕσ(H), which satisfies one of the conditions (a)-(c) above. As σ is
an equilibrium, some winning coalition in W must find it (weakly) profitable to induce o′

from x and, therefore, o′ cannot satisfy (c). As a consequence, o′ must satisfy either (a) or
(b).

Denote the last player in πo ({1, . . . ,mo})∩S by mS , and suppose that this player has
proposed amending o to x. Members of S anticipate that voting ‘yes’ will induce some
o′ ∈ ϕσ(H). As σ is semi-Markovian, it must still specify outcome o after an unsuccessful
attempt to amend it. All players in S, including mS , must then be strictly better off voting
for x if o′ satisfies either (a) or (b). Consequently, all voters in S would vote for x, and
player mS could profitably deviate from σ by proposing x, contrary to the supposition that
σ is a semi-Markovian equilibrium.
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NOT FOR PUBLICATION

A.2 The Dynamic Game with Endogenous Protocol (footnote 20)

Let Π be the set of all protocols as defined in Section 2. In Section 4, we analyzed a game
in which the chair first selects a protocol π ∈ Π, and Γ

(
π, x0

)
is then played. Call this

game: Γc
(
π, x0

)
: the superscript stands for commitment. In this section, we establish the

claim that Corollary 3 also applies in a different ‘dynamic’ game, Γd
(
Π, x0

)
, where the

chair selects the next proposer immediately after each vote which does not end the game.
Γd

(
Π, x0

)
starts with the chair selecting a proposer from M . This player either passes

or proposes a policy in X, after which the players vote. A round necessarily ends if
the default is amended. If the default has yet to be amended then the chair can either
select a proposer from M or end the round, implementing the default. However, the
chair can only end the game if the protocol in the final round is an element of Π. In
particular, all M proposers have had an opportunity to propose. We construct payoffs as
for Γc

(
Π, x0

)
: players, including the chair, only care about the implemented decision. We

again characterize play via the equilibria of Γd
(
Π, x0

)
. Markov stationarity now requires

that the chair’s selection of proposer only depends on history via the default and the
number of proposals by each player thus far in the current round.

The dynamic structure of Γd
(
Π, x0

)
is reminiscent of Harsanyi’s (1974) model, where

the chair solicits proposals at each default. By contrast, Harsanyi assumes that the chair’s
payoff is increasing in the number of amendments; so the equilibrium protocol in Γd

(
Π, x0

)
typically differs from that in Harsanyi (1974).

Corollary 3 implies that equilibrium proposals and voting in the dynamic game only
depend on history via the default and the selected protocol in the current round. Conse-
quently, the chair’s selection in any equilibrium only depends on the default and on her
previous selections that round. In equilibrium, the chair can anticipate whether and how
any player, selected as proposer, would amend the default. Fix an equilibrium, and write
the sequence of selections which the chair makes at x0 when the default is not amended
as πd

(
x0,Π

)
. Let πc

(
x0,Π

)
be an equilibrium choice in Γc

(
π, x0

)
. A chair who could

commit to protocols could always do at least as well as the chair in Γd
(
π, x0

)
by choosing

πc
(
x0,Π

)
= πd

(
x0,Π

)
. Conversely, the chair in Γd

(
Π, x0

)
could always do at least as well

as the chair in Γc
(
Π, x0

)
by replicating πc

(
x0,Π

)
. We therefore conclude that the same

set of policies can be implemented in an equilibrium of Γc
(
Π, x0

)
as in an equilibrium of

Γd
(
Π, x0

)
. In each case, an equilibrium protocol at x0 is a best protocol in the class of

games analyzed in Section 3.
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A.3 Mixed strategy equilibria

In this section, we substantiate a claim in the Conclusion: that a mixed strategy Markov
perfect equilibrium supports all three policies in a game which exhibits a Condorcet cycle:
where ‘supports’ means that the process converges almost surely to implementing some
policy. In light of the Condorcet cycle, there is no weakly stable set, and therefore no pure
strategy Markov perfect equilibrium.

Suppose that three proposers = voters i ∈ {1, 2, 3} have preferences over a policy space
{x, y, z} which are represented by utility functions ui:

Policies (w)
x y z

1 2 1 0

Players (i) 2 0 2 1

3 1 0 2

Utilities ui(w)

and that the protocol is given by

(πx(1), πx(2), πx(3)) = (2, 3, 1) ;

(πy(1), πy(2), πy(3)) = (3, 1, 2) ;

(πz(1), πz(2), πz(3)) = (1, 2, 3) .

Consider the following strategy combination. At any default, each player proposes her
ideal policy; so, given the protocol, the default is implemented if it is not amended by
either of the first two proposers. At any default and after any proposal, the player who
top [resp. bottom] ranks the policy votes ‘yes’ [resp. ‘no’], and the other player mixes.

In light of the symmetry across players, we write u for the initial default, U for the
player who top-ranks u, and whose preferences satisfy u ≻ v ≻ w. The players who top
rank v and w are respectively denoted by V and W . Thus, according to the protocol, the
order of proposers is V,W,U .

Write pvu for the probability that v is eventually implemented at the beginning of a
round with default u and Y v

u for the probability that the decisive player votes ‘yes’ to
proposal v at default u.

If W proposes w [resp. v] then she is indifferent if and only if 2pww + puw = 1 [resp.
2pwv + puv = 1]. It is easy to confirm that U and V would respectively vote ‘no’ and ‘yes’ if
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pst = 1/3. W then proposes w if and only if

Y w
u (2pww + pwu − 1) ≥ max{0, Y v

u (2p
w
v + puv − 1)}

These arguments imply that, if V does not amend then u is amended to w with prob-
ability Y w

u , and u is otherwise implemented. V then earns Y w
u (2pvw + pww).

If V proposes v then W is indifferent as a voter if and only if

Y w
u (2pww + puw − 1) = 2pwv + puv − 1

V then earns
Y v
u (2pvv + pwv ) + (1− Y v

u )Y
w
u (2pvw + puw)

Analogously, it is easy to confirm that W is decisive if V proposes w, and is indifferent if
and only if

2pww + puw − 1 = Y w
u (2pww + puw − 1)

V then earns
Y w
u (2pvw + pww) + (1− Y w

u )Y w
u (2pvw + pww)

if she proposes w. Hence, V cannot profitably deviate if and only if

Y v
u (2pvv + pwv ) ≥ max {Y w

u (2pvw + pww) + (Y v
u − Y w

u )Y w
u (2pvw + pww) , Y

v
u Y

w
u (2pvw + pww)} .

All of these conditions are satisfied if pst = 1/3 for every s, t ∈ X. Accordingly, we will
construct {Y s

t } such that every pst satisfies this condition:
Given the strategy combination above, we have

puu = Y v
u p

u
v + (1− Y v

u )(Y
w
u puw + 1− Y w

u )

pvu = Y v
u p

v
v + (1− Y v

u )Y
w
u pvw

pwu = Y v
u p

w
v + (1− Y v

u )Y
w
u pww

These equations hold when psu = 1/3 as long as Y v
u + Y w

u = 1 + Y v
u Y

w
u .

In sum, we have constructed a mixed strategy Markov perfect equilibrium for a game
with no weakly stable set (and therefore no pure strategy equilibrium). This equilibrium
supports the entire policy space.
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A.4 Markov trembling-hand perfect equilibria

In this section, we provide a proof of Observation 5. To prove this result, it suffices to
show that, for every weakly stable set V ∈ V , there is an MTHPE equilibrium σ which
supports V . To do so, we will use the construction described in the proof of Proposition
1. Consider the equilibrium described in that proof, say σ̃, which is obtained by setting
Y = ∅. In this equilibrium, all proposers pass if the default x belongs to V . If x /∈ V

then, for each k ∈ {1, . . . ,mx}, the kth proposer offers yk(x) — i.e.: the ≻πx(k)-maximal
element in PV (yk+1(x))∪{yk+1(x)}— and voter i ∈ N accepts this proposal if and only if
y1 (yk(x)) ≻i yk+1(x) — where, for all x /∈ V , y1(x) is the ideal policy of the last amender
of x in PV (x) ∪ {x} and, for all v ∈ V , y1(v) = v. Thus, if the current default x does not
belong to V : all proposers who move before the last amender of x make an unsuccessful
proposal (by internal stability of V ); the last amender amends x to y1(x); and (off the
equilibrium path) proposers k who move after the last amender choose yk(x) = x (i.e.,
they pass).

In equilibrium σ̃, as X is finite and well ordered, ‘agents’ (we are using the agent-
strategic form) play strict best responses in all voting stages and in proposal stages where
they are the last amenders. In proposal stages where they move before the last amender,
they are indifferent between all proposals in X since (by internal stability of V ) all proposals
are voted down. In proposal stages where they move after the last amender, they are
indifferent between all proposals in X that are rejected. Let σ be a stationary Markov
strategy profile defined as follows:

• in stages where σ̃ prescribes strict best responses, σ coincides with σ̃;

• in proposal stages where the proposer moves before the last amender, σ prescribes
that proposer to offer her ideal policy in V ;

• in proposal stages where the proposer moves after the last amender, σ prescribes
that the proposer offer her ideal policy in V ∪ {x}, where x is the ongoing default.

By construction, σ must be an equilibrium of Γ
(
π, x0

)
and fσ (X) = V . (Either σ dictates

the same behavior as σ̃ or it dictates behavior that yield the same consequences as σ̃.) We
will now prove that it is Markov trembling-hand perfect.

To do so, we first construct a sequence of strategy profiles {σm} as follows. At every
voting history, σm is defined as

σm(h) =
1

m
ῡ +

(
1− 1

m

)
σ(h)
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where ῡ is a (completely mixed) voting profile such that the probability that each element
of V is accepted is the same (for all defaults and proposers). At all proposal histories h,
σm is defined as

σm(h) =
1

m
σ′(h) +

(
1− 1

m

)
σ(h)

where σ′ is an arbitrary stationary Markov (completely) mixed strategy. Evidently, σm →
σ as m→∞.

To establish the result, we now have to show that for each player i ∈ N and every
history of the game h, the action prescribed by σi to the agent representing i at h, i(h),
is a best response to σm for all sufficiently large m. By construction of σ, this is obvious
in all voting stages and in the proposal stages where the agent is the last amender. We
can therefore concentrate on proposal stages in which proposers are indifferent between
proposals (given σ).

Let h be such a proposal stage (or history) with ongoing default x, and consider the
choice of the agent representing the kth proposer at this history, i = πx(k). Let pmk (y)

be the probability that i’s proposal y is accepted, V m
i (y) i’s expected payoff when her

proposal y is accepted, and vmi her expected payoff when her proposal is rejected, given
that all players play according to σm. Denoting player i’s ideal policy in V by yi, the
action prescribed by σi to i(h) is a best response to σm if and only if

pmk (yi)V
m
i (yi) + [1− pmk (yi)] v

m
i ≥ pmk (y)V m

i (y) + [1− pmk (y)] vmi

or, equivalently,
pmk (yi) [V

m
i (yi)− vmi ] ≥ pmk (y) [V m

i (y)− vmi ] . (1)

for all y ∈ X.
Suppose first that x ∈ V . In this case, the voting behavior dictated by σ̃, and therefore

σ, makes any proposal in X unsuccessful. This implies that σm prescribes the same voting
behavior as ῡ. As a consequence, vmi → ui(x) and pmk (y) = pmk (y′) for all y, y′ ∈ V .
Moreover, by construction of σ, V m

i (y) → y1(y) ∈ V for all y ∈ X. As X is finite and
well ordered, i(h) cannot improve on proposing i’s ideal policy in V when m is arbitrarily
large: V m

i (yi)→ ui (yi) > ui(y)← V m
i (y) for all y ∈ V \ {yi}.

Suppose now that x /∈ V and that i moves before the last amender (at h). Under strat-
egy profile σ, every proposal by player i is rejected with a probability of 1. Therefore, all
proposals in V are accepted with the same probability under σm (i.e., the same probability
as under ῡ): pmk (y) = pmk (y′) for all y, y′ ∈ V . We can then use the same argument as in
the previous paragraph to show that (1) holds for sufficiently large m.

53



Finally, suppose that x /∈ V and that i moves after the last amender (at h). As
explained above, we can concentrate on proposals in V . We distinguish between three
different cases:

(1) i(h) proposes y ∈ PV (x). In this case, the resulting expected payoff to player i

when all agents play according to σm is given by pmk (y)V m
i (y) + [1− pmk (y)] vmi .

(2) i(h) passes. The resulting expected payoff to player i when all agents play according
to σm is then vmi .

(3) i(h) proposes v /∈ PV (x). In this case, the resulting expected payoff to player i

when all agents play according to σm is given by pmk (v)V m
i (v) + [1− pmk (v)] vmi .

When m becomes arbitrarily large, σm becomes arbitrarily close to σ, so that vmi →
ui(x) and V m

i (y)→ ui(y) for any proposal y ∈ V . Inspection of the three cases above (and
the corresponding payoffs) reveals that i(h) cannot improve on proposing player i’s ideal
policy in V ∪{x} (which, i moving after the last amender, cannot be in PV (x)) when m is
arbitrarily large, thus completing the proof.

References

Acemoglu, D., G. Egorov and K. Sonin (2009), “Equilibrium Refinement in Dynamic
Voting Games”, mimeo.

Acemoglu, D., G. Egorov and K. Sonin (forthcoming), “Dynamics and Stability of Con-
stitutions, Coalitions, and Clubs” American Economic Review forthcoming.

Akyol, A., W. Lim and P. Verwijmeren (2010), “Shareholders in the Boardroom”, mimeo.

Anesi, V. (2006), “Committees with Farsighted Voters: A New Interpretation of Stable
Sets” Social Choice and Welfare 27, 595-610.

Anesi, V. (2010), “Nooncooperative Foundations of Stable Sets in Voting Games” Games
and Economic Behavior 70, 488-493.

Austen-Smith, D. and J.S. Banks (2005), Positive Political Theory II: Strategy and Struc-
ture. University of Michigan Press, Ann Arbor.

Banks, J.S. and J. Duggan (2000), “A Bargaining Model of Collective Choice” American
Political Science Review 94, 73-88.

Banks, J.S. and J. Duggan (2006), “A General Bargaining Model of Legislative Policy-
Making” Quarterly Journal of Political Science 1, 49-85.

54



Baron, D.P. (1996), “A Dynamic Theory of Collective Goods Provision” American Political
Science Review 90, 216-330.

Baron, D.P. and J.A. Ferejohn (1989), “Bargaining in Legislatures” American Political
Science Review 83, 181-1206.

Battaglini, M. and S. Coate (2007), “Inefficiency in Legislative Policy-Making: A Dynamic
Analysis” American Economic Review 97, 118-149.

Battaglini, M. and S. Coate (2008), “A Dynamic Theory of Public Spending, Taxation,
and Debt” American Economic Review 98, 201-236.

Battaglini, M. and T. Palfrey (forthcoming), “The Dynamics of Distributive Politics”
Economic Theory forthcoming.

Bernheim, B.D., A. Rangel and L. Rayo (2006), “The Power of the Last Word in Legislative
Policy Making” Econometrica 74, 1161-1190.

Black, D. (1958), The Theory of Committees and Elections Cambridge University Press,
Cambridge.

Chwe, M. (1994), “Farsighted Coalitional Stability" Journal of Economic Theory 63, 299-
325.

Compte, O. and P. Jehiel (2010), “Bargaining and Majority Rules: A Collective Search
Perspective” Journal of Political Economy 118, 189-221.

Diermeier, D. and P. Fong (2011), “Legislative Bargaining with Reconsideration” Quar-
terly Journal of Economics 126, 947-985.

Duggan, J. (2006), “Endogenous Voting Agendas” Social Choice and Welfare 27, 495-530.

Duggan, J. and T. Kalandrakis (2011), “A Newton Collocation Method for Solving Dy-
namic Bargaining Games” Social Choice and Welfare 36, 611-650.

Duggan, J. and T. Kalandrakis (forthcoming), “Dynamic Legislative Policy Making” Jour-
nal of Economic Theory.

Dutta, B., M.O. Jackson and M. Le Breton (2004), “Equilibrium Agenda Formation”
Social Choice and Welfare 23, 21-57.

55



Dziuda, W. and A. Loeper (2010), “Dynamic Collective Choice with Endogenous Status
Quo” mimeo.

Harsanyi, J.C. (1974), “An Equilibrium-Point Interpretation of Stable Sets and a Proposed
Alternative Definition” Management Science 20, 1472-1495.

Hayes-Renshaw, F., W. van Aken and H. Wallace (2006), “When and Why the EU Council
of Ministers Votes Explicitly” Journal of Common Market Studies 44, 161-194.

Heisenberg, D. (2005), “The Institution of ‘Consensus’ in the European Union” European
Journal of Political Research 44, 65-90.

Hirai, T. (2009), “The Objective and the Discriminatory Solutions of Majority Voting
Games with Single-Peaked, Ordinal Preferences”, mimeo.

Hortala-Vallve, R. (forthcoming), “Generous Legislators? A Description of Vote Trading
Agreements” Quarterly Journal of Political Science.

Kalandrakis, A. (2004), “A Three-Player Dynamic Majoritarian Bargaining Game” Jour-
nal of Economic Theory 116, 294-322.

Kalandrakis, T. (209), “Minimum Winning Coalitions and Endogenous Status Quo” In-
ternational Journal of Game Theory 39, 617-643.

Konishi, H., D. Ray (2003), “Coalition Formation as a Dynamic Process” Journal of
Economic Theory 100, 1-41.

Larcker, D., G. Ormazabal and D. Taylor (2011), “The Market Reaction to Corporate
Governance Regulation” Journal of Financial Economics 101, 431-448.

Lewis, J. (2008), “Strategic Bargaining, Norms, and Deliberation” in Naurin, D. and H.
Wallace eds. Unveiling the Council of the EU New York, Palgrave Macmillan.

Lucas, W.F. (1992), “Von Neumann-Morgenstern Stable Sets” in R. Aumann and S.
Hart eds. Handbook of Game Theory with Economic Applications Volume 1, North
Holland, Amsterdam.

Mailath, G.J., A. Postlewaite and L. Samuelson (2005), “Contemporaneous Perfect Epsilon-
Equilibria” Games and Economic Behavior 53, 126-140.

McKelvey, R.D. (1986), “Covering, Dominance, and Institution-Free Properties of Social
Choice” American Journal of Political Science 30, 283-314.

56



Matsusaka, J. and O. Ozbas (2012), “Shareholder Empowerment: The Right to Approve
and the Right to Propose”, mimeo.

Mattila, M. (2009), “Roll Call Analysis of Voting in the European Union Council of
Ministers after the 2004 Enlargement” European Journal of Political Research 48,
840-857.

Ordeshook, P.C. (1986) Game Theory and Political Theory. New York: Cambridge Uni-
versity Press.

Roberts, K. (2007), “Condorcet Cycles? A Model of Intertemporal Voting” Social Choice
and Welfare 29, 383-404.

Rubinstein, A. (1982), “Perfect Equilibrium in a Bargaining Model” Econometrica 50,
97-109.

Schmidt, S. (2000), “Only an Agenda Setter? The European Commission’s Power over
the Council of Ministers” European Union Politics 1, 37-61.

Shepsle, K.A. and B. R. Weingast (1984), “Uncovered Sets and Sophisticated Voting
Outcomes with Implications for Agenda Institutions” American Journal of Political
Science 28, 49-74.

Thomson, R. (2011), Resolving Controversy in the European Union Cambridge University
Press, Cambridge.

Volden, C. and A. Wiseman (2007), “Bargaining in Legislatures over Particularistic and
Collective Goods” American Political Science Review 101, 79-92.

von Neumann, J. and O. Morgenstern (1944), Theory of Games and Economic Behavior
Princeton University Press, Princeton.

Wilson, R. (1971), “Stable Coalition Proposals in Majority-Rule Voting” Journal of Eco-
nomic Theory 3, 254-271.

Winter, E. (1997), “Negotiations in Multi-Issue Committees” Journal of Public Economics
65, 323-342.

57


