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Abstract

This paper studies a noncooperative allocation procedure for coali-
tional games with veto players. The procedure is similar to the one
presented by Dagan et al. (1997) for bankruptcy problems. According
to it, a player, the proposer, makes a proposal that the remaining play-
ers must accept or reject. We present a model where the proposer can
make sequential proposals over n periods. If responders are myopic
maximizers (i.e. consider each period in isolation), the only subgame
perfect equilibrium outcome is the serial rule of Arin and Feltkamp
(2012) regardless of the order of moves. If all players are rational, the
serial rule still arises as the unique subgame perfect equilibrium out-
come if the order of moves is such that stronger players must respond
to the proposal after weaker ones.
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1 Introduction

Dagan et al. (1997) introduced a noncooperative bargaining procedure for
bankruptcy problems. In this procedure the player with the highest claim
has a distinguished role. He makes a proposal and the remaining players
accept or reject sequentially. Players who accept the proposal leave the
game with their share; if a player rejects the proposal this con�ict is solved
bilaterally by applying a normative solution concept (a "bilateral principle"
based on a bankruptcy rule) to a two-claimant bankruptcy problem in which
the estate is the sum of the two proposed payo¤s. They show that a large class
of consistent and monotone bankruptcy rules can be obtained as the Nash
outcomes of the game. They describe this kind of procedure as consistency
based: starting from a consistent solution concept, they construct extensive
forms whose subgames relate to the respective reduced cooperative games
and by �nding the equilibrium of the extensive form they are able to provide
noncooperative foundations for the consistent solution of interest.
Arin and Feltkamp (2007) consider an analogous procedure for veto bal-

anced games, in which a veto player is the proposer and the bilateral principle
in the event of a disagreement is the standard solution of a Davis-Maschler
reduced game (unless this would result in a negative payo¤ for the responder,
in which case the responder gets zero). The nucleolus is a natural candidate
to be a Nash outcome in this case, since it satis�es the Davis-Maschler re-
duced game property. However, it is not always obtained because it does
not satisfy aggregate monotonicity even in the class of veto balanced games:
if the veto balanced game v is such that reducing v(N) never increases the
nucleolus payo¤ for the veto player, the nucleolus is a Nash outcome; other-
wise the proposer is better-o¤ by making an ine¢ cient proposal rather than
proposing the nucleolus.
In the present paper, we modify the above procedure by allowing the

proposer to make a �xed number of sequential proposals, so that players can
continue bargaining over the remainder if the �rst proposal did not exhaust
the value of the grand coalition. Each period results in a partial agreement,
and then a new TU game is formed where the values of the coalitions take
into account the agreements reached so far; the �nal outcome is the sum
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of all partial agreements. We focus on the case in which the proposer can
make as many proposals as there are players in the game. We then analyze
the game assuming myopic behavior of the responders, that is, we assume
that responders consider each period in isolation, accepting or rejecting the
current proposal without anticipating the e¤ects of their decision on future
periods. The proposer is assumed to behave rationally, taking into account
the e¤ect of his actions on future periods and also taking into account that
the responders behave myopically. We refer to this kind of strategy pro�le
as a myopic best response equilibrium (MBRE).
It turns out that all MBRE lead to the same outcome, which is the serial

rule of Arin and Feltkamp (2012). This solution concept is based on the idea
that the strength of player i can be measured by the maximum amount a
coalition can obtain without player i, denoted by di. Since it is impossible
for any coalition to obtain a payo¤ above di without i�s cooperation, player i
can be viewed as having a veto right over v(N)� di. The serial rule divides
v(N) in segments, and each segment is equally divided between the players
that have a veto right over it. The serial rule is always in the core, and unlike
the nucleolus it satis�es aggregate monotonicity.
If responders take into account the e¤ect of their actions on future periods,

there may be subgame perfect equilibrium outcomes di¤erent from the serial
rule. The order of moves may be such that the proposer is able to hide some
payo¤ from a stronger player with the cooperation of a weaker player: the
proposal faced by the stronger player is not too favorable for the proposer so
that the stronger player cannot challenge it, but later on a weak player rejects
the proposal and transfers some payo¤ to the proposer; the weak player may
have an incentive to do so because of the e¤ect of this agreement on future
periods. However, if the order of moves is such that stronger players have the
last word in the sense that they respond to the proposal after weaker ones, the
only subgame perfect equilibrium outcome is the serial rule. Hence, myopic
and rational behavior of the responders lead to the same outcome in this
case.
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2 Preliminaries

2.1 TU games

A cooperative n-person game in characteristic function form is a pair (N; v),
where N is a �nite set of n elements and v : 2N ! R is a real-valued function
on the family 2N of all subsets of N with v(;) = 0: Elements of N are
called players and the real-valued function v the characteristic function of
the game. We shall often identify the game (N; v) with its characteristic
function and write v instead of (N; v). Any subset S of the player set N is
called a coalition. The number of players in a coalition S is denoted by jSj.
In this work we only consider games where all coalitions have nonnegative
worth.

A payo¤ allocation is represented by a vector x 2 Rn; where xi is the
payo¤ assigned by x to player i. We denote

P
i2S
xi by x(S). If x(N) � v(N),

x is called a feasible allocation; if x(N) = v(N), x is called an e¢ cient
allocation. An e¢ cient allocation satisfying xi � v(i) for all i 2 N is called
an imputation and the set of imputations is denoted by I(N; v): The set of
nonnegative feasible allocations is denoted by D(N; v) and formally de�ned
as follows

D(N; v) =
�
x 2 RN : x(N) � v(N) and xi � 0 for all i 2 N

	
:

The core of a game is the set of imputations that cannot be blocked by
any coalition, i.e.

C(N; v) = fx 2 I(v) : x(S) � v(S) for all S � Ng :

A game with a nonempty core is called a balanced game. A game v is a
veto-rich game if it has at least one veto player and the set of imputations
is nonempty. A player i is a veto player if v(S) = 0 for all coalitions where
player i is not present. A balanced game with at least one veto player is
called a veto balanced game.
A solution � on a class of games �0 is a correspondence that associates

with every game (N; v) in �0 a set �(N; v) in RN such that x(N) � v(N) for
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all x 2 �(N; v). This solution is called e¢ cient if this inequality holds with
equality. The solution is called single-valued if it contains a unique element
for every game in the class.
We now introduce the simplest monotonicity requirement that we can ask

of a solution. Let � be a single-valued solution on a class of games �0. We
say that solution � satis�es the aggregate monotonicity property (Meggido,
1974) if the following holds: for all v; w 2 �0, such that v(S) = w(S) for all
S 6= N and v(N) < w(N), then �i(v) � �i(w) for all i 2 N .
Given a vector x 2 RN , the excess of a coalition S at x in a game v is

de�ned as e(S; x) := v(S)� x(S): Let �(x) be the vector of all excesses at x
arranged in non-increasing order of magnitude. The lexicographic order �L
between two vectors x and y is de�ned by x �L y if there exists an index k
such that xl = yl for all l < k and xk < yk and the weak lexicographic order
�L by x �L y if x �L y or x = y:

Schmeidler (1969) introduced the nucleolus of a game v; denoted by
�(N; v); as the imputation that lexicographically minimizes the vector of
non-increasingly ordered excesses over the set of imputations. In formula:

f�(N; v)g = fx 2 I(N; v) j�(x) �L �(y) for all y 2 I(N; v)g :

For any game v with a nonempty imputation set, the nucleolus is a single-
valued solution, is contained in the kernel and lies in the core provided that
the core is nonempty. In the class of veto balanced games the kernel, the
prekernel and the nucleolus coincide (see Arin and Feltkamp (1997)).

2.2 A non-cooperative game (Arin and Feltkamp, 2007)

Given a veto balanced game (N; v) and an order of players, we will de�ne a
tree game associated to the TU game and denote it byG(N; v). The game has
n stages and in each stage only one player takes an action. In the �rst stage,
a veto player announces a proposal x1 that belongs to the set of feasible and
nonnegative allocations of the game (N; v): In the next stages the responders
accept or reject sequentially. If a player, say i; accepts the proposal xt�1

at stage t, he leaves the game with the payo¤ xt�1i and for the next stage
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the proposal xt coincides with the proposal at t� 1; that is xt�1: If player i
rejects the proposal then a two-person TU game is formed with the proposer
and player i: In this two-person game the value of the grand coalition is
xt�11 +xt�1i and the value of the singletons is obtained by applying the Davis-
Maschler reduced game1 (Davis and Maschler (1965)) given the game (N; v)
and the allocation xt�1: Player i will receive as payo¤ the restricted standard
solution of this two-person game. Once all the responders have played and
consequently have received their payo¤s the payo¤ of the proposer is also
determined.

Formally, the resulting outcome of playing the game can be described by
the following algorithm.

Input : a veto balanced game (N; v) with a veto player, player 1, and an
order on the set of remaining players (responders).
Output : a feasible and nonnegative allocation x:

1. Start with stage 1. Player 1 makes a feasible and nonnegative proposal
x1 (not necessarily an imputation): The superscript denotes at which
stage the allocation emerges as the proposal in force.

2. In the next stage the �rst responder (say, player 2) says yes or no to
the proposal. If he says yes he receives the payo¤ x12, leaves the game,
and x2 = x1:

1Let (N; v) be a game, T a subset of N such that T 6= N; ; , and x a feasible allocation.
Then the Davis-Maschler reduced game with respect to N n T and x is the game (N n
T; v

NnT
x ) where

vNnTx (S) :=

8><>:
0 if S = ;
v(N)� x(T ) if S = N n T
max
Q�T

fv(S [Q)� x(Q)g for all other S � N n T :

Note that we have de�ned a modi�ed Davis-Maschler reduced game where the value of
the grand coalition of the reduced game is x(NnT ) instead of v(N)�x(T ): If x is e¢ cient
both reduced games coincide. See also Peleg (1986).
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If he says no he receives the payo¤2

y2 = max

�
0;
1

2

�
x11 + x

1
2 � vx1(f1g)

��
where

vx1(f1g) = max
12S�Nnf2g

�
v(S)� x1(Sn f1g)

	

Now, x2i =

8><>:
x11 + x

1
2 � y2 for player 1
y2 for player 2
x1i if i 6= 1; 2:

3. Let the stage t where responder k plays, given the allocation xt�1: If
he says yes he receives the payo¤ xt�1k , leaves the game, and xt = xt�1:

If he says no he receives the payo¤

yk = max

�
0;
1

2

�
xt�11 + xt�1k � vxt�1(f1g)

��
where

vxt�1(f1g) = max
12S�Nnfkg

�
v(S)� xt�1(Sn f1g)

	
:

Now, xti =

8><>:
xt�11 + xt�1k � yk for player 1

yk for player k
xt�1i if i 6= 1; k

:

4. The game ends when stage n is played and we de�ne xn(N; v) as the
vector with coordinates

�
xnj
�
j2N :

In this game we assume that the con�ict between the proposer and a
responder is solved bilaterally. In the event of con�ict, the players face a
two-person TU game that shows the strength of each player given that the
rest of the responders are passive. Once the game is formed the allocation
proposed for the game is a normative proposal, a kind of restricted standard
solution3.

2Note that, since 1 is a veto player, vxt(fig) = 0 for any proposal xt and any player
i 6= 1.

3In some sense the game is a hybrid of non-cooperative and cooperative games, since
the outcome in case of con�ict is not obtained as the equilibrium of a non-cooperative
game.
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2.3 The Nash outcomes of the game

Given a game (N; v) and a feasible allocation x we de�ne fij as follows:

fij(x; (N; v)) = min
i2S�Nnfjg

fx(S)� v(S)g .

If there is no confusion we write fij(x) instead of fij(x; (N; v)): Note that,
if j is a veto player, fij(x) = xi.
The concept fij(x) is closely related to the surplus of i against j at x

(terminology of Maschler, 1992), sij(x) = max
i2S�Nnfjg

fv(S)� x(S)g. Given a

coalition S, x(S)� v(S) is the satisfaction of coalition S at x; thus fij(x) is
the minimum satisfaction of a coalition that contains i but not j. The higher
fij(x), the better i is treated by the allocation x in comparison with j. The
kernel can be de�ned as the set of imputations such that fji(x) > fij(x)

implies xj = v(fjg).
The set of bilaterally balanced allocations for player i is

Fi(N; v) = fx 2 D(N; v) : fji(x) � fij(x) for all j 6= ig

while the set of optimal allocations for player i in the set Fi(N; v) is
de�ned as follows:

Bi(N; v) = argmax
x2Fi(N;v)

xi:

In the class of veto-balanced games, Fi(N; v) is a nonempty and compact
set for all i, thus the set Bi(N; v) is nonempty.

Theorem 1 (Arin and Feltkamp, 2007) Let (N; v) be a veto balanced TU
game and let G(N; v) be its associated tree game. Let z be a feasible and
nonnegative allocation. Then z is a Nash (SPE) outcome if and only if
z 2 B1(N; v).

The idea behind this result is the following. As shown in Arin and
Feltkamp (2007), the restricted standard solution that is applied if player
i rejects a proposal in round t results in f1i(xt) = fi1(xt), unless this would
mean a negative payo¤ for player i, in which case fi1(xt) > f1i(xt) and xti = 0.
Hence, it is in player i�s interest to reject any proposal with f1i(xt�1) >
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fi1(x
t�1) and to accept all other proposals. Since player i rejects propos-

als with f1i(xt�1) > fi1(x
t�1) and this rejection results in f1i(xt) = fi1(x

t),
the proposal in force after i has the move always satis�es fi1(xt) � f1i(x

t).
Subsequent actions by players moving after i can only reduce f1i(:), hence
fi1(x

n) � f1i(x
n). Player 1 then maximizes his own payo¤ under the con-

straint that the �nal allocation has to be bilaterally balanced.
The elements of B1(N; v) are not necessarily e¢ cient. Indeed, in some

cases, the set B1(N; v) contains no e¢ cient allocations. The existence of an
e¢ cient equilibrium is not guaranteed because the nucleolus does not satisfy
aggregate monotonicity for the class of veto balanced games. If (N; v) is such
that decreasing the value of the grand coalition (keeping the values of other
coalitions constant) leads to the nonincreasing of the nucleolus payo¤ for
player 1, the nucleolus of the game is a Nash outcome (Arin and Feltkamp,
2007, theorem 13).

3 A new game: sequential proposals

3.1 The model

We extend the previous model to n periods. Given a veto balanced game
with a proposer and an order on the set of responders we will construct a
tree game, denoted by Gn(N; v). In this game the proposer can make n
sequential proposals, and each proposal is answered by the responders as in
the previous model.
Formally, the resulting outcome of playing the game can be described by

the following algorithm.
Input : a veto balanced game (N; v) with a veto player, player 1, as

proposer, and an order on the set of the remaining players (responders) which
may be di¤erent for di¤erent periods.
Output : a feasible and nonnegative allocation x:

1. Start with period 1. Given a veto balanced TU game (N; v) and the
order on the set of responders corresponding to period 1, players play
the game G(N; v). The outcome of this period determines the veto
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balanced TU game for the second period, denoted by (N; v2;x
1
), where

v2;x
1
(S) = max f0;min fv(N)� x1(N); v(S)� x1(S)gg and x1 is the

�nal outcome obtained in the �rst period. Note that by construction,
the game (N; v2;x

1
) is a veto balanced game where player 1 is a veto

player. Then go to the next step. The superscripts in the characteristic
function denote at which period and after which outcome the game is
considered as the game in force. If no confusion arises we write v2

instead of v2;x
1
:

2. Let the period be t (t < n+1) and the TU game (N; vt;x
t�1
):We play the

game G(N; vt;x
t�1
) and de�ne the veto balanced TU game (N; vt+1;x

t
)

where vt+1(S) = max f0;min fvt(N)� xt(N); vt(S)� xt(S)gg and xt
is the �nal outcome obtained in period t. Then go to the next step.

3. The game ends after stage n of period n: (If at some period before n
the proposer makes an e¢ cient proposal (e¢ cient according to the TU
game underlying at this period) the game is trivial for the rest of the
periods).

4. The outcome is the sum of the outcomes generated at each period.

In this paper we focus on games with n periods (the number of players).
Games with a di¤erent number of periods can be easily de�ned and will
be used in some of the proofs. We refer to the game with m proposals as
Gm(N; v), where m � 1.

3.2 A serial rule for veto balanced games

We now introduce a solution concept de�ned on the class of veto balanced
games and denoted by �. Somewhat surprisingly, this solution will be related
to the non-cooperative game with sequential proposals.
Let (N; v) be a veto balanced game where player 1 is a veto player. De�ne

for each player i a value di as follows:

di := max
S�Nnfig

v(S):
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Because 1 is a veto player, d1 = 0: Let dn+1 := v(N) and rename the
remaining players according to the nondecreasing order of those values. That
is, player 2 is the player with the lowest value and so on. The solution �
associates to each veto balanced game, (N; v), the following payo¤ vector:

�l =

nX
i=l

di+1 � di
i

for all l 2 f1; :::; ng :

The following example illustrates how the solution behaves.

Example 2 Let N = f1; 2; 3; 4g be a set of players and consider the following
4-person veto balanced game (N; v) where

v(S) =

8>>><>>>:
8 if S 2 ff1; 2; 3g ; f1; 2; 4gg
6 if S = f1; 3; 4g
12 if S = N
0 otherwise.

Computing the vector of d-values we get:

(d1; d2; d3; d4; d5) = (0; 6; 8; 8; 12):

Applying the formula,

�1 =
d2�d1
1
+ d3�d2

2
+ d4�d3

3
+ d5�d4

4
= 8

�2 =
d3�d2
2
+ d4�d3

3
+ d5�d4

4
= 2

�3 =
d4�d3
3
+ d5�d4

4
= 1

�4 =
d5�d4
4

= 1:

The formula suggests a serial rule principle (cf. Moulin and Shenker,
1992). Since it is not possible for any coalition to obtain a payo¤ above di
without player i�s cooperation, we can view player i as having a right over
the amount v(N) � di. The value v(N) is divided in segments (d2 � d1,
d3� d2; :::; v(N)� dn) and each payo¤ segment is divided equally among the
players that have a right over it.
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In the class of veto balanced games, the solution � satis�es some well-
known properties such as nonemptiness, e¢ ciency, anonymity and equal
treatment of equals among others. It also satis�es aggregate monotonicity.4

We now show that � provides a core allocation for veto balanced games.

Lemma 3 (Arin and Feltkamp, 2012) Let (N; v) be a veto balanced TU
game. Then �(N; v) 2 C(N; v):

Proof. We need to prove that for any coalition S it holds that v(S) �P
l2S �l: Note that

k�1P
l=1

(�l � �k) = dk � d1; since 1 is a veto player we have

d1 = 0 and hence
k�1P
l=1

(�l � �k) = dk: Let S be a coalition and let dj be

such that dj = min
i=2S
di: Let k be the �rst player for which dk = dj: Therefore,

f1; 2; :::; k � 1g � S: By de�nition v(S) � dk =
k�1P
l=1

(�l � �k) �
k�1P
l=1

�l �P
l2S �l:

5

The next section shows that �(N; v) is the unique equilibrium outcome
assuming that all responders act as myopic maximizers and the proposer
plays a best response taking this into account.

3.3 Myopic Best Response Equilibrium

The �rst approach we take to solve the non-cooperative game with sequential
proposals consists of analyzing myopic behavior of the responders. Respon-
ders behave myopically when they act as payo¤ maximizers in each period
without considering the e¤ect of their actions on future periods.
Suppose all responders maximize payo¤s myopically for each period and

that the proposer plays optimally taking into account that the responders are
myopic maximizers. We call such a strategy pro�le a myopic best response

4For a de�nition of those properties, see Peleg and Sudhölter (2003). It is not the aim
of this paper to provide an axiomatic analysis of the solution. Arin and Feltkamp (2012)
characterize the solution in the domain of veto balanced games by core selection and a
monotonicity property.

5Because the game is balanced, v(N) � dn, which implies �k � 0 for all k.
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equilibrium (MBRE). We will show in this section that all MBRE lead to the
same outcome.
If there is only one period in the game, myopic and rational behavior

coincide. This means that the following lemma holds if responders behave
myopically.

Lemma 4 (Arin and Feltkamp, 2007, lemmas 2 and 3) Let (N; v) be a veto
balanced TU game, and Gn(N; v) its associated tree game. At any period
k and stage t, the responder (say, i) will accept xkt�1 if fi1(x

k
t�1; v

k;xk�1) >

f1i(x
k
t�1; v

k;xk�1), and will reject it if fi1(xkt�1; v
k;xk�1) < f1i(x

k
t�1; v

k;xk�1) in
a MBRE. If fi1(xkt�1; v

k;xk�1) = f1i(x
k
t�1; v

k;xk�1), the responder is indi¤erent
between accepting and rejecting since both decisions lead to the same out-
come. Also, the �nal outcome of any period k is such that fi1(xk; vk;x

k�1
) �

f1i(x
k; vk;x

k�1
) for all i.

The notion of balanced proposals will play a central role in the proofs of
the main results.

De�nition 5 Let (N; v) be a veto balanced TU game. Consider its associated
tree game Gn(N; v): Given a period k; a proposal x is balanced if it results as
the �nal outcome of period k regardless of the actions of the responders.

Balanced proposals coincide with the nucleolus (kernel) of special games.
In the class of veto-rich games (games with at least one veto player and a
nonempty set of imputations) the kernel and the nucleolus coincide (Arin
and Feltkamp, 1997). Therefore we can de�ne the nucleolus as

�(N; v) = fx 2 I(N; v) : fij(x) < fji(x) =) xj = 0g :

We use this alternative de�nition of the nucleolus in the proof of the
following lemma.

Lemma 6 Let (N; v) be a veto balanced TU game. Consider the associated
game Gn(N; v): Given a period k; a proposal x is balanced if and only if it
coincides with the nucleolus of the game (N;w), where w(S) = vk(S) for all
S 6= N and w(N) = x(N):

13



Proof. Assume that x is a balanced proposal in period k with the game
(N; vk):

a) Let l be a responder for which xl = 0: If whatever the response of
player l the proposal does not change then f1l(x) � 0 = xl = fl1(x):
b) Let m be a responder for which xm > 0: If whatever the response of

player m the proposal does not change then f1m(x) = xm = fm1(x):
Therefore, the bilateral kernel conditions are satis�ed for the veto player.

Lemma 12 in Arin and Feltkamp (2007) shows that if the bilateral kernel
conditions are satis�ed between the veto player and the rest of the players
then the bilateral kernel conditions are satis�ed between any pair of players.
Therefore, x is the kernel (nucleolus) of the game (N;w): The converse

statement can be proven in the same way.
We now show that, by making balanced proposals, the proposer can secure

the payo¤ provided by the serial rule �:

Lemma 7 Let (N; v) be a veto balanced TU game and Gn(N; v) its associated
tree game. Let z be a Nash outcome of the game Gn(N; v): Then z1 � �1 =
nP
i=1

di+1�di
i

:

Proof. The result is based on the fact that the proposer has a strategy

with which he secures the payo¤
nP
i=1

di+1�di
i

regardless of the strategies of the

rest of the players by making a sequence of balanced proposals.
The strategy is the following: At each period t; (t 2 f1; :::; ng) consider

the set St = fl : l � tg and the proposal xt, de�ned as follows:

xtl =

(
dt+1�dt

t
for all l 2 St

0 otherwise.

whenever xt is feasible and propose the 0 vector otherwise.
It can be checked immediately that in each stage the proposed allocation

will be the �nal allocation independently of the answers of the responders
and independently of the order of those answers. The proposals are balanced
proposals.
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For example, in period 1, the proposal is (d2; 0; :::; 0). Because 1 is a veto
player, fi1(:) = 0 for all i. As for f1i(:), because all players other than 1
are getting 0, the coalition of minimum satisfaction of 1 against i is also the
coalition of maximum v(S) with i =2 S. Call this coalition S�. By de�nition,
v(S�) = di � d2 and f1i(:) = x(S�)�v(S�) = d2�di � 0. Thus, fi1(:) � f1i(:)
for all i and the outcome of period 1 is (d2; 0; :::; 0) regardless of responders�
behavior.
In period 2 we have a game v2 with the property that v2(S) > 0 implies

v2(S) = v1(S) � d2 for all S. Thus, player 2 is a veto player in v2: Player 1
proposes

�
d3�d2
2
; d3�d2

2
; 0; :::; 0

�
. If player 2 rejects, we have f12(:) = d3�d2

2
�

0 = f21(:). As for other players i 6= 1; 2, when computing f1i we take into
account that any coalition of positive value must include 1 and 2. Since
players other than 1 and 2 are getting 0, the coalition 1 uses against i is
S� 2 argmaxS:i=2S v(S). By de�nition, v(S�) = di and v2(S�) = di � d2.
Then f1i(:) = x(S�)� v2(S�) = (d3 � d2)� (di � d2) = d3 � di � 0:
In period 3, player 3 has become a veto player and the same process can

be iterated until period n.
Therefore, this strategy of the proposer determines the total payo¤ of

all the players, that is, the �nal outcome of the game Gn(N; v): This �nal
outcome coincides with the solution �:
This proof, together with lemma 6, suggests a new interpretation of the

serial rule. At each stage the proposal coincides with the nucleolus of a
veto-rich game. Formally,

�(N; v) =
nX
i=1

�(N;wi)

where the games (N;wi) are de�ned as follows: w1(N) = d2 and w1(S) =
v(S) otherwise. For i : 2; ::; n :

wi(S) =

8<: di+1 � di if S = N

max

�
0; wi�1(S)�

P
l2S
�l(N;w

i�1)

�
otherwise.

Remark 8 The serial rule can also be obtained by making balanced proposals
if the game has n� 1 periods.
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This is because the proposer can combine the �rst two proposals in the
proof of lemma 7 by proposing (d2 + d3�d2

2
; d3�d2

2
; 0; :::; 0) in the �rst period.

We now show that the proposer cannot improve upon � in a MBRE.

Proposition 9 Let (N; v) be a veto balanced TU game and Gn(N; v) its
associated tree game. Let z be a MBRE outcome of the game Gn(N; v): Then

z1 � �1 =
nP
i=1

di+1�di
i

:

We will prove this proposition by a series of lemmas. We will �rst show
that any payo¤ player 1 can obtain given myopic responder behavior can
also be obtained by making balanced proposals: player 1 can cut the payo¤
of other players until a balanced proposal is obtained at no cost to himself
(lemma 10). We will then show that the payo¤player 1 can get with balanced
proposals in a given period cannot exceed the serial rule of a particular TU
game wt. Finally, we will check that the sum of the serial rules of the games
wt cannot exceed the serial rule of the original game (N; v) (lemma 16), hence
player 1�s total payo¤ cannot exceed �1(N; v).

Lemma 10 Let (N; v) be a veto balanced game. Consider the associated
game with m stages Gm(N; v). Let z =

Pm
1 x

t be an outcome resulting from
some strategy pro�le. Assume that the �nal outcome of any period t, xt, is
such that for any player l, xtl � f1l(x

t; vt). Then there exists y such that
y1 = z1, y =

Pm
1 q

t where qt is a balanced proposal for period t.

Proof. If (x1; x2; :::; xm) is a sequence of balanced proposals the proof is
done.
Suppose that (x1; x2; :::; xm) is not a sequence of balanced proposals. This

means that for some xt and for some i 6= 1 it holds that xti > f1i(x
t; vt)

and xti > 0: Let k be the �rst period where such result holds. Therefore,
(x1; x2; :::; xk�1) is a sequence of balanced proposals. We will construct a
balanced proposal where the payo¤ of the proposer does not change.
Since fi1(xk) = xki ; by reducing the payo¤ of player i we can construct a

new allocation yk such that f1i(yk) = fi1(yk) or f1i(yk) < fi1(yk) and yki = 0.
In any case, xk1 = y

k
1 and the payo¤ of the proposer does not change. Note
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also that reducing i�s payo¤ can only lower f1j(yk), so it is still the case that
f1j(y

k) � fj1(yk) for all j.
Now, if there exists another player l such that f1l(yk) < fl1(y

k) and
ykl > 0 we construct a new allocation zk such that f1l(zk) = fl1(z

k) or
f1i(z

k) < fi1(z
k) and zki = 0. Note that z

k
1 = y

k
1 : Repeating this procedure

we will end up with a balanced allocation. If qk is the �nal outcome of this
procedure, qk is the nucleolus of the game (N;wk) where wk(N) = qk(N)

and wk(S) = vk(S) for all S 6= N .
The TU game (N;wk+1) resulting after proposing qk satis�es thatwk+1(S) �

vk+1(S) for all S 3 1: Therefore, f1i(x;wk+1) � f1i(x; vk+1) for any feasible
allocation x, and xk+1l � f1l(xk+1; wk+1) for all l.
Consider the game (N;wk+1) and the payo¤ xk+1. Suppose that xk+1i >

f1i(x
k+1) for some i 6= 1 and xk+1i > 0: We can repeat the same procedure of

period k until we obtain a balanced allocation qk+1. The procedure can be
repeated until the last period of the game to obtain the sequence of balanced
proposals (x1; x2; :::; xk�1; qk; :::; qm).
Some interesting properties of balanced proposals:

Lemma 11 If xt is a balanced proposal, any player i with xti > 0 will be a
veto player at t+ 1.

This is because if xt is balanced we have f1i(xt; vt) = xti, so that all
coalitions that have a positive vt but do not involve i have vt(S) < xt(S).
Thus, after the payo¤s xt are distributed any coalition with positive value
must involve i. Note that this result requires xt to be a balanced proposal
and not merely the outcome of a MBRE. In a MBRE it may be the case that
f1i(x

t; vt) < xti, and we cannot conclude anything about the sign of f1i(x
t; vt).

The next lemma establishes a relationship between balanced proposals in
Gm(N; v) and the serial rule. Suppose xt is a balanced proposal in period t.
Consider the game wt, where wt(S) = minfvt(S); xt(N)g. The serial rule of
wt and the balanced proposal xt do not coincide in general. However, the set
of players who receive a positive payo¤ in xt coincides with the set of players
who receive a positive payo¤ according to the serial rule of wt.6

6For example, consider the game with N = f1; 2; 3; 4g, v(1; 2) = v(1; 3) = 2, v(1; 2; 3) =
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Lemma 12 Let (N; v) be a veto balanced TU game. Consider the associated
game Gm(N; v). Let z =

Pm
1 x

t be the outcome resulting from some strategy
pro�le with balanced proposals. Consider period t, its outcome xt and the
game (N;wt) where wt(S) = minfvt(S); xt(N)g. Then it holds that xtk > 0
if and only if �k(N;w

t) > 0:

Proof. a) If xtk > 0 we need to prove that dk(N;wt) < xt(N), so that
the serial rule of wt assigns a positive payo¤ to k.
Let S 2 argmaxT�Nnfkg vt(T ). Since xt is balanced we have f1k(xt) =

xtk > 0 and that implies xt(S) > vt(S) (otherwise S could have been used
to complain against k). Hence, xt(N) � xt(S) > vt(S) = dk(v

t) = dk(w
t),

where the last equality follows from lemma 11.7

b) If xtk = 0 we need to prove that dk(N;wt) = xt(N). Since xt is
balanced, f1k(xt; vt) � 0. Let P be a coalition associated to f1k(xt; vt).
Because f1k(xt; vt) � 0, xt(P ) � vt(P ). Coalition P must contain all players
receiving a positive payo¤ at xt (otherwise xt is not balanced since P can
be used against any player outside P ). Therefore xt(N) = xt(P ) � vt(P ).
Because of the way wt is de�ned it cannot exceed xt(N), so xt(N) = wt(P ) =
dk(w

t) and k receives 0 according to the serial rule of wt.
The following lemma concerns a property of the serial rule. By de�nition,

the serial rule is such that dk is divided among players fj 2 N; j < kg. Above
dk, player k and any player j < k get the same payo¤.

Lemma 13 For any player k we have
P

i2f1;2;:::;k�1g �i = dk + (k � 1)�k:
Hence,

P
i2f1;2;:::;k�1g �i � dk + �k. The latter inequality is strict except if

k = 2 or �k = 0.

6, v(1; 2; 3; 4) = 10 and v(S) = 0 otherwise. The proposal x = (2; 1:5; 1:5; 0) is a balanced
proposal with a total payo¤ distributed of 5 (and, because of lemma 6 and the uniqueness
of the nucleolus, it is the only balanced proposal that distributes a total payo¤ of 5). The
game w associated to this proposal is identical to v except that w(1; 2; 3) = w(N) = 5. Its
serial rule is (3; 1; 1; 0), which is di¤erent from the balanced proposal but gives a positive
payo¤ to the same set of players.

7Because xt is a balanced proposal, the d�values of wt coincide with the d�values of vt
for all players receiving a positive payo¤. Any player j that is receiving a positive payo¤
at t will be veto at t + 1 (lemma 11). The values dj(wt) and dj(vt) can only di¤er if
vt(S) > xt(N) for some S such that j =2 S, but then player j would not be veto at t+ 1.
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The next lemma tell us that, given a strategy pro�le with balanced pro-
posals, the proposer cannot get more than the serial rule of the games wt.

Lemma 14 Let (N; v) be a veto balanced TU game. Consider the associated
game with m stages Gm(N; v). Let z =

Pm
1 x

t be an outcome resulting
from balanced proposals. Consider period t, its outcome xt and the game
(N;wt) where wt(S) = minfvt(S); xt(N)g. Then xt1 � �1(N;w

t) implies
xtl � �l(N;wt) for all l 2 N:

Proof. Let T be the set of veto players in (N;wt), and letM = fl1; :::; lmg
be the ordered (according to the d�values of (N;wt)) set of nonveto players
that have received a positive payo¤ at xt. That is, dl1 � ::: � dlm.8
Suppose xt1 � �1(N;wt). Since xt is balanced, xt1 = xti for all i 2 T , thus

if xt1 � �1(N;wt) it follows that xti � �i(N;wt) for all i 2 T .
We now want to prove that xti � �i(N;wt) for all i 2 M . We will do it

by induction.
Consider the responder l1. Since xt is balanced we have f1l1(x

t) = xtl1.
If the coalition associated to f1l1 has a value of 0, it follows that x

t
1 = xtl1

so xtl1 � �l1(N;w
t). If the coalition 1 is using has a positive value, all veto

players must be in it, so its payo¤must be at least jT j�1(N;wt), and its value
(by de�nition of dl1) cannot exceed dl1. Hence, f1l1(x

t) � jT j�1(N;wt)� dl1.
Because of lemma 13, jT j�1(N;wt)� dl1 � �l1(N;wt).
Now suppose the result xti � �i(N;wt) is true for all i 2 fl1; :::; lk�1g. We

will prove that xtlk � �lk(N;w
t). Let S be a coalition such that f1lk(x

t) =

xt(S) � vt(S). As before, the result follows immediately if vt(S) = 0. If
vt(S) > 0 it must be the case that T � S, but S need not involve all players
in fl1; :::; lk�1g: Denote fl1; :::; lk�1g by Q. We consider two cases, depending
on whether Q � S.
IfQ � S, we have xtlk = f1lk(x

t) = xt(S)�vt(S) �
P

i2T[Q �i(N;w
t)�dlk ,

where the last inequality uses the induction hypothesis. The set T [ Q
contains all players with di < dlk . Hence, by lemma 13,

P
i2T[Q �i(N;w

t)�
dlk � �lk(N;w

t).

8Recall that, because xt is a balanced proposal, the d�values of wt coincide with the
d�values of vt for all players in M .
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If Q * S, there is a player lp < lk such that lp =2 S. Because xt is
a balanced proposal, xtlp = f1lp(x

t). Because the veto player can use S to
complain against lp, f1lp(x

t) � f1lk(x
t) = xlk , hence xlp � xlk . By the

induction hypothesis, xlp � �lp(N;w
t). Since dlp � dlk we also know that

�lp(N;w
t) � �lk(N;w

t), so that

xlk = f1lk(x
t) � f1lp(xt) = xlp � �lp(N;w

t) � �lk(N;w
t):

So far we have discussed the set of veto players and the set of nonveto
players that are getting a positive payo¤ in xt. For players in Nn(T [M),
we have shown in lemma 12 that xtj = 0 implies �j(N;w

t) = 0, hence xtj �
�j(N;w

t) for all players.

Corollary 15 Putting lemma 14 together with the e¢ ciency of the serial ruleP
i2N �i(N;w

t) = wt(N), we see that xt1 � �1(N;wt) implies xtl = �l(N;wt)
for all l 2 N: The only way in which player 1 can obtain the serial rule of
(N;wt) with balanced proposals is that all players in the game obtain their
serial rule payo¤.

The sum of the serial rules of the games wt cannot exceed the serial rule
of the original game. This is due to the following property of the serial rule:

Lemma 16 Consider the veto balanced TU game (N; v) and a �nite set of

positive numbers (a1; :::; ak) such that
kP
l=1

al = v(N). Consider the following

TU games: (N;w1), (N;w2), ..., (N;wk), where

w1(S) =

(
a1 if S = N

minfa1; v(S)g otherwise

w2(S) =

(
a2 if S = N

minfa2;max
�
0; v(S)�

P
i2S �i(N;w

1)
�
g otherwise

wl(S) =

(
al if S = N

minfal;max
h
0; v(S)�

Pl�1
m=1

P
i2S �i(N;w

m)
i
g otherwise

Then �(N; v) =
Pk

i=1 �(N;w
i):

20



In the lemma, we take v(N) and divide it in k positive parts, where k is
a �nite number. Then we compute the serial rule for each of the k games,
and see that each player gets the same in total as in the serial rule of the
original game.
The k games are formed as follows: wk(N) is always ak; the other coali-

tions have v(S)minus what has been distributed so far according to the serial
rule of the previous games, unless this would be negative (in which case the
value is 0) or above wk(N) (in which case the value is ak).
The idea of the proof is that player i cannot get anything until di has

been distributed, and from that point on i becomes veto. This happens
regardless of the way v(N) is divided into k parts. For the same reason, ifPk

i=1 al < v(N); player 1 will get less than �1(N; v).

Note that lemma 16 refers to a sequence of TU games such that each game
is obtained after distributing the serial rule payo¤s for the previous game; the
games wt in lemma 14 are obtained by subtracting balanced proposals from
wt�1. It turns out that the TU games involved are identical in both cases: the
sequence wt depends only on the total amounts distributed x1(N); :::; xn(N)
(denoted by a1, ..., an in lemma 16). This is because the set of players that
get a positive payo¤ at period t is the same in both cases (lemma 12) and all
these players become veto at period t + 1 (lemma 11). Hence, any coalition
with positive value at t has wt(S) = min(wt�1(S)� xt�1(N); xt(N)) in both
cases.

Putting the above lemmas together we can prove proposition 9. First,
any payo¤ player 1 can achieve in a MBRE can be achieved by balanced
proposals (lemma 10). Second, given that proposals are balanced, the payo¤
player 1 can get cannot exceed the sum of the serial rules of the games wt

(lemma 14). Finally, the sum of the serial rules of the games wt cannot
exceed the serial rule of the original game (lemma 16).
Given that player 1 can never get more than �1(N; v) in a MBRE by

proposition 9 (and only if all players get their serial rule payo¤ by corollary
15), and that �(N; v) is achievable by the sequential proposals described in
lemma 7, we have the following result.
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Theorem 17 Let (N; v) be a veto balanced TU game and Gn(N; v) a tree
game. Let z be an outcome resulting from a MBRE of the game Gn(N; v).
Then z = �(N; v):

Corollary 18 Let (N; v) be a veto balanced TU game. Then �1(N; v) �
�1(N; v).

Proof. In a MBRE, �1(N; v) coincides with the equilibrium payo¤ for
the proposer in the game Gn(N; v). This equilibrium payo¤ is at least as
large as his equilibrium payo¤ in the game G1(N; v), because the proposer
can always wait until period n to divide the payo¤. This equilibrium payo¤
is in turn at least as high as �1(N; v), because �(N; v) is a balanced proposal.

3.4 An example

The next example illustrates that a MBRE need not be a subgame perfect
equilibrium.

Example 19 Let N = f1; 2; 3; 4; 5g a set of players and consider the follow-
ing 5-person veto balanced game (N; v) where

v(S) =

8>>><>>>:
36 if S 2 ff1; 2; 3; 5g ; f1; 2; 3; 4gg
31 if S = f1; 2; 4; 5g
51 if S = N
0 otherwise.

Computing the outcome associated to any MBRE we see that the pro-
poser receives as payo¤the amount �1(N; v) = 121=6: As we know, this result
is true for any order of the responders. Suppose the order of responders is
2, 3, 4, 5. The following result holds given this order: If the responders play
the game optimally (not necessarily as myopic maximizers) the proposer can
get a higher payo¤ than the one provided by the MBRE outcome. Therefore,
MBRE and SPE outcomes do not necessarily coincide.
The strategy is the following: The proposer o¤ers nothing in the �rst

three stages. In the 4th period the proposal is: (10; 10; 5; 0; 0):
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The responses of players 2, 4 and 5 do not change the proposal (even if
the proposal faced by player 4 and 5 is a new one resulting from a rejection of
player 3). If player 3 accepts this proposal, the TU game for the last period
will be:

w(S) =

8>>><>>>:
11 if S 2 ff1; 2; 3; 5g ; f1; 2; 3; 4gg
11 if S = f1; 2; 4; 5g
26 if S = N
0 otherwise.

In the last period, myopic and rational behavior coincide, so the out-
come must be an element of B1(N;w): It can be checked that B1(N;w) =
f(5:5; 5:5; 0; 0; 0)g : Therefore, after accepting the proposal in period 4, player
3 gets a total payo¤ of 5:
If player 3 rejects the proposal, the outcome of the 4th period is (15; 10; 0; 0; 0)

and the TU game for the last period is:

u(S) =

8>>><>>>:
11 if S 2 ff1; 2; 3; 5g ; f1; 2; 3; 4gg
6 if S = f1; 2; 4; 5g
26 if S = N
0 otherwise.

As before, in the last period myopic and rational behavior coincide and the
outcome must be an element of B1(N; u): It can be checked that B1(N; u) =
f(5:2; 5:2; 5:2; 5:2; 5:2)g : Therefore, after rejecting the proposal player 3 gets
a total payo¤ of 5:2:
Therefore, rational behavior of player 3 implies a rejection of the proposal

in the 4th period. This rejection is not a myopic maximizer�s behavior. After
the rejection of player 3 the proposer gets a payo¤of 20:2, higher than 121=6.
Hence, the outcome associated to MBRE is not the outcome of a SPE.
In the example above, the proposer �nds a credible way to collude with

player 3 in order to get a higher payo¤ than the one obtained by player 2
(a veto player). Player 2 cannot avoid this collusion since he is responding
before player 3. If he responded after player 3, collusion between players 1
and 3 would no longer be pro�table. This observation turns out to be crucial
as we will see in the next section.
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Finally, consider the following pro�le of strategies: the proposer plays
the strategy presented in Lemma 7 and the responders behave as myopic
maximizers. This pro�le is a Nash equilibrium and its outcome is �(N; v).
Therefore:

Remark 20 The MBRE outcome is a Nash outcome.

3.5 Myopic behavior and Subgame Perfect Equilibria

The previous example shows that, in general, perfectly rational behavior and
myopically rational behavior do not coincide. However, they do coincide
when the model incorporates a requirement on the order of the responders.
From now on, we assume that at each stage t the order of the responders is
given by the nonincreasing order of the d�values of the game vt. That is,
the order of the responders is not completely �xed in advance and can be
di¤erent for di¤erent periods. Given this order, any veto responder can secure
a payo¤ equal to or higher than the payo¤ obtained by the proposer. This
is not the case in Example 19 where player 2 is a veto responder responding
before player 3. In this example, player 3 sacri�ces a payo¤ in period 4 in
order to have a better position in the TU game that is in force in period
5. The proposer needs player 3 to be non-myopic in period 4 in order to
get a payo¤ higher than the payo¤ provided in a MBRE outcome. Hence,
the proposer could not have achieved a payo¤ above the MBRE outcome by
making balanced proposals.

The next two corollaries are immediate consequences of the results in the
previous section.

Corollary 21 Let (N; v) be a veto balanced TU game and Gn(N; v) its as-

sociated tree game. Let z =
nP
1

xt be an outcome resulting from some SPE of

the game Gn(N; v): If z di¤ers from �(N; v) then z1 cannot be achieved by
making balanced proposals.

If z di¤ers from �(N; v), z1 � �1(N; v) (otherwise the proposer would
prefer to play the strategy described in lemma 7). If the proposer is using
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balanced proposals, he can only achieve at least �1(N; v) if all players are
getting their serial rule payo¤s, that is, if z = �(N; v) (corollary 15 and
lemma 16). Hence, z1 is not achievable by balanced proposals.

Corollary 22 Let (N; v) be a veto balanced TU game and Gn(N; v) its as-

sociated tree game. Let z =
nP
1

xt be an outcome resulting from some SPE of

the game Gn(N; v): If z di¤ers from �(N; v) then there exists at least a stage
t and a player p for which f1p(xt; (N; vt)) > xtp � 0:

If xtl � f1l(x
t; vt) for all l and t, z would be achievable under myopic

behavior of the responders by proposing xt in each period t, but we have
established that the only way in which player 1 can get at least �1(N; v) under
myopic behavior of the responders is if z = �(N; v) (lemma 10, corollary 15
and lemma 16).
Note that, if all players behave as myopic maximizers, then for any stage t

and any player p it holds that f1p(xt; vt) � xtp: Note also that, given an SPE

outcome z =
nP
1

xt of the game Gn(N; v), if a player p behaves as myopic

maximizer in period t then f1p(xt; vt) > xtp is possible, if and only if there is
a stage in which a responder after player p does not behave myopically.
We denote by xt;i the proposal that emerges in period t immediately after

i gets the move. The following lemma establishes a property of xt;i that must
be inherited by the �nal outcome in period t, xt.

Lemma 23 Suppose after player i responds to the proposal in period t it
holds that f1i(xt;i; vt) > 0. Then f1i(xt; vt) > 0 regardless of the responses of
the players moving after i.

Proof. Suppose by contradiction that f1i(xt; vt) � 0. This means that
at the end of period t there is a coalition S� such that i =2 S� and vt(S�) �
xt(S�). Because f1i(xt;i; vt) > 0 immediately after i responds to the proposal,
all coalitions excluding i had a positive satisfaction at that point, and in
particular vt(S�) < xt;i(S�). There must be a player h moving after i such
that h =2 S� and h has received a payo¤transfer from player 1 by rejecting the
proposal. At the moment of rejection by h we have f1h(xt;h; vt) = xth > 0.
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However, since S� can be used by 1 to complain against h, at the end of
period t we have f1h(xt; vt) � 0. There must be another player l moving
after h that has received a payo¤ transfer from player 1, and this player
cannot be in S�: Then this player is in the same situation as player h: he has
f1l(x

t;l; vt) > 0 at the moment of rejection, but at the end of period t he has
f1l(x

t; vt) � 0. Thus there must be another player moving after him... but
the number of players is �nite.
Notice that lemma 23 holds for any strategy pro�le, not necessarily an

equilibrium.

Lemma 24 Let (N; v) and (N;w) be two veto balanced games in which
player 1 is a veto player. Let w(S) � v(S) for any S: Let Gm(N; v) and
Gm(N;w) be the associated tree games with m proposals. If the payo¤ pro-
vided to the proposer by a SPE outcome of the game Gm(N;w) is strictly
lower than the payo¤ provided to the proposer by a SPE outcome of the game
Gm(N; v), then the SPE outcome of Gm(N; v) is such that xtl < f1l(x

t; vt) for
some l and t, which implies that at least one responder is behaving nonmy-
opically.

Proof. Suppose the �nal payo¤s are such that xtl � f1l(x
t; vt) for all

l and t. We can then use lemma 10 to construct a sequence of balanced
proposals with the same payo¤ for the proposer. For any sequence yt of
balanced proposals of the game Gm(N; v) it holds that ytl � f1l(yt; wt), and
we can use lemma 10 again to construct a sequence of balanced proposals
for the game Gm(N;w) where the payo¤ of the proposer does not change, a
contradiction.

Lemma 25 Let (N; v) be a veto balanced TU game. Consider the associated
game with m periods Gm(N; v). Fix a period l 2 f1; :::;mg and a subgame
that starts in period l (not necessarily on the equilibrium path), and label the
responders according to the nondecreasing order of d-values in the game vl.
Let yl =

Pm
l x

t be the vector of payo¤s accumulated between l and m. Then
yli � yl1 � dli for all i 2 f2; :::; ng in any SPE of Gm(N; v). Moreover, the
inequality is strict if dli > d

l
2.
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Proof. Note that, because period m is the last period of the game,
myopic and rational behavior coincide, so xmi � f1i(vm; xm) for all i.
Consider player 2. Since players play myopically in period m, it must be

the case that9

xm2 � f12(x
m) � xm1 �

 
dl2 �

m�1X
l

xt1

!
=

=
mX
l

xt1 � dl2 = yl1 � dl2:

Since yl2 � xm2 , it follows that yl2 � yl1 � dl2:
Now consider player i 6= 2. There are two possible cases, depending on

whether yl1 � dl2.
If yl1 � dl2, the result follows immediately since

yl1 � dli � yl1 � dl2 � 0 � yli:

It is also clear that the inequality is strict if dl2 < d
l
i.

From now on we assume yl1 > d
l
2. Note that since we have already shown

that yl2 � yl1�dl2, it follows that that yl2 > 0 in this case. There are again two
possible cases, depending on whether the coalition associated to f1i(xm; vm)
contains 2.
If the coalition contains 2, we have

yli � xmi � f1i(xm; vm) � xm1 + xm2 �
 
dli �

m�1X
l

xt1 �
m�1X
l

xt2

!
=

= yl1 + y
l
2 � dli > yl1 � dli;

where the last inequality follows from the fact that yl2 > 0.
If the coalition does not contain 2, we have f1i(xm) � f12(xm). Then

yli � xmi � f1i(xm; vm) � f12(xm; vm) � yl1 � dl2 � yl1 � dli:
9If S is a coalition associated to f12(xn), the total payo¤ of S must be at least xn1 .

Also, the total value of S must be at most dl2 �
n�1X
l

xt1.
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Note that the inequality is strict for dli > d
l
2.

Next lemma shows that the outcome of any SPE coincides with the out-
come obtained by using a pro�le of strategies where all responders behave as
myopic maximizers.

Lemma 26 Let (N; v) be a veto balanced TU game: Consider the associated
game Gm(N; v) in which the responders move following the order of nonin-

creasing d�values of vk: Let z =
mP
1

xt be an outcome resulting from some SPE

of the game Gm(N; v): Then the proposer can obtain z1 by making balanced
proposals.

Proof. Suppose on the contrary that z1 cannot be obtained with balanced
proposals. By Lemma 10 we know that there is a player k and a stage t such
that f1k(xt; vt) > xtk � 0; otherwise the proposer can obtain z1 with balanced
proposals.
Let t be the last period10 in which for some responder it holds that

f1k(x
t; vt) > xtk � 0: Let k be the last responder at t for whom f1k(xt ; v

t) >

xtk � 0. We consider two cases:

a) There is a player p with dtp � dtk such that f1p(x
t; vt) � 0. Note

that f1k(xt; vt) > xtk � 0 means that any coalition without player
k has a positive satisfaction and, in particular any coalition Sk 2
arg max

S�Nnfkg
vt(S): On the other hand since f1p(xt; vt) � 0 then there

exists a coalition without player p for which the satisfaction is not pos-
itive. Let S�p be one such coalition (it must contain k). Then we have
the following two inequalities:

xt(Sk) > d
t
k and v

t(S�p) � xt(S�p):

Combining the two inequalities we obtain

xt(Sk)� xt(S�p) > dtk � vt(S�p) � dtk � dtp � 0:
10It is clear that t < m, since all responders behave as myopic maximizers in the last

period.
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The inequality above implies that there are players not in S�p receiving
a positive payo¤ in period t.

Consider a new allocation, yt, which is identical to xt except that yti = 0
for all i not in S�p (thus y

t
i = xti for all i in S

�
p). We now show that

f1i(y
t; vt) � yti for all i 2 N , so that player 1 can get the same payo¤

with balanced proposals by lemma 10.

For any player i it holds that f1i(yt; vt) � f1i(xt; vt).
Because S�p can be used against any player outside S

�
p , for any player

outside S�p it holds that f1i(y
t; vt) � f1p(yt; vt) � f1p(xt; vt) � 0. Thus,

f1i(y
t; vt) � yti for all i =2 S�p .

Can there be a player l 2 S�p for which f1l(yt; vt) > ytl? If so, this
inequality must have existed already for xt, since f1l(yt; vt) � f1l(xt; vt)
and ytl = x

t
l . Since player k is the last player satisfying the inequality

for xt, it must be the case that dtl � dtk � dtp, thus we can repeat the
reasoning above with Sl and S�p and, given that nothing has changed
for S�p , we would conclude that y

t(Sl) � yt(S�p) > 0, a contradiction
since all players outside S�p have zero payo¤s. Thus, f1i(y

t; vt) � yti for
all i.

Note that for this part of the proof no assumption is needed about the
order in which the responders move.11

b) The second case is f1l(xt; vt) > 0 for all players moving after k at t. By
assumption, on the equilibrium path from t + 1 onwards all proposals
have an associated balanced proposal. We distinguish two subcases:

b1) The last player to act nonmyopically at t has accepted a proposal.
This player must be player k or a player moving after k. Call this
player p (p moving after k is possible if a myopic rejection by a
player moving after p has restored f1p � xp).
We will show that it is not in p�s interest to accept the proposal.
To do this, we need to analyze two subgames: the subgame on

11All we need to assume in this part of the proof is that player k is the "last" player in
the sense of being the player with the lowest dti, not necessarily the one who moves last.
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the equilibrium path in which p accepts the proposal, and the
subgame o¤ the equilibrium path in which p rejects the proposal.
We will talk about the A-path (the equilibrium path) and the R-
path. Denote by xtA and x

t
R the �nal payo¤s at stage t depending

on whether player p accepts or rejects the proposal. If player p
rejects the proposal, we take any subgame perfect equilibrium of
that subgame. Denote by vt+1A and vt+1R the corresponding TU
games at t+ 1.

Because f1l(xt; vt) > 0 for l 2 f2; :::; pg, on the A-path all players
in f2; :::; pg are veto players at t+ 1.
The game vt+1R is better than the game vt+1A (in the sense of
lemma 24). If vt+1A (S) > 0, coalition S must contain all players in
f1; 2; :::; pg. For this kind of coalition vt+1R (S) = vt+1A (S), since any
payo¤transfers after rejection occur between members of f1; :::; pg
(here the order of moves is essential). Thus, vt+1A (S) � vt+1R (S) for
all S.

We now show that p is also veto at t+ 1 on the R-path.

Suppose p is not veto at t + 1 on the R-path. Then there is
a coalition Sp such that p =2 Sp and vR;t+1(Sp) > 0. This can
only happen if vR;t(Sp) > xtR(Sp), or equivalently f1p(x

t
R; v

t) < 0,
contradicting lemma 23.

Thus, player p is a veto player at t + 1 regardless of whether he
accepts or rejects the proposal. Given the order of moves, veto
players can secure at least the same payo¤ as the proposer. There
is no reason for veto players to act nonmyopically because the
game at t + 2 will be the same regardless of how the payo¤ is
distributed at t + 1 between veto players; no payo¤ can go to
anyone else given the order of responders. For the same reason
the proposer will never make a proposal that gives another veto
player more than he gets himself, so that all veto players must
get the same payo¤ given the order of moves. Let yR1 be player
1�s payo¤ if p rejects the proposal (this is the payo¤ accumulated
between periods t+1 and n) and yA1 be player 1�s payo¤if p accepts
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the proposal. Because of lemma 24, the only way in which yA1 can
exceed yR1 is if there is a nonmyopic move at v

t+1
A that leads to

f1i(x
t+1
A ; vt+1A ) > xA;t+1i for some i. By assumption this is not the

case. Thus, it was not in p�s interest to accept: rejecting would
yield a higher payo¤ at t, and at least the same payo¤ in the rest
of the game.

b2) The last player to act nonmyopically at t has rejected a proposal.
Let p be the last player to act nonmyopically at t. This player can-
not be player k because after any rejection (myopic or otherwise)
it holds that f1k(:) � xtk, and given that the remaining responders
act myopically this inequality would never be reversed. Some-
one moving after k must have rejected a proposal nonmyopically
(transferring payo¤ to the proposer) and created the inequality
f1k(x

t; vt) > xtk, hence player p must be moving after k. We will
show that it is not in p�s interest to reject the proposal. To do
this, we need to analyze two subgames: the subgame on the equi-
librium path in which p rejects the proposal, and the subgame o¤
the equilibrium path in which p accepts the proposal. We will talk
about the R-path (the equilibrium path) and the A-path.

Because f1l(xt; vt) > 0 for l 2 f2; :::; kg, on the equilibrium path
all players in f2; :::; kg are veto players at t+ 1.
The game vt+1A is better than the game vt+1R (in the sense of
lemma 24). If vt+1R (S) > 0, coalition S must contain all players
in f1; 2; :::; pg. For this kind of coalition vt+1R (S) = vt+1A (S), since
any payo¤ transfers on the A-path must occur between members
of f1; 2; :::; pg (again, here the order of moves is essential). Thus,
vt+1R (S) � vt+1A (S) for all S.

Suppose player p is veto also on the A-path. Then the reasoning of
case b1 applies, and there is no reason for p to act nonmyopically
in period t.

Now suppose player p is not veto on the A-path at t + 1. We
de�ne dt+1Ap := max

S�Nnfpg
vt+1A (S). Since p is not a veto player at
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t + 1 on the A-path, dt+1Ap > 0. There is a coalition Sp such that
vt(Sp) � xtA(Sp) = dt+1Ap > 0. Since by assumption f1p(x

t; vt) > 0

on the R-path, we also have xtR(Sp) � vt(Sp) > 0. From the two
inequalities we get xtR(Sp)� xtA(Sp) > dt+1Ap :

Let � be the payo¤ player p transfers to player 1 when rejecting
the proposal (part of this payo¤ may then go to other players
between 2 and p � 1 if they myopically reject a proposal). We
want to show that � � xtR(Sp)� xtA(Sp), which implies � > dt+1Ap .
This is not completely obvious because part of the di¤erence could
be due to a player outside Sp myopically rejecting on the A-path.

Claim. � � xtR(Sp)� xtA(Sp) > dt+1Ap .

Note that xtR and x
t
A are identical for all responders moving before

p. Because of the order of moves, any payo¤ transfers due to a
change of p�s action from R to A occur within the set f1; 2; :::; pg.
Denote by T the set f2; :::; p � 1gnSp. We can write xtR(Sp) +
xtR(T ) = x

t
A(Sp) + x

t
A(T ) + �. All we need to show is that x

t
Rh �

xtAh for all h 2 T (this is obvious if T is empty). This implies
xtR(T ) � xtA(T ) and hence xtR(Sp)� xtA(Sp) � �.
Suppose there is a player h in T that has xtRh < x

t
Ah. Since this

player is not in Sp, Sp can be used by player 1 against him.

Player h must have rejected in the A-path (if he had accepted
he would have xtRh � xtAh)

12. After rejecting he is left with
f1h(:) = xtAh > 0. On the other hand, vt(Sp) � xtA(Sp) > 0.
Thus, f1h(xtA; v

t) < 0, contradicting lemma 23.

Now we are in a position to compare payo¤s on the A and R-paths
and see that p prefers to accept the proposal.

Since player p is veto on the R-path, he gets yR1 . On the A-path, he
gets yAp , whereas the proposer gets y

A
1 . Because lemma 25 applies

12By assumption, p is the last player to behave nonmyopically on the R-path. This leaves
us with two possibilities for h on the R-path: myopic acceptance and myopic rejection.
In neither case it is possible for h to get a higher payo¤ by accepting the proposal on the
A-path.
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to all subgames regardless of whether they are on the equilibrium
path, yAp � yA1 � dt+1Ap .

In order to have an equilibrium, p must prefer to reject the pro-
posal, thus we need xtp+y

R
1 � xtp+�+yAp > xtp+dt+1Ap +y

A
1 �dt+1Ap .

Therefore we need yR1 > yA1 . Since the game v
t+1
A is better than

the game vt+1R (in the sense of lemma 24), and by assumption
f1i(x

l; vl) > xli never happens on the R-path from t + 1 onwards,
the inequality yR1 > y

A
1 cannot hold.

We have shown that any SPE outcome is such that the proposer can
always achieve z1 with balanced proposals. Balanced proposals in the proof
were always constructed by (possibly) cutting down some of the responders�

payo¤s, never by increasing them. Hence, any SPE outcome,
mP
1

xt; could be

obtained as follows: The proposer proposes sequentially (x1; x2; :::; xm) and
the responders behave as myopic maximizers. Therefore, any SPE outcome
coincides with the outcome resulting from a pro�le of strategies where all
responders play as myopic maximizers. And among all these pro�les, if the
proposer plays optimally the outcome is unique (Theorem 17). Therefore,

Theorem 27 Let (N; v) be a veto balanced TU game and Gn(N; v) its asso-
ciated tree game in which the responders move following the order of nonin-
creasing d�values of vk. Then �(N; v) is the outcome of any SPE.

4 Concluding remarks

We have provided noncooperative foundations for the serial rule �(N; v) in
veto balanced games. We have also shown that any SPE outcome of our
bargaining procedure is achievable with myopic behavior of the responders if
responders move by increasing strength (lemma 26). This result is indepen-
dent of the number of periods. If there are at least n � 1 periods, the only
SPE outcome is the serial rule: the proposer is always able to obtain �1(N; v)
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by making balanced proposals, and the only way to obtain this payo¤ is if
all other players get �i(N; v) as well. If there are fewer than n� 1 periods, it
is not necessarily possible for the proposer to achieve �1(N; v). If z is a SPE
outcome, it is still true that the proposer can obtain z1 by making balanced
proposals, hence all SPE outcomes must have the same z1, but there may be
several SPE outcomes if z1 < �1(N; v).
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