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Abstract

We consider mechanisms for allocating a common-value prize between two players in

an incomplete information setting. In this setting, each player receives an independent

private signal about the prize value. The signals are from a discrete distribution and

the value is increasing in both signals. First, we characterize symmetric equilibria in

four mechanisms: a lottery; and first-price, second-price, and all-pay auctions. Second,

we establish revenue equivalence of these auction mechanisms in this setting. Third, we

describe conditions under which the expected revenue is higher in the lottery than in

any of the auctions. Finally, we identify an optimal mechanism and its implementation

by means of reserve prices in lottery and auction mechanisms.
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1 Introduction

Suppose that a resource, such as an oil tract, is to be given off for development. Firms

interested in the resource can explore the ground and get a signal about the value of the

resource. This value is common for all firms but the firms can get different signals about it.

The firms bid for the right to develop the resource having only partial private information

about the resource value. The resource is then allocated according to some mechanism

based on the firms’bids.

Allocation mechanisms attracted a lot of attention in the economics literature. Typical

mechanisms are auctions, where the prize (the resource in the setting above) is allocated

deterministically to the highest bidder; and lotteries (contests), where the prize is allocated

stochastically and the probability of getting the prize increases with the bid. For an overview

of auction mechanisms, see, for example, Milgrom and Weber (1982) and Krishna (2009);

lottery mechanisms are surveyed in Nitzan (1994), Corchón (2007), Congleton et al. (2008)

and Konrad (2009). Common-value settings with incomplete information were considered

mostly under auction mechanisms; see, for example, Wilson (1977), Milgrom (1979), Wang

(1991), Klemperer (1998), Parreiras (2006), Malueg and Orzach (2012), Siegel (2014). For

lotteries, starting with the original Tullock (1980) paper, the working assumption is that

values (private or common) are known to all participants. To the best of our knowledge,

only Wärneryd (2003, 2012) and Einy et al. (2013) consider settings where bidders have

incomplete information in a common-value-prize contest. A comparison between differ-

ent mechanisms in the incomplete information setting is missing in the literature, because

explicit solutions for the lottery mechanism are diffi cult to derive.

In this paper we analyze and compare the lottery and the standard auction mechanisms

(first-price, second-price and all-pay) in a common-value symmetric setting with a discrete

distribution of signals. In order to make the analysis tractable, we restrict attention to

two-player two-signal situations. We assume that each player receives independently either

a low or a high private signal about the prize value. The value is an increasing function

of both signals, thus each player is only partially informed about the common value. In

this setting, we are able to find equilibria for all of the above mechanisms, compare their

revenues, and identify situations in which a lottery is better for the seller.

The literature on incomplete-information contests considers discrete distributions of sig-

nals, because explicit solutions are not feasible even for simplest private-value continuous
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distribution settings.1 However, even with two-value discrete distributions, additional as-

sumptions are needed to derive an equilibrium explicitly. Malueg and Yates (2004) consider

two-bidder two-signal private-value contests with distributions characterized by one para-

meter: the correlation between bidders’signals. Münster (2009) derives an equilibrium in

a lottery setting where one of the two private values that a bidder can have is zero but

allowing for more general asymmetric distributions. Lim and Matros (2010) describe an

equilibrium for n-player game in a similar setting.

In the present paper, we first analyze the lottery mechanism in our common-value set-

ting. We characterize a unique symmetric equilibrium and find the ex-ante expected revenue

in this equilibrium. Wärneryd (2003, 2012) and Einy et al. (2013) consider imperfectly dis-

criminating contests with a common value and private information. However, they assume

that some bidders know the common value with certainty while others only know the dis-

tribution of possible values. In contrast, we have symmetric partially informed bidders.

Second, we derive unique symmetric equilibria for the first-price, second-price, and all-

pay auction mechanisms. Most of the auction literature focuses on continuous distribu-

tions of signals and pure-strategy equilibria. Wilson (1977) derives conditions for a sym-

metric equilibrium of first-price common-value auctions, while Milgrom (1979) generalizes

these conditions. Milgrom (1981) characterizes a symmetric equilibrium of the second-price

common-value auction. These common-value settings have a given distribution of common

values and conditional distributions of signals. Klemperer (1998) suggests an alternative

common-value setting (a “wallet game”) in which signals are independently distributed

and the common value is a deterministic function of the signals. The “wallet game” is a

particular case in our model.

Milgrom (1981, footnote 8) indicates that equilibria with discrete distributions can be

derived using mixed strategies. Maskin and Riley (1985) consider a discrete distribution

setting, albeit with private valuations of the prize. They explicitly construct a mixed-

strategy equilibrium for the first-price auction with two possible values. For the common-

value first-price auction, Wang (1991) constructs an equilibrium for a finite number of signals

(see also a two-value example in Bolton and Dewatripont, 2004, Ch. 7). A distinctive

property of the equilibrium is that bidders with different signals mix over adjacent non-

overlapping intervals, a feature that appears common in auction mechanisms with discrete

distributions. For example, Konrad (2004) derives such an equilibrium in a private-value

1On the existence of equilibria in a continuous-distribution setting see Wasser (2013).
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all-pay auction for a two-signal distribution and Siegel (2014) shows that a common-value

all-pay auction with discrete signals also has such an equilibrium in a general setting. Our

symmetric mixed-strategy equilibria for first-price and all-pay auctions are qualitatively

similar.

A revenue comparison is a central topic in the auction analysis. While in a private-value

setting the revenue equivalence often holds for all types of auctions, in a common-value

setting seller’s revenue can differ across auction mechanisms. Milgrom and Weber (1982)

compare expected prices in affi liated-value auctions, showing that the price is (weakly)

higher in the second-price auction than in the first-price auction. Generally, there does

not appear to be a clear ranking of auction mechanisms for a common-value setting with

discrete signals. Malueg and Orzach (2009, 2012), in a setting with differential informa-

tion represented by partitions, show that either the first-price or the second-price auction

can have a higher revenue. In our two-signal common-value model, however, the revenue

equivalence result holds for the first-price, second-price, and all-pay auctions.

This revenue equivalence result helps us to compare the ex-ante expected revenue in

the lottery with the one in auctions. There appears to be a certain belief that auctions are

better than imperfectly discriminating contests for the revenue. They certainly are for the

situations with a known common value. Moreover, considering situations with asymmetric

information, Wärneryd (2012, p. 278) writes that “[f]rom the standpoint of a seller offering

a good in an auction a perfectly discriminating mechanism is optimal ...”. Although we

find that for most of the parameter values auctions are indeed better, there are situations

in which a lottery generates a higher ex-ante expected revenue than an auction does.

Most of the literature compares lotteries and auctions in complete information settings.

Fang (2002) shows that if known private valuations are suffi ciently asymmetric, a lottery

can generate a higher revenue because the weaker player spends more in the lottery. Epstein

et al. (2013), Franke et al. (2014), Mealem and Nitzan (2014a, b) consider various ways

to optimally bias a lottery or an all-pay auction, based on players’asymmetries, and find

that, depending on the bias, lotteries or auctions can generate higher revenue. Mealem and

Nitzan (2012) provide a survey of these results. Einy et al. (2013) compare lotteries and

auctions in asymmetric information setting and show that a lottery can have higher revenue

than an auction. In contrast, we analyze an ex-ante symmetric situation. Nevertheless, the

intuition is similar: the low-signal player bids more aggressively in a lottery than in an

auction which might lead to a higher revenue in the lottery.
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Finally, we identify an optimal mechanism and discuss its implementation by means of

reserve prices in the lottery and auction mechanisms. If signals are correlated and informa-

tive, Cremer and McLean (1985) show that the seller can extract all the surplus from the

bidders, also for interdependent (e.g. common) values (Bolton and Dewatripont, 2004, Ch.

7, illustrate this in a two-value example). Other methods to increase seller’s revenue for

continuous distributions include a reserve price (for common-value auctions see, for exam-

ple, Milgrom and Weber, 1982) and entry fees (see Harstad, 1990). Generally, second-price

auctions with the appropriate reserve price or the entry fee are better than first-price auc-

tions with the corresponding price or fee. We find that although in our setting signals are

independent, the seller can extract all the surplus from bidders. Moreover, all mechanisms

can achieve this result with an appropriately chosen reserve price.

The rest of the paper is organized as follows. In Section 2 we present our common-value

setting. The lottery is analyzed in Section 3 and auctions are studied in Section 4. Section

5 presents a revenue comparison between the lottery and auctions. Optimal mechanisms

are considered in Section 6. Section 7 concludes. Proofs are given in Appendices.

2 Setting: Common Value and Private Signals

Consider the following situation. There is a valuable object for sale and there are two

risk-neutral players. Each of the two players gets a private signal about the value of the

object: Player 1 receives signal s1 and Player 2 gets signal s2. The value v of the object

is an increasing function of two private signals, v = g(s1, s2). The value of the object is

common to the players. This setting is a generalization of the “wallet game”in Klemperer

(1998), where the value is the sum of two signals.

Suppose that the signals have the following structure: each signal is either H (high)

with probability p ∈ [0, 1], or L (low) with probability (1− p) ∈ [0, 1], independently of the

other signal. That is,

si =

{
H, with probability p,

L, with probability 1− p.

Thus, the value of the object may be g(L,L), g(L,H), g(H,L), or g(H,H), with prob-

abilities (1 − p)2, (1 − p)p, p(1 − p), and p2 respectively. We assume that g(L,L) = 0,

g(L,H) = g(H,L) = V > 0, and g(H,H) = (1 + α)V, for α ≥ 0.2 The parameter α

2Our results will hold if 0 < g (L,L) < V . Our assumption, g (L,L) = 0, simplifies the exposition.
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captures possible nonlinearity or complementarity in the signals. For example, for a fixed

V , if α → ∞ then the object is essentially valuable only if both players get high signals,

while if α→ 0, then one high signal already makes the object suffi ciently valuable while the

second high signal does not add much extra value.

Two players spend some resources in order to obtain the object. The object will be allo-

cated to players according to some mechanism. We first consider the standard mechanisms:

a lottery and auctions (all-pay, first-price, and second-price). Subsequently, we consider an

optimal mechanism and demonstrate how it can be implemented as a modification of each

of the standard mechanisms.

3 Lottery

In this section we assume that the object is allocated to the players according to a lottery.

If bids of two players are xi and xj , then player i wins the object with probability xi
xi+xj

,

j 6= i, if xi > 0 and zero otherwise. The bids are sunk, thus both the winner and the loser

of a lottery pay their bids.

A pure strategy of player i consists of two bids, one if his private signal is L and the

other if his signal is H. Let us call the first bid xiL and the second x
i
H . Thus a pure strategy

is xi = (xiL, x
i
H). The expected payoff of player i, conditional on the received signal is

ui(x
i
L, x

j |si = L) = (1− p) xiL
xiL + xjL

0 + p
xiL

xiL + xjH
V − xiL; (1)

ui(x
i
H , x

j |si = H) = (1− p) xiH
xiH + xjL

V + p
xiH

xiH + xjH
(1 + α)V − xiH . (2)

We denote this game by L.

3.1 Symmetric Equilibrium

A unique pure-strategy equilibrium of the lottery game is characterized in the following

proposition:

Proposition 1 In the unique pure-strategy equilibrium of the lottery game L, equilibrium
bids xiL = xjL = xL and xiH = xjH = xH are

xL =

{
1
4pV (1− p+D(p, α)) (1 + p−D(p, α)) , if 0 ≤ α ≤ 3,

0, if α > 3,
(3)
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and

xH =

{
1
4pV (1− p+D(p, α))2 , if 0 ≤ α ≤ 3,
1
4p(1 + α)V, if α > 3,

(4)

where

D(p, α) =
√

1− p+ p2 + αp.

Proof. See Appendix A.1.

Equilibrium bids have a piece-wise structure because for α ≥ 3 the payoffmaximization

problem of the low-signal player has a corner solution. The following example illustrates

the equilibrium bidding as functions of α, for a given value of p.

Example 1. Suppose that V = 1 and p = 1/4. Then

xL =

{
1
16

(
3
4 + 1

4

√
13 + 4α

) (
5
4 −

1
4

√
13 + 4α

)
, if 0 ≤ α ≤ 3,

0, if α > 3,

and

xH =

{
1
16

(
3
4 + 1

4

√
13 + 4α

)2
, if 0 ≤ α ≤ 3,

1
16(1 + α), if α > 3.

These bids are drawn in Figure 1. As it can be seen from the figure, equilibrium bid xH
increases with α, while xL decreases with α.

Some equilibrium properties also hold more generally. Specifically, xH is greater than

xL, equilibrium bids are monotonic in both p and α, and the difference xH − xL increases
with α.

Proposition 2 For the equilibrium bids xL and xH in the lottery game L,

• xH ≥ xL, with equality only for p = 0 or for α = 0 and p = 1;

• xL is decreasing in α and increasing in p, i.e. ∂xL
∂α ≤ 0 and ∂xL

∂p ≥ 0;

• xH is increasing in both α and p, i.e. ∂xH
∂α ≥ 0 and ∂xH

∂p ≥ 0;

• ∂
∂α(xH − xL) ≥ 0, with equality only for p = 0.
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0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

alpha

Bids

x_H

x_L

Figure 1: Lottery equilibrium bids as functions of α for V = 1 and p = 1/4.

Proof. See Appendix A.1.

Figures 1-4 illustrate the proposition. They show equilibrium bids as functions of p and

α, for V = 1. Both equilibrium bids are increasing in p, i.e. the higher is the probability

that the opponent has a high signal (and thus the prize is higher), the higher are the bids.

The rate of change in α is different though: it is the highest for xH and the lowest for xL
for higher α. It is rather surprising that equilibrium bid xL decreases with α. For any p,

equilibrium bid xH is increasing in α. A player with a high signal is willing to spend more

for a higher prize, and, as a result, at α = 3, this spending is so high that a low-signal

player drops out of the contest altogether.

A player with the high signal spends more, and the difference is increasing in α. Figure

4 plots (xH − xL) as a function of p for various values of α, for V = 1. Note that the

difference (xH − xL) is always non-negative. If α = 0, then this difference is smallest and

non-monotonic in p. For the other considered values of α this difference is increasing in p.

Both xH and xL increase in p but behave differently with respect to α. This opens the

possibility that the expected sum of bids, which can be interpreted as seller’s revenue, may

be non-monotonic in α, although α directly relates to the prize value. The next section

considers this question.
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Figure 2: Lottery equilibrium bids xL as functions of p for V = 1 and various α

3.2 Ex-ante Expected Revenue

The ex-ante expected revenue in the equilibrium of the lottery game is

πL (p, α) = (1− p)2 (2xL) + 2 (1− p) p (xL + xH) + p2 (2xH) = 2 ((1− p)xL + pxH) . (5)

Since the equilibrium bids are given by equations (4) and (3), we get the following result.

Proposition 3 In the equilibrium of the lottery game L, the ex-ante expected revenue is

πL (p, α) =

{
1
2pV (1− p+D(p, α))

(
1 + p− 2p2 + (2p− 1)D(p, α)

)
, if 0 ≤ α ≤ 3,

1
2p
2(1 + α)V, if α > 3.

(6)

The following example illustrates the possibility that the ex-ante expected revenue is

non-monotonic in α.

Example 1 continued. Suppose that V = 1 and p = 1/4. Then, the ex-ante expected

revenue is

πL
(

1

4
, α

)
=

{
1
8

(
3
4 + 1

4

√
13 + 4α

) (
9
8 −

1
8

√
13 + 4α

)
, if 0 ≤ α ≤ 3,

1
32(1 + α), if α > 3.
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Figure 3: Lottery equilibrium bids xH as functions of p for V = 1 and various α

Figure 5 illustrates this example. Note that the revenue decreases in α for 0 ≤ α ≤ 3, but

increases for larger values of α. The revenue is non-monotonic in α for a particular value

p = 1/4 in this example. In general, the ex-ante expected revenue increases in p but has a

more intricate dependence on parameter α as the following proposition shows.

Proposition 4 In the equilibrium of the lottery game L:

• The ex-ante expected revenue is increasing in p, i.e. ∂
∂pπ

L (p, α) ≥ 0, for any α.

• Suppose that α > 3. Then, the ex-ante expected revenue is increasing in α, i.e.
∂
∂απ

L (p, α) ≥ 0, for any p.

• Suppose that 0 ≤ α ≤ 3. Then,

i) the ex-ante expected revenue is decreasing in α, i.e. ∂
∂απ

L (p, α) ≤ 0, for any α

if p ≤ 1
2 −

1
10

√
5 ≈ 0.27639;

ii) the ex-ante expected revenue is increasing in α, i.e. ∂
∂απ

L (p, α) ≥ 0, for any α

if p ≥ 1
3 ≈ 0.33333.

Proof. See Appendix A.1.
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Figure 4: Difference xH − xL in lottery equilibrium bids as function of p for V = 1 and

various α

Figure 6 illustrates the proposition. The ex-ante expected revenue is increasing in p for

all values of α, since both xL and xH are increasing with p. However, for low p, somewhat

counter-intuitively, the ex-ante expected revenue for higher α is lower than that for lower

α. The reason is that as α increases, although a high-signal player increases his bid, a

low-signal player decreases his. A low value of p means that it is more likely that players

will get a low signal thus in expectations the total bid goes down.

3.3 Overdissipation

We define overdissipation as a situation in which total spending is greater than the ex-post

prize value, or

TS (p, α) > g(s1, s2).

The total spending is

TS (p, α) =


2xL, if g(s1, s2) = 0,

xL + xH , if g(s1, s2) = V,

2xH , if g(s1, s2) = (1 + α)V.

Overdissipation can occur ex-post because players are not sure about the value of the

prize ex ante. Namely,
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Figure 5: Lottery’s expected revenue as a function of α for V = 1 and p = 1/4

Proposition 5 Overdissipation occurs:

• For α < 3 (and p > 0), if the value of the prize is 0;

• For α > 3 and p > 4
1+α , if the value of the prize is V .

Proof. See Appendix A.1.

If α < 3, the low-signal player bids a positive amount hoping that the other player has

a high signal and thus the value is V . If the prize value is 0, then each player bids xL > 0.

Not only overdissipation takes place but the lottery winner has a negative payoff, suffering

a “winner’s curse”. If α > 3, the high-signal player hopes that the prize is very large,

(1 + α)V , and bids so much that his expenditure is higher than V . If the prize value is

V , the player wins the prize but again suffers a “winner’s curse”(the loser, who must have

received a low signal, bids 0 and gets 0 payoff).

4 Auctions

We consider all-pay, first-price, and second-price auctions in this section. In these auctions,

both players submit bids bi and bj and the winner is determined by the highest bid: if

12
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Figure 6: Lottery’s expected revenue as a function of p for V = 1 and various α

bi > bj , then player i wins the object with probability 1 (in the case of a tie, bi = bj , each

player gets the object with probability 1/2). While the allocation rule is the same in all

three types of auctions, the payments differ as specified below. We denote by A any game
with an auction allocation rule.

As in the lottery game, player i’s auction strategy consists of two bids (or distributions

of bids)
(
biL, b

i
H

)
, depending on the signal player i gets. The unique equilibria of the all-pay

and of the first-price auctions are symmetric; for the second-price auction there are multiple

equilibria but a unique symmetric one. In a symmetric equilibrium both players use the

same strategy thus we denote by bL, bH the symmetric equilibrium bids (or distributions of

bids) and use the superscript to refer to the auction type being considered.
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4.1 All-Pay Auction

In an all-pay auction, the highest bidder wins the auction and both bidders pay their bids.

The expected payoffs of player i are

ui(b
i
L, b

j |si = L) =


(1− p)0 + pV − biL, if biL > bj ,

((1− p)0 + pV ) /2− biL, if biL = bj ,

−biL, if biL < bj ,

ui(b
i
H , b

j |si = H) =


(1− p)V + p(1 + α)V − biH , if biH > bj ,

((1− p)V + p(1 + α)V ) /2− biH , if biH = bj ,

−biH , if biH < bj .

We denote the game described by the all-pay auction by AAll. This auction is similar to
the lottery in the sense that bids are sunk: both the winner and the loser of the all-pay

auction have to pay their bids.

Proposition 6 Bids bAllL = 0 and bAllH distributed on the interval [0, p(1 + α)V ] according

to the cumulative distribution function FAll(x) = x
p(1+α)V constitute a unique equilibrium of

the all-pay auction AAll.

Proof: See Appendix A.2.

Note that in this equilibrium, the low-signal player does not make a positive bid, while

the high-signal player uniformly randomizes over an interval. This equilibrium is similar

to the one derived in Siegel (2014) in a common-value all-pay auction setting with several

discrete signals.

4.2 First-Price Auction

In the first-price auction, the highest bidder wins the auction and is the only one to pay his

bid. The payoffs of player i are

ui(b
i
L, b

j |si = L) =


(1− p)0 + pV − biL, if biL > bj ,(

(1− p)0 + pV − biL
)
/2, if biL = bj ,

0, if biL < bj ,

ui(b
i
H , b

j |si = H) =


(1− p)V + p(1 + α)V − biH , if biH > bj ,(

(1− p)V + p(1 + α)V − biH
)
/2, if biH = bj ,

0, if biH < bj .
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The game described by the first-price auction is denoted by AF .

Proposition 7 Bids bFL = 0 and bFH distributed on the interval [0, p(1 + α)V ] according to

the cumulative distribution function FF (x) = (1−p)x
p[(1+α)V−x] constitute a unique equilibrium of

the first-price auction AF .

Proof: See Appendix A.2.

In this equilibrium of the first-price auction, as in the all-pay auction, the low-signal

player does not make a positive bid, while the high-signal player mixes over the same interval

as in the all-pay auction, although with different probabilities. The high-signal player bids

more aggressively in the first-price auction than in the all-pay auction because he does not

lose his bid in the case of losing the auction. This kind of equilibrium is also derived in

Wang (1991) for a different common-value first-price auction setting with an arbitrary finite

number of signals.

4.3 Second-Price Auction

In the second-price auction, the highest bidder wins the auction and pays the lowest bid.

The payoffs of player i are

ui(b
i
L, b

j |si = L) =


(1− p)0 + pV − bj , if biL > bj ,(

(1− p)0 + pV − biL
)
/2, if biL = bj ,

0, if biL < bj ,

ui(b
i
H , b

j |si = H) =


(1− p)V + p(1 + α)V − bj , if biH > bj ,(

(1− p)V + p(1 + α)V − biH
)
/2, if biH = bj ,

0, if biH < bj .

We denote the game described by the second-price auction by AS .

Proposition 8 Bids bSL = 0 and bSH = (1 +α)V constitute a unique symmetric equilibrium

of the second-price auction AS.

Proof: See Appendix A.2.

Note that in this symmetric equilibrium bids are independent from p. The low-signal

player bids 0 because he can win only against another low-signal player, in which case the

15



value of the object is 0. Because of this, the high-signal player knows that the outcome

does not depend on his bid if the other player has a low signal; but the possibility of

meeting another high-signal player pushes his bid up to the maximum value (1 +α)V . This

kind of equilibrium is similar to the ones considered in Klemperer (1998) and Bolton and

Dewatripont (2004, Ch. 7) for different signal distributions. There are also asymmetric

equilibria (e.g. biL = biH = 0; bjL = bjH = (1 + α)V ) but they are much less appealing in our

symmetric setting.

4.4 Expected Revenue

In this section we compare expected revenues in auctions. Surprisingly, it turns out that

in our setting all three auction formats are revenue equivalent. We calculate the ex-ante

expected revenue in three auctions and demonstrate the revenue equivalence result in the

next proposition.

Proposition 9 The ex-ante expected revenues in symmetric equilibria in the all-pay, first-
price, and second-price auctions are the same and equal to πA (p, α) = p2(1 + α)V .

Proof. See Appendix A.2.

Although in general common-value auctions the revenue equivalence does not hold (see

Milgrom and Weber, 1982), in our two-player two-signal setting it holds (see also Bolton

and Dewatripont, 2004, Ch. 7, for a different two-signal distribution example). This means

that we can consider one expression πA (p, α) for the expected revenue from any of the three

auctions.

It is straightforward to see that the ex-ante expected revenue in auctions is monotonic

in p and α. The following proposition is stated without proof:

Proposition 10 For the ex-ante expected revenue in any of the auctions A:

• Revenue is increasing in p, i.e. ∂
∂pπ

A (p, α) ≥ 0, for any α.

• Revenue is increasing in α, i.e. ∂
∂απ

A (p, α) ≥ 0, for any p.

Unlike in the lottery game, the expected revenue always increases with p and α. In all

three auctions, low-signal players drop out of bidding and high-signal players bid aggressively

in the equilibria for any p and α.
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5 Revenue Comparison

In this section we present our main result: the revenue comparison between the lottery and

the auctions. It turns out that there is no clear ranking: for some values of p and α, the

expected revenue is higher in the auctions but for others it is higher in the lottery.

As we have already seen in (6), the ex-ante expected revenue in the lottery is

πL (p, α) =

{
1
2pV (1− p+D(p, α))

(
1 + p− 2p2 + (2p− 1)D(p, α)

)
, if 0 ≤ α ≤ 3,

1
2p
2(1 + α)V, if α > 3.

Proposition 9 demonstrates the revenue equivalence result for the three auctions, showing

that the ex-ante expected revenue in the auctions is

πA (p, α) = p2(1 + α)V.

Note that if α > 3, then πA (p, α) > πL (p, α) for any p > 0. If 0 ≤ α ≤ 3, then

πA (p, α) < πL (p, α) if and only if

p(1 + α) <
1

2
(1− p+D(p, α))

(
1 + p− 2p2 + (2p− 1)D(p, α)

)
,

where D(p, α) =
√

1− p+ p2 + αp. This gives a condition for the ex-ante expected revenue

to be higher in the lottery than in an auction. The main result of this section is the following

revenue comparison:

Theorem 1 If p ∈ [p̂, 1], then

πA (p, α) > πL (p, α) for any α ≥ 0.

If p ∈ (0, p̂), then
πA (p, α) > πL (p, α) , for any α > α (p) ,

πA (p, α) < πL (p, α) , for any α < α (p) ,

where p̂ = 0.1
(
9−
√

6
)
≈ 0.65505 and α (p) = 20p2−36p+15

4p2−12p+9 .

Proof. See Appendix A.3.

Theorem 1 describes the cases in which the ex-ante auction revenue is higher than the

ex-ante lottery revenue and the cases in which the opposite holds. Figure 7 illustrates values

of p and α discussed in Theorem 1.
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Figure 7: Revenue comparison between the lottery and auctions

For small values of p and α, the ex-ante expected lottery revenue is higher than the

ex-ante expected auction revenue. This result is startling because an auction is typically

considered as a mechanism leading to the highest expected revenue (see, for example, Wärn-

eryd, 2012, p. 278). The reason for the higher expected revenue in the lottery is that the

low-signal player drops out of the bidding for any value of p and α in the common-value

auctions equilibria. In the lottery, however, such a player has a positive chance of winning

by submitting a small positive bid. Although the high-signal player bids less in the lottery

than in an auction, if the probability p that a player has a high signal and the complemen-

tarity α between the signals are small, then the ex-ante expected revenue from low-signal

players outweights the losses from high-signal players in the lottery. On the other hand, if

p and/or α are large enough, then the ex-ante expected revenue is higher in an auction.

Example 1 continued. Suppose that V = 1 and p = 1/4. Then

πL
(

1

4
, α

)
=

{
1
8

(
3
4 + 1

4

√
13 + 4α

) (
9
8 −

1
8

√
13 + 4α

)
, if 0 ≤ α ≤ 3,

1
32(1 + α), if α > 3,

and

πA
(

1

4
, α

)
=

1

16
(1 + α).

Figure 8 illustrates the expected revenues in the lottery and auctions. It shows that if
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Figure 8: Expected revenues in lottery and auctions for V = 1 and p = 1/4

high signals are “substitutes” (the second high signal does not add much to the value,

α < 1), then the lottery generates a higher expected revenue. However, if high signals are

“complements”(the second high signal reinforces the first, α > 1), then an auction gives a

higher expected revenue. If α is close to 1 (the second high signal is as good as the first)

then both the lottery and an auction give approximately the same revenue.

6 Optimal Mechanism and Reserve Prices

As we have seen above, either the lottery or an auction can have higher ex-ante expected

revenue. In this section we identify the maximum ex-ante expected revenue that the seller

can obtain for given parameter values, p and α. We show how this revenue can be achieved

both with the lottery and auction mechanisms using appropriate reserve prices.

19



6.1 Seller’s Revenue Maximization

Recall that in our setting each player gets an independent signal (H with probability p and

L with probability 1− p) and the value is determined by the signals in the following way:

v =


0, if signals are (L,L),

V, if signals are (L,H) or (H,L),

(1 + α)V, if signals are (H,H).

The signals are uncorrelated across bidders thus the result of Cremer and McLean (1985)

about full surplus extraction does not apply. Nevertheless, in our setting the full surplus

extraction by the seller is possible, as we show below.

If the seller learns the players’signals and, therefore, the value of the object, then the

seller could extract this value from the players. This ex-ante value is

πFB = p2(1 + α)V + 2p(1− p)V + (1− p)20 = pV (p(1 + α) + 2(1− p)).

This first-best ex-ante expected revenue is the maximum expected revenue that the seller

can hope for in any mechanism. If the seller gets this revenue, there is no surplus left for

the bidders. The next proposition shows that the seller can indeed achieve this revenue.

Proposition 11 There exists a (direct symmetric) mechanism in which the seller’s ex-ante
expected revenue is equal to πFB.

Proof. See Appendix A.4.

The proof shows that if a direct symmetric mechanism is described by Tŝiŝj and qŝiŝj ,

where (ŝi, ŝj) are the reported signals from the set {(L,L), (L,H), (H,L), (H,H)}, Tŝiŝj is
the payment of player i conditional on this player reporting ŝi and the other player reporting

ŝj , and qŝiŝj is the probability that player i gets the object conditional on the reports, then

an optimal mechanism involves

qHH =
1

2
, qHL = 1, qLH = 0, qLL = 0

and

TLL = TLH = 0, THL = V , THH =
1

2
(1 + α)V.

This is an intuitive mechanism: the object is given to the buyer with the highest (reported)

signal who pays the object’s value (according to the reported signals); in the case of a
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Figure 9: Expected revenues for α = 0.

tie with high signals, each buyer pays half of the value and gets the object with equal

probability. The important part of the mechanism is that if both signals are low, the seller

does not sell the object. We will see below that the reserve price works in a similar way.

Note that for the equality of the first-best revenue and this optimal mechanism’s revenue

it is important that the value is 0 with the two low signals thus the seller can retain the

object in this case.

Figures 9 and 10 present the ex-ante expected revenues in the optimal mechanism, in the

lottery, and in an auction as functions of p for a small and a large value of α (taking V = 1).

The figures confirm that if α is small, the ex-ante expected revenue in the lottery can be

higher than in an auction although this revenue is still below the optimal revenue. For

larger α, the ex-ante expected revenue is higher in an auction. Note also that as p→ 1, the

ex-ante auction revenue approaches the optimal revenue, since in an auction it is high-signal

bidders who compete strongly for the object.

6.2 Reserve Prices

The optimal mechanism in the previous subsection is a direct mechanism in which buyers

are asked to report their signals. This subsection demonstrates how the optimal mechanism

can be implemented as an auction of any type (or the lottery) with an appropriate reserve
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price.

We assume that a reserve price r means that bids xi < r are not accepted, i.e. they

do not enter the lottery or an auction. In the second-price auction, the reserve price also

implies that if xi ≥ r > xj , then the payment by bidder i is equal to r, i.e. the reserve

price also plays the role of the second-highest bid in such a case. The following proposition

states the main implementation result:

Proposition 12 For any auction type (first-price, second-price, all-pay) or for the lottery,
there exists a reserve price such that there exists an equilibrium in which the seller’s ex-ante

expected revenue is equal to πFB.

Proof. See Appendix A.4.

It follows from Proposition 12 that all four considered mechanisms allow the seller to

achieve the full surplus extractions with an appropriate reserve price. The proof is con-

structive: for each of the four mechanisms, a reserve price and the corresponding symmetric

equilibrium is found such that the seller’s ex-ante expected revenue is equal to πFB. The

reserve prices are different across mechanisms: for the lottery the optimal reserve price is

rLot = p12(1+α)V +(1−p)V , for the second- and first-price auctions it is rS = rF = V , and

for the all-pay auction it is rAll = (1− p)V . Note that the reserve prices are chosen in such
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a way as to make the surplus of the high-signal bidder equal to 0 and force the low-signal

bidder to submit zero bid.

7 Conclusion

Lotteries and auctions are typical allocation mechanisms. However, they are usually consid-

ered in different informational situations. On the one hand, lotteries are typically analyzed

in the common-value complete information context. On the other hand, auctions are often

considered in the private information environment. In this paper, we analyze both lottery

and auctions mechanisms in the same informational setting where players have private in-

formation about a common-value prize. First, we construct unique symmetric equilibria for

the lottery and the auctions. Second, we show that all standard auctions have the same

ex-ante expected revenue. Third, we compare ex-ante expected revenues across the mecha-

nisms. It turns out that if individual signals are “substitutes”—the second high signal does

not increase the common value by much —and if the probability of high signal is small, then

the ex-ante expected revenue in the lottery is higher than in an auction. Otherwise, the

ex-ante expected revenue in an auction is higher than in the lottery. Thus our setting pro-

vides a possible rationale for using “beauty contests”or lotteries as allocation mechanisms

of objects with common although not perfectly known value in some situations. Finally,

we consider how the seller can modify the mechanisms using the reserve price in order to

get higher revenue. We find that the seller could extract full surplus from the buyers in

both the lottery and auction mechanisms using an appropriate reserve price to exclude the

low-signal player and push the high-signal player’s bid suffi ciently high.
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A Appendix

A.1 Proofs for the Lottery

Proof of Proposition 1. The first order conditions of player i’s problems to maximize
payoffs (1)− (2) are

p
xjH

(xiL + xjH)2
V − 1 = 0;

(1− p) xjL
(xiH + xjL)2

V + p
xjH

(xiH + xjH)2
(1 + α)V − 1 = 0.

The second order conditions are clearly satisfied as the left-hand sides of the above expres-

sions are decreasing in xiL and x
i
H respectively.

If xiH 6= xjH , then it is not possible to satisfy the two equations for each of two players

simultaneously. Therefore, the equilibrium is symmetric, with xjL = xiL = xL and x
j
H =

xiH = xH

p
xH

(xL + xH)2
V − 1 = 0; (7)

(1− p) xL
(xL + xH)2

V + p
1

4xH
(1 + α)V − 1 = 0. (8)

From equation (7) xL =
√
pV xH − xH . Equation (8) becomes

−4xH + 4(1− p)
√
pV
√
xH + (1 + α)p2V = 0.

A unique positive solution of this quadratic equation is

xH =
1

4
pV (1− p+D(p, α))2,

where

D(p, α) =
√

1− p+ p2 + αp. (9)

Then,

xL =
1

4
pV (1− p+D(p, α)) (1 + p−D(p, α)) .

The last expression becomes 0 for α = 3 and negative for α > 3. Thus, the previous

derivations hold for α ≤ 3. For α > 3, xiL = xjL = xL = 0. Then, xiH = xjH = xH =
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1
4p(1 +α)V . If xH = 1

4p(1 +α)V , then the solution of the payoff maximization problem for

the low-signal player is indeed the corner solution, xL = 0.

Note also that there is no equilibrium in mixed strategies because the payoff functions

are strictly concave. A player’s best response is unique for any strategy (including mixed

ones) of the other player, and, therefore, any equilibrium has to be in pure strategies. �

For the subsequent proofs, it is useful to make the following observations.

Lemma 1 Suppose 0 ≤ p ≤ 1 and 0 ≤ α ≤ 3. Then

• D(p, α)− p ≥ 0, with equality only for α = 0 and p = 1;

• 1− p+D(p, α) > 0;

• 1 + p−D(p, α) ≥ 0, with equality only for α = 3;

• 2 (D(p, α)− p) + (1− α) ≥ 0, with equality only for α = 3.

Proof. Observe that

D(p, α) =
√

(1− p+ p2 + αp) ≥ p,

because 1 − p + p2 + αp ≥ p2 ⇔ 1 − p + αp ≥ 0, which holds for α ≥ 0 and p ≤ 1. The

equality holds only for α = 0 and p = 1. Therefore 1− p+D(p, α) ≥ 1 > 0. Also,

1 + p ≥ D(p, α) =
√

1− p+ p2 + αp

if and only if 1 + 2p+ p2 ≥ 1− p+ p2 +αp⇔ 3p ≥ αp, which holds for α ≤ 3. The equality

holds only for α = 3.

Since D(p, α) ≥ p, 2 (D(p, α)− p) + (1− α) ≥ 0 if 0 ≤ α ≤ 1. Suppose that 1 < α ≤ 3.

Then,

D(p, α) ≥ p+
(α− 1)

2
,

if and only if

1− p+ p2 + αp ≥ p2 + (α− 1) p+
(α− 1)2

4
⇔ α ≤ 3,

with equality only if α = 3. �
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Proof of Proposition 2. Consider the difference

(xH − xL) =

{
1
2pV (1− p+D(p, α)) (D(p, α)− p) , if 0 ≤ α ≤ 3,
1
4p(1 + α)V, if α ≥ 3.

From Lemma 1, (xH − xL) ≥ 0 with equality only for p = 0 or if α = 0 and p = 1.

If α > 3, then xL = 0 and ∂xL
∂α = 0. Consider 0 ≤ α < 3. Note that

∂D(p, α)

∂α
=

p

2D(p, α)

and
∂D(p, α)

∂p
=
−1 + 2p+ α

2D(p, α)
.

Then
∂xL
∂α

=
p2V

4

1

D(p, α)
(p−D(p, α)) .

Therefore, ∂xL∂α ≤ 0 from Lemma 1. Note that ∂xL
∂α = 0 only for p = 0 or for α = 0 and

p = 1.

Obviously, ∂xL∂p = 0 for α ≥ 3. For 0 ≤ α ≤ 3,

∂xL
∂p

=
1

4
V

[
(1− p+D(p, α)) (1 + p−D(p, α)) + p

2 (D(p, α)− p) + (1− α)

D(p, α)
(D(p, α)− p)

]
.

Therefore, from Lemma 1, ∂xL∂p ≥ 0. Note that ∂xL
∂p = 0 only for α = 3.

Consider now ∂xH
∂α . For α > 3, ∂xH

∂α = 1
4pV ≥ 0. Note that ∂xH

∂α = 0 only if p = 0.

Suppose that 0 ≤ α < 3. Then,

∂xH
∂α

=
1

4
pV (1− p+D(p, α))

p

D(p, α)
.

From Lemma 1, ∂xH∂α ≥ 0. Note that ∂xH
∂α = 0 only if p = 0.

Consider ∂xH
∂p . If α ≥ 3, then ∂xH

∂p = 1
4(1 + α)V > 0. Suppose that 0 ≤ α ≤ 3. Then,

∂xH
∂p

=
1

4
V (1− p+D(p, α))

(
1− p+D(p, α)− p2 (D(p, α)− p) + (1− α)

D(p, α)

)
.

Consider (
1− p+D(p, α)− p2 (D(p, α)− p) + (1− α)

D(p, α)

)
=
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D(p, α)− 3pD(p, α) + 1− 2p+ 3p2 + 2αp

D(p, α)
.

Suppose that 0 ≤ p ≤ 1/3. Then (1− 3p)D(p, α) ≥ 0 and 1 − 2p + 3p2 + 2αp > 0,

thus (1− 3p)D(p, α) + 1 − 2p + 3p2 + 2αp > 0. Suppose that 1/3 < p ≤ 1. Then,

(1− 3p)D(p, α) + 1− 2p+ 3p2 + 2αp ≥ 0 if and only if

1− 2p+ 3p2 + 2αp

3p− 1
≥ D(p, α).

Since both sides of this inequality are positive, we get(
1− 2p+ 3p2 + 2αp

3p− 1

)2
≥
(
1− p+ p2 + αp

)
,

or p (α+ 1)
(
4pα+ 3(1− p)2

)
≥ 0. Note that p (α+ 1)

(
4pα+ 3(1− p)2

)
= 0 if and only if

p = 0 or if p = 1 and α = 0.

Since ∂xH
∂α ≥ 0 and ∂xL

∂α ≤ 0, ∂
∂α(xH − xL) ≥ 0, with equality only for p = 0. �

Proof of Proposition 4. Note that

∂

∂p
πL (p, α) = 2 (xH − xL) + 2 (1− p)

(
∂xL
∂p

)
+ 2p

(
∂xH
∂p

)
.

From Proposition 2, xH ≥ xL, ∂xL∂p ≥ 0, and ∂xH
∂p ≥ 0. Hence, ∂

∂pπ
L (p, α) ≥ 0.

Suppose that α > 3. Then, πL (p, α) = 1
2p
2(1+α)V . Therefore, ∂

∂απ
L (p, α) = 1

2p
2V ≥ 0.

Suppose that 0 ≤ α ≤ 3. Then,

πL (p, α) =
1

2
pV (1− p+D(p, α))

(
1 + p− 2p2 + (2p− 1)D(p, α)

)
.

Since
∂D(p, α)

∂α
=

p

2D(p, α)
,

we get
2

pV

D(p, α)

p

∂

∂α
πL (p, α) = 2p(1− p) + (2p− 1)D(p, α).

Then ∂
∂απ

L (p, α) = 0 if

2p(1− p) + (2p− 1)D(p, α) = 0. (10)

Note that if p ≥ 1
2 , then both terms are positive and the equality cannot be satisfied. In

this case ∂
∂απ

L (p, α) > 0. Rewrite equality (10) as

2p(1− p) = (1− 2p)
√

(1− p+ p2 + αp). (11)

27



For p < 1
2 , we get

α =
−5p2 + 5p− 1

p(1− 2p)2
.

Given that p < 1
2 , note that α ≥ 0 if −5p2 + 5p− 1 ≥ 0, or if

1

2
− 1

10

√
5 ≤ p < 1

2
. (12)

On the other hand,
−5p2 + 5p− 1

p(1− 2p)2
≤ 3

if −5p2 + 5p− 1− 3p(1− 2p)2 ≤ 0. This inequality holds for 0 ≤ p < 1
2 if

0 ≤ p ≤ 1

3
. (13)

Therefore, expression 5p−5p2−1
p(1−2p)2 is between 0 and 3 only for p between 1

2 −
1
10

√
5 and 1

3 .

Hence, for any p ∈
(
1
2 −

1
10

√
5, 13
)
,

∂

∂α
πL (p, α)

< 0, for α > −5p2+5p−1
p(1−2p)2 ,

> 0, for α < −5p2+5p−1
p(1−2p)2 .

Moreover, πL (p, α) reaches a local maximum at α = 5p−5p2−1
p(1−2p)2 .

It is straightforward to check that for any α ∈ [0, 3],

∂

∂α
πL (p, α)

< 0, for p < 1
2 −

1
10

√
5,

> 0, for p > 1
3 . �

Proof of Proposition 5. Consider the three cases corresponding to the three possible
values of the prize.

Suppose that g(s1, s2) = 0. Then, both players have low signals and

TS (p, α) > g(s1, s2) = 0,

if 2xL > 0, or, from (3), if 0 ≤ α < 3.

Suppose that g(s1, s2) = V . Then, one signal is low and the other one is high and

TS (p, α) > g(s1, s2) = V,
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if xL + xH > V , or, from (3) and (4) if

1
4pV (1− p+D(p, α))2 + 1

4pV (1− p+D(p, α)) (1 + p−D(p, α)) > V , if 0 ≤ α ≤ 3,
1
4p(1 + α)V > V , if α > 3.

Therefore, overdissipation occurs if{
p (1− p+D(p, α)) > 2, if 0 ≤ α ≤ 3,

p(1 + α) > 4, if α > 3.

Note that D(p, 3) > D(p, α) for any 0 ≤ α < 3. Since D(p, 3) = 1 + p,

p (1− p+D(p, α)) ≤ 2p ≤ 2,

for 0 ≤ α ≤ 3 and 0 ≤ p ≤ 1. Thus, there is no overdissipation for 0 ≤ α ≤ 3. Therefore,

TS (p, α) > g(s1, s2) = V,

only if p(1 + α) > 4 and α > 3.

Suppose that g(s1, s2) = (1 + α)V . Then, both signals are high and

TS (p, α) > g(s1, s2) = (1 + α)V,

if 2xH > (1 + α)V , or, from (4), if{
pV (1− p+D(p, α))2 > 2(1 + α)V , if 0 ≤ α ≤ 3,

p(1 + α)V > 2(1 + α)V , if α > 3.

From Proposition 2, ∂xH∂p ≥ 0, therefore,

p (1− p+D(p, α))2 ≤ (D(1, α))2 = 1 + α < 2(1 + α)

Hence if g(s1, s2) = (1 + α)V overdissipation cannot occur. �

A.2 Proofs for Auctions

Proof of Proposition 6. Standard methods (see, for example, Siegel, 2014) show that
bidders have to randomize on continuous intervals in equilibrium and these distributions

cannot contain atoms. Furthermore, there cannot be gaps between equilibrium bid dis-

tributions biL and b
i
H . Moreover, the lower bound of b

i
H has to be higher than the upper

29



bound of biL (otherwise player i with signal H would be better off making biL bid). Thus

the equilibrium distributions of biL and b
i
H are on adjacent intervals. The lower bounds of

biL and b
j
L as well as the upper bounds of b

i
H and bjH should be the same (otherwise one of

the players can lower his bid and increase his payoff).

In such a monotonic equilirbium a low-signal player can win only against another low-

signal player. But the value is 0 in this case, thus the low-signal player has to bid 0 in

equilibrium.

Consider a player with H signal. Suppose that his opponent bids on the interval [0, t1]

according to a distribution function FAll. Since the support of the bid distribution biH is

[0, tAll] and given zero bid from the low-signal player, it follows that

(1− p)V + pFAll (x) (1 + α)V − x = (1− p)V,

since in a mixed-strategy equilibrium, all expected payoffs in the support are equal. This

means that

FAll (x) =
x

p(1 + α)V
. (14)

Since

1 = FAll (tAll) =
tAll

p(1 + α)V
,

then tAll = p(1 + α)V .

Since because FAll (x) is uniquely determined, the equilibrium is unique. �

Proof of Proposition 7. Similarly to the all-pay auction, the equilibrium distribu-

tions have to be atomless, without holes, and on adjacent intervals for signals L and H.

Furthermore, bids of low-signal players are b̄iL = b̄jL = 0 in the equilibrium.

Consider a player withH signal and suppose that he bids on the interval [0, tF ] according

to a distribution function FF . Then, given zero bid from the low-signal player, his expected

payoff is

(1− p) [V − x] + pFF (x) [(1 + α)V − x] = (1− p)V,

which means that

FF (x) =
(1− p)x

p ((1 + α)V − x)
.

Since it is a mixed-strategy equilibrium, all strategies on the support [0, tF ] give the same

payoff,

(1− p)V = (1− p) (V − tF ) + p ((1 + α)V − tF ) ,
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or tF = p(1 + α)V . This is the unique equilibrium because FF (x) is uniquely determined.

�

Proof of Proposition 8. Consider a player with H signal. His expected payoff is

(1− p)(V − 0) + p
1

2
((1 + α)V − (1 + α)V ) = (1− p)V .

Any bid x > 0 gives the same expected payoff. Bid x = 0 lowers the probability of winning

if the other player has signal L, thus leading to a lower payoff.

For a low-signal player, the equilibrium expected payoff is 0. Any bid x < (1 + α)V

leads to the same expected payoff of 0 and bidding x ≥ (1 + α)V gives

(1− p)(0− 0) + pq(V − (1 + α)V ) = −pqαV ≤ 0,

where q is the probability of winning against a player with signal H.

If xL > 0 or xH 6= (1 + α)V , there is always a deviation to xL = 0 or xH = (1 + α)V

that increases the expected payoff, thus the symmetric equilibrium is unique. �

Proof of Proposition 9. Let us calculate expected bids and expected ex-ante revenue
in the three auctions.

All-pay auction. It is easy to see from Proposition 6 that the expected bid of a

high-signal bidder is E[bAllH ] = p(1+α)V
2 . Hence, the ex-ante expected revenue is

πAll (p, α) = (1− p)2
(

2bAllL

)
+ 2 (1− p) p

(
bAllL + E[bAllH ]

)
+ p2

(
2E[bAllH ]

)
= p2(1 + α)V.

Second-price auction. It is easy to calculate the ex-ante expected revenue in the

symmetric equilibrium of Proposition 8 as

πS (p, α) = (1− p)2 (0) + 2p (1− p) (0) + p2 ((1 + α)V ) = p2(1 + α)V.

First-price auction. Since the object is sold with probability one, the ex-ante expected
revenue can be calculated as

πF (p, α) = E[V ]− E[u1]− E[u2], (15)

where u1 and u2 are player 1’s and 2’s equilibrium payoffs. In our case

E[V ] = (1− p)2 · 0 + 2p(1− p)V + p2(1 + α)V
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and the equilibrium payoffs in the first-price auction are

E[ui] = (1− p) · 0 + p(1− p)V.

Therefore, the ex-ante expected revenue is

πF (p, α) = 2p(1− p)V + p2(1 + α)V − 2p(1− p)V = p2(1 + α)V . �

A.3 Proof for Revenue Comparison

Proof of Theorem 1. Recall that

πA (p, α) = p2(1 + α)V

and

πL (p, α) =
1

2
pV
(

1− p+
√

1− p+ p2 + αp
)(

1 + p− 2p2 + (2p− 1)
√

1− p+ p2 + αp
)
.

Let p > 0. Then πA (p, α) > πL (p, α) if and only if

3α− 1− 2pα+ 6p− 4p2 > 4 (1− p)
√

1− p+ p2 + αp. (16)

The right-hand side of the inequality is always non-negative. The left hand side is

negative if

α <
1− 6p+ 4p2

3− 2p
.

In this case πA (p, α) < πL (p, α).

If the left-hand side of (16) is positive, then πA (p, α) > πL (p, α) if and only if(
3α− 1− 2pα+ 6p− 4p2

)2 − 16 (1− p)2
(
pα− p+ p2 + 1

)
> 0.

The quadratic equation
(
3α− 1− 2pα+ 6p− 4p2

)2− 16 (1− p)2
(
pα− p+ p2 + 1

)
= 0 has

two solutions, α = −1 and

α =
20p2 − 36p+ 15

−12p+ 4p2 + 9
= α(p). (17)

It holds that
(
3α− 1− 2pα+ 6p− 4p2

)2− 16 (1− p)2
(
pα− p+ p2 + 1

)
> 0 if α < −1 and

α > α(p).Therefore πA (p, α) > πL (p, α) if and only if α > α(p) for non-negative α. Note
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also that α(p) > 1−6p+4p2
3−2p for p ∈ (0, 1). Hence, πA (p, α) < πL (p, α) is covered by α < α(p)

even if α < 1−6p+4p2
3−2p .

If 20p2 − 36p + 15 < 0, then expression (17) is negative and thus πA (p, α) > πL (p, α)

for any non-negative α. Note that

20p2 − 36p+ 15 < 0 if p ∈ (0.1(9−
√

6), 0.1(9 +
√

6)) ≈ (0.65505, 1.1449).

Therefore, for p > p̂ = 0.1(9−
√

6) and p ≤ 1 for any α ≥ 0 it holds that πA (p, α) > πL (p, α).

�

A.4 Proofs for an Optimal Mechanism and Reserve Prices

Proof of Proposition 11. A general (direct symmetric) mechanism can be described

by {Ti(ŝi, ŝj); qi(ŝi, ŝj)}i,j=1,2;j 6=i, where (ŝi, ŝj) is the vector of reported signals from the

set {(L,L), (L,H), (H,L), (H,H)}, Ti(ŝi, ŝj) is the payment of player i conditional on him
reporting ŝi and the other player reporting ŝj , and qi(ŝi, ŝj) is the probability that player

i gets the object conditional on the reports. It holds that qi(ŝi, ŝj) ≥ 0 and qi(ŝi, ŝj) +

qj(ŝj , ŝi) ≤ 1 for all report vectors.

Consider mechanisms with qi(H,H) = 1
2 , qi(H,L) = 1, qi(L,H) = 0, qi(L,L) = 0, i.e.

if both players report H, the object is allocated to either of them with equal probability;

if one player reports H and the other L, the object is allocated to the one who reported

H; and if both players report L, the object is retained by the seller. To save space, denote

Ti(ŝi, ŝj) and qi(ŝi, ŝj) as Tŝiŝj and qŝiŝj , for example, Ti(L,L) is written as TLL etc.

The seller solves the following problem to find an optimal mechanism:

max
PLL,PLH ,PHL,PHH

(p2THH + 2p(1− p)(THL + TLH) + (1− p)2TLL)

s.t. − pTLH + (1− p)
(

1

2
0− TLL

)
≥ p

(
1

2
V − THH

)
− (1− p)THL (ICL)

p

(
1

2
(1 + α)V − THH

)
+ (1− p)(V − THL) ≥ −pTLH − (1− p)TLL (ICH)

−pTLH + (1− p)
(

1

2
0− TLL

)
≥ 0 (IRL)

p

(
1

2
(1 + α)V − THH

)
+ (1− p)(V − THL) ≥ 0, (IRH)
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with two incentive compatibility and two individual rationality constraints. Suppose that

constraints (IRL) and (ICH) are binding. From the binding (IRL) constraint,

TLH = −1− p
p

TLL. (18)

Then, from the binding (ICH) constraint and substituting equation (18),

THH =
1

2
(1 + α)V +

1− p
p

V − 1− p
p

THL. (19)

After substitution of equations (18) and (19), the seller’s objective function becomes

pV (p(1 + α) + 2(1− p)).

Thus, the expected revenue from an optimal mechanism of this kind is

πOM = pV (p(1 + α) + 2(1− p)) = πFB.

Since πFB is the maximum revenue the seller can get in any mechanism, this kind of

mechanism is suffi cient to extract all surplus from the bidders. �

Proof of Proposition 12. Consider the lottery and the auction settings. In each case,
we find the corresponding optimal reserve price.

Lottery. Consider a reserve price rLot > 0 such that an H-signal bidder by bidding

xH = rLot receives the expected payoff 0, if an L-signal bidder bids xL = 0. The condition

for such a reserve price is

p
1

2
(1 + α)V + (1− p)V − rLot = 0,

or

rLot = p
1

2
(1 + α)V + (1− p)V . (20)

An L-signal bidder can participate in a lottery only if his bid yL is at least rLot. It

is easy to check that an L-signal bidder should not participate in the lottery by bidding

xL < rLot, for example, xL = 0.

The expected payoffof an H-signal bidder is uH(yH) = p yH
yH+rLot

(1+α)V +(1−p)V −yH .
The derivative u′H(yH) = p rLot

(yH+rLot)
2 (1+α)V −1 is decreasing in yH . Note that u′H(rLot) =

p 1
4rLot

(1 + α)V − 1. From (20), 4rLot > p(1 + α)V , u′H(rLot) < 0, and thus u′H(yH) < 0
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for any yH > rLot. Since uH(rLot) = 0 by construction, the expected payoff of an H-signal

bidder is maximized at xH = rLot. Thus xH = rLot and xL = 0 is an equilibrium of the

lottery with reserve price rLot. The ex-ante expected seller revenue is

p2(2rLot) + 2p(1− p)(rLot) + (1− p)2(0) = pV (p(1 + α) + 2(1− p)),

the same as the first-best revenue.

Second-price auction. Consider now the second-price auction with reserve price rS .
In this auction, the highest bidder i wins the auction if bi ≥ rS and the payment is equal

to max{bj , rS}. Consider the reserve price

rS = V

and bids bL = 0 and bH = (1 + α)V .

The expected payoff of an L-signal bidder bidding bL = 0 is 0 because he never wins the

object. If he sets his bid b such that rS = V ≤ b < (1 + α)V , then he wins the object with

probability 1− p. However, the value of the object is 0 in this case and thus the expected

payoff is negative. If an L-signal bidder bids b = (1 + α)V , then his expected payoff is

(1− p)(0− rS) + p12(V − (1 + α)V ) < 0. Hence, setting bL = 0 is optimal.

The expected payoff of an H-signal bidder bidding bH = (1 + α)V is (1− p)(V − V ) +

p12((1 + α)V − (1 + α)V ) = 0. If he sets b < rS , he never wins. If he bids b such that

rS = V ≤ b < (1 + α)V , his expected payoff is (1 − p)(V − V ) + p · 0 = 0. If an H-signal

bidder sets b > (1+α)V , his expected payoff is (1−p)(V −V )+p((1+α)V − (1+α)V ) = 0.

In all cases, setting bH = (1 + α)V is the best choice. The ex-ante seller’s revenue in this

equilibrium is

p2(1 + α)V + 2p(1− p)rS + (1− p)2 · 0 = p2(1 + α)V + 2p(1− p)V ,

the same as the first-best revenue.

First-price auction. Consider now the first-price auction with a reserve price rF .

Consider bids bL = 0 and bH distributed according to the distribution function FF on

interval [rF , b̄F ]. In an equilibrium, the expected payoff of an H-signal bidder should be the

same for all bids in the interval [rF , b̄F ], including b = rF and b = b̄F . Thus,

(1− p)(V − rF ) = (1− p)(V − x) + pFF (x)((1 + α)V − x) and

(1− p)(V − rF ) = (1− p)(V − b̄F ) + p((1 + α)V − b̄F ).
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From the first equality

FF (x) =
(1− p)(x− rF )

p((1 + α)V − x)
.

Note that F (rF ) = 0. From the second equality b̄F = (1− p)rF + p(1 + α)V . Set rF = V .

Then b̄F = V + pαV and

FF (x) =
(1− p)(x− V )

p((1 + α)V − x)
. (21)

Given (21), the expected payoff of an H-signal bidder is 0 from any bid b ∈ [rF , b̄F ]. The

expected payoff from bidding b < rF is also 0. The expected payoff from bidding b > b̄ is

(1− p)V + p(1 +α)V − b < 0. The expected payoffs of an L-signal bidder are 0 for any bid

below rF and negative for b ≥ rF = V because (1− p)(0− b) + pF (b)(V − b) < 0.

Note that the bids of the high-signal bidder are above the reservation price with prob-

ability 1. Therefore the good is always sold if there is a high-signal bidder. If both bidders

have low signal, then the good is not sold but the value is 0, meaning that there is no loss

in overall surplus. Therefore the formula (15) can sitll be used:

πF = E[V ]− E[uF1 ]− E[uF2 ],

where uF1 and u
F
2 are bidders’equilibrium payoffs. Since these payoffs are 0 by construction,

the seller’s revenue is

πF = E[V ] = πFB.

All-pay auction. Consider an all-pay auction with a reserve price rAll. Consider bids
bL = 0 and bH distributed according to a distribution function FAll on interval [rAll, b̄All].

The payoff of an H-signal bidder should be the same for all bids in the interval [rAll, b̄All],

including b = rAll and b = b̄All. Thus,

(1− p)V − rAll = (1− p)V + pFAll(x)(1 + α)V − x
(1− p)V − rAll = (1− p)V + p(1 + α)V − b̄All.

From the first equality

FAll(x) =
x− rAll
p(1 + α)V

.

Note that FAll(rAll) = 0. From the second equality

rAll = b̄All − p(1 + α)V .
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Set b̄All = (1− p)V + p(1 + α)V . Then rAll = (1− p)V and

FAll(x) =
x− (1− p)V
p(1 + α)V

. (22)

Given (22), the expected payoff of an H-signal bidder is 0 from any bid b ∈ [rAll, b̄All].

The expected payoff from bidding b < rAll is −b ≤ 0 (with equality only for b = 0). The

expected payoff from bidding b > b̄All is (1− p)V + p(1 +α)V − b < 0. The expected payoff

of an L-signal bidder is 0 from bL = 0 and negative for b > 0.

Similarly with the first-price auction, the bid of a high-signal bidder is higher than the

reservation price for sure. Therefore there is no loss of surplus in object allocation and the

expected revenue of the seller is

πAll = E[V ]− E[uAll1 ]− E[uAll2 ],

where uAll1 and uAll2 are bidders’ equilibrium payoffs. Again, since the payoffs are 0 by

construction, the seller’s revenue is

πAll = E[V ] = πFB. �
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