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December 2013

La serie de Documentos de Investigación del Banco de México divulga resultados preliminares de
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el intercambio y debate de ideas. El contenido de los Documentos de Investigación, aśı como las
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The Working Papers series of Banco de México disseminates preliminary results of economic
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Abstract
A stumbling block in the modelling of competitive markets with commodity and price spaces
of infinite dimensions, arises from having positive cones with an empty interior. This issue
precludes the use of tools of differential analysis, ranging from the definition of a derivative,
to the use of more sophisticated results needed to understand determinacy of equilibria and,
more generally, the structure of the equilibrium set. To overcome these issues, this paper
extends the Preimage Theorem and the Sard-Smale Theorem to maps between spaces that
may have an empty interior.
Keywords: Determinacy; equilibrium manifold; positive cone.
JEL Classification: D5; D50; D51.

Resumen
Un obstáculo en el modelado de mercados competitivos con espacios de bienes y precios
en dimensiones infinitas, surge de tener conos positivos con interior vaćıo. Esto impide el
uso de herramientas de análisis diferencial, desde la definición de una derivada, hasta el uso
de resultados más sofisticados necesarios para entender determinación de equilibrios y, más
generalmente, la estructura del conjunto de equilibrio. Con el objeto de sortear estos puntos,
este documento extiende el Teorema de la Preimagen y el Teorema de Sard-Smale a mapeos
entre espacios que pudiesen tener un interior vaćıo.
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‡Dirección General de Investigación Económica. Email: ecovarrubias@banxico.org.mx.



1 Introduction

Two closely related mathematical results, the Preimage Theorem and Sard’s
Theorem, are useful tools with many applications in economics, particularly
within the theory of general economic equilibrium. The first of these, is
stated as follows:

Theorem. (Preimage Theorem) If y is a regular value of the map f :
M → N between differentiable manifolds M and N , then f−1(y) is a sub-
manifold of M .1

The Preimage Theorem is usually applied to show results of the following
nature:

Consider the excess demand function Z : Ω× S → X of a pure exchange
economy, where Ω is the set of parameters (e.g. initial endowments), S is
the set of prices and X is the commodity space. Then, if 0 is a regular value
of Z, we have that the equilibrium set, Z−1(0), is a manifold.

The set Γ = Z−1(0) is called the “equilibrium manifold” and the seminal
paper of Balasko (1975) introduced this point of view of general equilibrium
theory. The second result in this spirit is Sard’s Theorem that states that
almost all the values of a function are regular. Formally:

Theorem. (Sard’s Theorem, 1942) Let U be an open set of Rp and
f : U → Rq be a Ck map where k > max(p − q, 0). Then, the set of critical
values in Rq has measure zero.

Sard’s Theorem also has many applications, usually to show results sim-
ilar to this:

1Recall that for a map f : M → N , a point x in M at which the derivative of f has
rank less than n is called a critical point and its image a critical value of f . Other points
y in N , that is, such that f has rank n at all points in f−1(y), are called regular values of
f .
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Consider the equilibrium manifold Γ ⊂ Ω × S and the projection map
π : Ω× S → Ω, restricted to Γ, given by π(ω, p) = ω. Then, the regular val-
ues are almost all of Ω. In other words, almost all equilibria are determinate.

Sard’s Theorem turned out indeed to be the appropriate tool to study
determinacy of equilibria since Debreu’s (1970) seminal paper. These tools
have been used in many other areas such as general equilibrium with incom-
plete financial markets where Chichilnisky and Heal (1996) have shown that
the equilibrium set is a manifold, while determinacy of equilibria was shown
by Magill and Shafer (1990).

In spite of these general results and vast applications, many models of
competitive markets have an infinite number of commodities which natu-
rally lead to consumption and price spaces of infinite dimensions.2 At a first
glance, it would seem appropriate to use Smale’s generalisation of the Sub-
manifold and Sard’s Theorem to infinite dimensions, as follows:

Theorem. (Smale Theorem, 1965) If f : M → V is a Cs Fredholm
map between differentiable manifolds locally like Banach spaces with s >
max(indexf, 0), then

1. For almost all y ∈ V , f−1(y) is a submanifold of M ;

2. The regular values of f are almost all of V .

The statement and proof of Smale’s Theorem is local, and requires for M
and V to have a nonempty interior. However, there are many instances in
economic modelling that require a domain with an empty interior. For ex-
ample, many models of competitive markets use a consumption space in the
positive cone of an `p or Lp space, for 1 ≤ p ≤ ∞.3 Unfortunately, the only
spaces among Lp and `p space whose positive cone have a nonempty interior

2Smale (1965) contains most mathematical definitions that will be used throughout
this paper.

3Recall the following definitions. Let p be a real number 1 ≤ p < ∞. The space `p
consists of all sequence of scalars {x1, x2, . . . } for which

∑∞
i=1 ‖xi‖p < ∞. The norm of

an element x = {xi} in `p is defined as ‖x‖p = (
∑∞

i=1 ‖xi‖p)
1/p

. The space `∞ consists
of bounded sequences. The norm of an element x = {xi} in `∞ is defined as ‖x‖∞ =
supi ‖xi‖. The Lp spaces are defined analogously. For p ≥ 1, the space L[a, b] consists of
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are L∞ and `∞. To complicate things, prices are elements of the positive
cone of the dual space of the commodity space.4 Recall that the dual space
of `p (Lp, respectively), 1 ≤ p < ∞, is the space `q (Lq, respectively) where
1/p + 1/q = 1. In other words, even if the commodity space had a positive
cone with a nonempty interior, the positive cone of the dual space -that is,
the price space- will have an empty interior, and vice versa. The dual spaces
of L∞ and `∞ are subtler, but this problem still holds.5 There are plenty of
examples in different directions, but to name a few consider the following list:

• Duffie and Huang (1985) model financial markets through the space
L2;

• Bewley (1972) uses the space L∞ to model infinite variations in any
of the characteristics describing commodities. These Characteristics
could be physical properties, location, the time of delivery, or the state
of the world (in the probabilistic sense) at the time of delivery;

• The infinite horizon model which requires the set `∞ as modelled in
Kehoe and Levine (1985) and Balasko (1997a,b,c);

The purpose of this paper is precisely to extend Sard’s and Smale’s Theo-
rems to maps between subsets of Banach manifolds which may have an empty
interior. To this end, we will prove in the next sections the following result.

Theorem. (Main theorem) Let f : M → V be a Cr star Fredholm map
between star Banach manifolds, with r > max(index f, 0). Suppose that M
and V are connected and have a countable basis. Furthermore, suppose that
f is locally proper and that it has at least one regular value. Then, the regular
values of f are almost all of V .

those real-valued functions x on the interval [a, b] for which ‖x(t)‖ is Lebesgue integrable.

The norm on this space is defined as ‖x‖p =
(∫ b

a
‖x(t)‖p

)1/p
. The space L∞[a, b] consists

of all Lebesgue measurable functions on [a, b] which are bounded, except possible on a set
of measure zero. The norm is defined by ‖x‖∞ = ess sup‖x(t)‖.

4If X is a normed linear vector space. The space of all bounded linear functionals on
X is called the normed dual of X and is denoted by X∗. The norm of an element f ∈ X∗

is ‖f‖ = sup‖x‖=1 ‖f(x)‖.
5The dual space of L∞ can be identified with bounded signed finitely additive measures

that are absolutely continuous with respect to the measure. There are relatively consistent
extensions of Zermelo-Franekel set theory in which the dual of `∞ is `1.
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2 Analytical preliminaries

Let B be a Banach space, and let B+ denote the positive cone of B which
may have an empty interior. Notice that B+ is a convex subset of B. The
results of this paper can be generalized to any convex subset, not just the
positive cone, but we restrict the analysis to this set because of an interest
in economic applications.

Definition 1. (α-admissible directions) We say that h ∈ B is an α-
admissible direction for x ∈ B+ if and only if there exist α > 0 such that
x + α h

‖h‖ ∈ B+. The set of α−admissible directions at x will be denoted by

Aα(x).

Note that since B+ is a convex subset of B then, if y and x are points in
B+, it must be that h = (y − x) is α-admissible for x. To see this, consider
z = α′y+(1−α′)x, 0 ≤ α′ ≤ 1. Then z ∈ B+ and z = x+α′(y−x), ∀ 0 ≤ α.
Let α = α′

‖h‖ . Similarly, it follows that if h is α-admissible, it is also β-
admissible for all 0 < β ≤ α. Note then that for α ≥ β > 0, we have
Aα(x) ⊆ Aβ(x).

Definition 2. (Star-differentiable functions) Let u : B+ → R be a real
function defined on B+. We say that u is star-differentiable at x ∈ B+ if the
Gâteaux derivative of u at x exists for all h ∈ Aα.

Definition 2, in other words, states that u is star-differentiable at x if and
only if there exists a map Lx ∈ L(B+,R) such that

lim
α→0

u(x+ αh)− u(x)

α
=

d

dα
|α=0u(x+ αh) = Lxh

for all h ∈ Aα(x); that is, if u(x+ αh)− u(x) = αLxh+ o(αh).

Definition 3. (Star-neighborhoods) Let x ∈ B+. We define a star-
neighborhood of x by

V ∗x (α) =

{
y ∈ B+ : y = x+ β

h

‖h‖
,∀ h ∈ Aα(x), where 0 ≤ β ≤ α

}
.
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We will say that O is a star-open subset of B+ if for each x ∈ O there exist
V ∗x (α) ⊂ O.

One can check that star-neighborhoods form a base of a topology, called
the star-topology.

Remark 1. From now on to represent admissible directions we consider vec-
tors h such that ‖h‖ = 1.

Definition 4. (Star-charts) Let Γ be a Hausdorff topological space. A
star-chart on Γ is a pair (U∗, φ∗) where the set U∗ is an open set in Γ and
φ : V ∗ → U∗ is an homeomorphism from the star-neighborhood V ∗ ⊂ B+ onto
U∗. We call φ a parametrization. In such case, we say that the parametriza-
tion is of class Ck if the function φ is k times star-differentiable.

Definition 5. (Star-manifold) Let Γ be a Hausdorff topological space.
We say that that Γ is a Ck star-manifold if for every p ∈ Γ, there exists
an open star-neighborhood of B+, denoted V ∗a (α), and a Ck parametrization,
φ : Va(α)→ Vp, where Vp ⊂ Γ is an open neighborhood of p.

To highlight the structure of Γ as a star-manifold, we will use the notation
Γ∗. We wish to remark in Definition 5 that, since we consider Γ ⊂ B where
B is a Banach space, then the open set in question can be considered to be
V ∗p = Vp ∩ Γ where Vp is an open neighborhood of p in the topology of the
norm.

Definition 6. (Star-atlas) A Ck star-atlas is a collection of star charts
(Vpi ∪M,φi), i ∈ I, that satisfies the following properties:

(i) The collection Vpi ∪M, i ∈ I, covers Γ.

(ii) Any two charts are compatible.

(iii) The map φ : Vai(α)→ Vpi is Ck star-differentiable.

5



(iv) The set φ−1i (Vpi ∪M) is a star-open subset of B+.

Definition 7. (Star-submanifolds) Let Γ∗ a Ck Banach manifold, k ≥ 0.
A subset S of Γ∗ is called a star-submanifold of Γ∗ if and only if for each
point x ∈ S there exists an admissible chart in Γ∗ such that

(i) φ−1i (S ∩ Vpi) ⊂ V ∗ai(α).

(ii) The admissible directions Aa contain a closed subset Ba which splits
Aa.

(iii) The star-chart image φ−1(Vp ∩ S) is a star-open set V ∗ = V ∗a (α) ∩ Ba.

Definition 8. (Tangent spaces) Let M∗ be a star manifold. The tangent
set at p ∈M∗ is the subset TpM

∗ that can be described in the following way.
Let φ : V ∗a (α)→ Vp with p = φ(a). We write TpM

∗ = φ′(a)(Aα(a)). That is,
y ∈ TpM∗ if and only if y = φ′(a)h, h ∈ Aα(x).

Definition 9. (Submersions) Let f : D(f) → Y be a mapping between
B+ = D(f) and the Banach space Y . Then, f is called a submersion at the
point x if and only if

1. f is a C1 mapping on a star-neighborhood V ∗(x) of x;

2. f ′(x) : B → Y is surjective; and,

3. the null space N(f ′(x)) splits B.

We also say f is a submersion on the set M if it is a submersion at each
x ∈M .

Definition 10. (Regular points and regular values) Let f : D(f)→ Y
be a mapping between B+ = D(f) and the Banach space Y . Then, the point
x ∈ D(f) is called a regular point of f if and only if f is a submersion at
x. The point y ∈ Y is called a regular value if and only if f−1 is empty or it
consists solely of regular points. Otherwise y is called a singular value, i.e.
f−1(y) contains at least one singular point.
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3 Results

Theorem 1. (The preimage theorem) Let f : M∗ → N a Ck mapping
from a star-manifold M∗ to a Banach space N . If y is a regular value of f ,
then S = f−1(y) is a star-submanifold of M∗

Proof. It suffices to study the local problem. Let V ∗a (ε) be a star-neighborhood
of a ∈ B+ and consider the Ck star-differentiable map φ : B+ → M∗ such
that φ(a) = p. Without loss of generality, let f(p) = 0. Let h ∈ Aε(a)
and let Vp be a neighborhood of p. Then Vp ∩ M∗ = φ(V ∗a (ε)). Thus,
φ(a + αh) ∈ Vp ∩ M∗. From the local submersion theorem if f is a sub-
mersion, there exists a parametrization φ such that, φ(a) = p, φ′(a) = I.
From Definition 5, for all p′ ∈ Vp ∩ M∗, there exists h and α such that
h ∈ Aa(α). Since ker f ′(p) splits B, there exists a projection P : B → N .
Let P⊥ = I −P and N⊥ = P⊥. Thus, we obtain that B = N ⊕N⊥ and that
f ′(p) : N⊥ → Y is bijective. Denote its inverse by A : Y → N⊥. So let

a = P (p) + Af(p) and a+ αh = [P (p′) + Af(p′)],

φ−1(x) = Px+ Af(x)

where A = f ′(p)−1.
Multiplying both sides of this equation we obtain: f ′(p)φ(x) = f(x). So,

from the local submersion theorem, given that f(φ(a)) = 0, the equality

f(φ(a+ αh)) = f ′(φ(a))(αh) + y,

implies that, the solution of the equation f(z) = y in a star-neighborhood V ∗p
of p, corresponds to the solution of the equation f ′(φ(a))h = 0. Therefore, S
is the set h ∈ Aa such that f ′(φ(a))h = 0 for some h ∈ Aα(a). Hence, S is a
star-submanifold of M∗.

Definition 11. (Star Fredholm maps) A star Fredholm operator is a
star continuous linear map L : E1 → E2 such that

(i) dim kerL <∞;

(ii) range L is closed;
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(iii) dim cokerL <∞.

The index of L is A star Fredholm map is a star continuous map between
star-manifolds such that at each point in the domain, its star Gateaux deriva-
tive is a star Fredholm operator. The index of a star Fredholm map is the
index of its linearization.

Definition 12. (Locally star proper maps) A star Fredholm map F :
M → V is said to be locally star-proper if for every x ∈ M there is a star-
neighborhood U of x such that f restricted to U is proper.

Theorem 2. (Main theorem) Let f : M → V be a Cr star Fredholm map
between star Banach manifolds, with r > max(index f, 0). Suppose that M
and V are connected and have a countable basis. Furthermore, suppose that
f is locally proper and that it has at least one regular value. Then, the regular
values of f are almost all of V .

Proof. The proof follows closely [14]. The theorem is proved locally, since
we assume M has a countable base and first category. Thus, let U be a
star neighborhood of x0 ∈ M . In this case, U is a subset of some Banach
space E. Then, A = Df(x0) : E → E ′ for some Banach space E ′. Since A
is a star Fredholm operator, we can write x0 = (p0, q0) ∈ E1 × kerA = E.
Thus, the Gateaux-star derivative D1f(p, q) : E1 → E maps E1 injectively
onto a closed subspace of E for all (p, q) sufficiently close to (p0, q0). From
the generalized implicit function theorem of [1], we know there is a star-
neighborhood U1×U2 ⊂ E1×kerA of (p0, q0) such that D2 is compact and if
q ∈ U2, f restricted to U1× q is a homeomorphism onto its image. Since f is
is locally proper by assumption, the critical points of f (which by assumption
there is at least one) are closed.

4 Conclusions

This paper provided a generalised Sard Theorem and Preimage Theorem
which are mathematical tools widely used in economic theory to study the
structure of the equilibrium set. Through our approach, this tool can be used
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in situations where the spaces involved might have a positive cone with an
empty interior.
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