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Abstract: What was the impact of railroads in the output of the United States during
the 19th century and how can a New Trade model help answer this question? In order to
respond I follow three steps. First, I construct a new digital railroad data set and pair it with
geographic and topographic features of the U.S. territory to estimate travel times between
every pair of U.S. counties for every year between 1840 and 1900. Second, I use these results,
together with a Ricardian model of trade and U.S. county output data from the 19th century,
to estimate county gains from trade using a fixed-point algorithm. Third, I estimate counter-
factuals with the railroads built up to a certain year. My estimates suggest that there was a
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leaving all factors of production fixed, if the railroads were made suddenly unavailable in
1890 there would have been a 9.6% reduction in output, but in 1900, after the financial
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†Dirección General de Investigación Económica. Email: fernando.perez@banxico.org.mx.



1 Introduction

The year 1840 saw a total of 455 miles of railroads opened in the United States. This investment

equaled 1% of the total U.S. value of output that year,1 an addition of almost 18% to the total

railroads built up to that time.2 In 1887, the peak year of railroad construction, nearly 12,000

miles were built, at a cost of around 3% of GNP.3 By the end of the 19th century, GNP per

capita grew by a factor of 3.97 compared to 1840. In this paper, I do an extensive compilation

of almost 118,000 miles of railroad-openings and convert it into digital form. I use detailed U.S.

county-level census data from the 19th century (around 500,000 observations), a simple struc-

tural model of trade with 3109 trading regions, and geographic and topographic characteristics

of every county and waterway in the United States to make a quantitative assessment about the

U.S. railroad network: I estimate the impact on output if they became suddenly unavailable. I

follow three steps to get to this calculation:

1. I find travel times for every pair of counties for every year between 1840 and 1900. This

result does not require any economic model, and uses only the fact that optimal travel

times satisfy the triangle inequality.

2. I use a Ricardian model to find the gains from trade as the railroad network continued

to grow. This analysis, which uses a fixed-point algorithm, works for a large family of

1Total value of output (both at the county and at the national level) will be denoted as GNP henceforth to
make it comparable with other results in the literature, and because large extensions of land that belonged to more
than one county were counted as being in only one county. This model, which uses an immaterial single factor
of production to produce a homogeneous final good, is equivalent to other output specifications such as GDP.
But extending the analysis to more than one sector or with more factors of production would disentangle the two
measures, so I keep GNP to make this simple model and its own natural extensions comparable. The total value of
output in this paper is the sum of the total value of agricultural output and total value of manufacturing output.
See Donaldson and Hornbeck (2012) for a similar analysis that includes the cost of land.

2In 1840, railroad construction cost an average of $25,000 per mile (Stover (1999)), and the value of output was
$1.13 billion (Haines et al. (2005)). I measure length of construction using standard GIS geodistance calculators,
using a data set of opened railroads in 1840. This cost per mile was inexpensive compared to the railroad’s Euro-
pean counterparts. By the same date, Europe had less than half the miles of railroads at more than the total cost of
the entire 3,000 miles of American railroads (Stover (1997)).

3The cost of railroad construction was 4% of 1880’s GNP and 2.5% of 1890’s GNP (Haines et al. (2005)).
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preferences and trade model specifications, and works without bilateral trade data, which

is usually incomplete or unavailable to researchers as is the case in this paper.

3. I build a simple counter-factual scenario in which railroads are unavailable but all the

other means of transportation are.

Railroad construction does not increase output because it is an input of production, but rather

because it is a reduction in trade costs.4 My model assumes all factors of production are fixed,

and so trade-cost reduction changes relative prices and patterns of specialization until factor

markets clear. The introduction of railroads reduced trade barriers; thus the decision regarding

whether to build these railroads became a de facto trade-policy problem.

Railroads are not the usual type of trade-barrier reduction. First, the cost of implementing

them is high. In 1840, a 1000-mile railroad to connect New York and Chicago would have cost

$25 million, the equivalent of 2.2% of the United States’ GNP, or 13% of New York state’s GNP,

or 96% of Illinois’s GNP. My estimates suggest that the present discounted value of the increase

in output that this railroad would have produced is 1.3% of the GNP of the United States.5

Modern trade-policy problems (even involving extremely distant and small regions) do not

typically have such large costs of implementation, even if negotiations are included.

Because agents re-optimize travel routes, railroads construction (unlike tariff reduction) is

a trade-barrier reduction that preserves the triangle inequality: the construction of a single

road linking two regions in the United States weakly reduces trade costs between all regions in

the United States. For example, between the years 1865 and 1869, the Union Pacific Railroad

between Omaha and San Francisco was built. This railroad thus became part of the optimal

route to transport goods from East to West, and reduced the length of a trip between Seattle

4See Glomm and Ravikumar (1994), Munnell (1992), and Winston (1991) for examples in which infrastructure
changes factor productivity.

5Assuming population shares fixed and a discount factor of 2.5%. See Section 5 for details on these calculations.
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and New York from 52 to 17 days, even when Seattle was 700 miles away from the nearest

railroad to the East in 1869.6

I study railroad network design as a special type of trade-policy problem, and because I

do not have bilateral trade-flows data, I use computational image processing and a fixed-point

algorithm to back out the values of trade shares for all the counties in the United States, for

every census between 1840 and 1900. The values of these trade shares and their responses

to additional trade cost reductions allow me to conclude that the social gains from the actual

railroads equaled 9% of GNP in 1900.

I build on seminal previous work to estimate both the counter-factual output of removing

the railroads, and I am able to compare it to other results in the literature.7

Fogel (1962) conducted a classic first-order estimate of the effects of railroads on the econ-

omy, by finding the increase in transportation costs that removing the railroads produces. He

made exhaustive accounting on freight and inventory costs and found that the existence of the

railroads in 1890 saved the U.S. economy 2.7% of its GNP had only wagons and boats been

able to transport the same amount of output. He also studied other counter-factuals, such as

the impact of a series of canals in the Midwest and the improvement in the . Previously, in

Fogel et al. (1960), an exhaustive cost/benefit analysis of the construction of the railroads to the

Pacific Ocean was done, finding that this railroad was built too early. This paper also makes

use of optimal routes using combinations of wagons, boats, and railroads to approximate trade

costs.

Donaldson (2008) uses an Eaton and Kortum (2002) model to estimate the outcome of re-

moving railroads and of adding 40,000 kilometers of railroads in India that were designed but

never built. He found that the arrival of the railroads produced an average 16% increase in real

output in the districts that became part of the network. He also found that the railroads that

6See Section 3 for details on these calculations.
7See Mitchell (1964), Stover (1997), Holmes and Schmitz Jr (2001), Summerhill (2003), Herrendorf, Schmitz,

Teixeira, and of Minneapolis. Research Dept (2009) for a nice analysis of the impact of railroads on productivity,
competition, and on specific industries.
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were not built would have not improved output significantly. More recently, Donaldson and

Hornbeck (2012) estimate a similar counter-factual as Fogel (1962) for the United States, but

with a Ricardian model of trade and allowing for migration. They estimate that removing the

railroads in 1890 would decrease GNP by 6.3%. This paper extends this literature by exploring

the normative implications of these policies.

Section 2 of the paper explains how the planning of the U.S. railroad system could be seen

as a centralized trade-policy problem. Section 3 describes how I obtained optimal travel times

between every pair of U.S. counties for every year between 1840 and 1900. Section 4 uses the

results of the previous section and, together with a Ricardian model of trade and U.S. county

output data from the 19th century, describes how to estimate the gains from trade due to the

railroad. Section 5 will describe the counter-factual analysis. Section 6 summarizes the re-

sults and concludes. Appendix A contains a description of the computational image-processing

methods used to identify trade costs, and Appendix B contains the proofs of the well-known

results of the Eaton and Kortum (2002) model.

2 Historical Background

Between 1840 and 1900, the railroad network in the United States grew at an average annual

rate of 6.47%, resulting in just over 130,000 miles of built railroads (118,000 of them opened and

operating by the year 1900). By contrast, real GNP grew 4.9% and population 2.52% per year on

average over this period, and the U.S. territory tripled in size. Figure 2.1 and Figure 2.2 show

the expansion over time of this network of opened railroads, some geographic traits of the U.S.

territory, and the evolution of the county-level GNP in the United States. Growth in output and

railroad construction are clearly related. From these figures, we can see short railroads were

usually built where output was large, over flat areas, and avoiding mountainous regions.
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Figure 2.1: GNP and railroad construction 1840-1860

1840

1850

1860

Note: Left: County Value of Output (GNP) in 2010 U.S. dollars during census. Gray areas have no data
for that census. Right: Railroad openings in the United States up to each date, and altitude of the U.S.
territory.
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Figure 2.2: GNP and railroad construction 1870-1900

1870

1880

1890

1900

Note: Left: County Value of Output (GNP) in 2010 U.S. dollars during census. Gray areas have no data
for that census. Right: Railroad openings in the United States up to each date, and altitude of the U.S.
territory. 6



Figure 2.3: Time required to travel from New York to various western locations

Note: Images from the Atlas of the Historical Geography of the United States (Paullin and Wright
(1932))

The construction of the railroads in the United States, beginning during the 1830s is the

most important part of a sequence of actions by large East Coast cities to promote trade with

less populated Western regions. Figure 2.3 shows archival data from Paullin and Wright (1932),

and pictures the evolution of travel times from New York City to the rest of the territory of

the United States. It is clear that railroads influenced travel times, and that regions left far

away from the construction were left out of the optimal routes to New York. Price data from

Carter, Gartner, Haines, Olmstead, Sutch, and Wright (2006) show that shorter travel times give

less resources dedicated to transportation (which implies cheaper costs per ton-mile), but other

important margins were also improved, such as the volume and weight of the freight, and the

fact that railroads could be used all year long.

However, the construction of the railroads was not a centralized decision. These actions in-

volved mainly canals and railroads financially backed by state governments, and soon the race

to be the “first commercial city in the world” became fierce (Stover (1997)). State governments

went to extreme measures to keep up the pace in this race. The actions taken during the 1830s

to have access to cheaper agricultural goods from farther distances did not go over well with

all citizens, particularly large-scale producers in upstate regions far away from the construc-
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tion projects.8 The implementation of state taxes to pay for construction did not have popular

approval either, even from the people benefiting from the construction.

To avoid raising taxes, state governments designed a system of “benefit taxation” (a prop-

erty tax that was calculated after changes in property value due to railroad construction) and

“tax-less finance” (which involved taxes only if both the banks and the canal/railroad com-

pany became insolvent).9 This system worked for a while, but the drought and recession of

1839 caused a financial disaster of such magnitude that by 1842, eight states (and the Florida

Territory) were in default, and three other states were about to default. Most local Constitutions

were amended (and written all over again for 12 states) to limit the ability of the states to subsi-

dize infrastructure and lend their credit, and to prevent states from entering long-term financial

commitments without raising taxes.10 The new laws shut down state financing of large infras-

tructure projects, and left the federal government as the most important (if not the only) source

of collateral for those projects. Starting in 1840, any large U.S. railroad investment required

financial guarantees to foreign investors that only the federal government could provide. A

large number of corporations were created and the total capital raised for railroad construction

in the 19th century reached the equivalent of 70% of GNP by 1900. Such events could not have

happened had the government not been the ultimate source of collateral. If the corporations

wanted to be able to pay for the debt acquired for the railroad construction, they were bene-

fited if railroads were located in areas of high trade volume. If the federal government was

responsible for repaying any failed projects, it benefited from the growth created by railroads.

Railroad construction is not a homogeneous trade cost reduction, which means that the ben-

efits are unequally spread among the trading regions. In fact, some regions can be negatively

affected if trade costs are reduced far away.11 One of the most important problems that emerges

8For example, when the Erie Canal was built (northwest of New York City), the farmers on Long Island (east
of New York City) opposed to the project, as documented by English (1996).

9The terminology is from Wallis, Sylla, and Grinath (2004).
10See Wallis (2004) for details on the specific changes to each state’s constitution regarding this matter.
11This is a typical result in most trade models. Donaldson (2008) estimates that railroad construction in neigh-

boring districts in India reduced output by 4% in the average district in India.
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in the literature of network formation is the presence of externalities. The next sections will de-

scribe the three steps I follow to find the effects of new railroads on the U.S. counties and in the

U.S. economy as a whole.

3 Obtaining Optimal Travel Times

This section describes the computational methods used to find the optimal travel times between

every pair of U.S. counties for every year between 1840 and 1900 using any combination of

wagons, boats, or railroads. Subsection 3.1 describes how I reduced the size of the problem so

a modern computer can solve the problem. Subsection 3.2 and Subsection 3.3 describe how I

obtained travel times between counties.

3.1 Simplifying the problem

The problem needs to be simplified in many aspects. First, I abstract from the fact that the U.S.

territory is continuous, and assume trade will occur between isolated points. In particular, the

set of points that I choose are the 3109 current county population centroids of the continental

United States.12 I assume every county n ∈ {1, 2, ..., 3109} in the continental United States is a

small open economy. Because detailed county data are only available from the census (which

occurred every decade) I only study seven time periods: t={1840, 1850, 1860, 1870, 1880, 1890,

1900}.

I use the geographic characteristics of the 3109 present counties of the continental United

States, which are shown in Figure 3.1. For the purposes of modeling transportation costs δij, I

will assume the present population centroids of each county are points on a two-dimensional

space (latitude and longitude).

12See Donaldson and Hornbeck (2012) for an interesting calculation of intra-county trade costs, a type of analysis
that treats the territory more like a surface than a set of points.
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Figure 3.1: The 3109 present counties of the continental United States

I reduce the size of the problem by assuming the 3109 isolated points can only be joined via

direct links with neighbors. A link can only go between two present neighboring county maps,

and the distance between two counties will be the geodesic distance between its population

centroids. Two counties that are not neighboring will have to use more than one link to be

connected. The distance between counties is defined as the geodistance between points, to

adjust for the fact that because the Earth is a sphere, and the United States is in the northern

hemisphere, distances measured in northern regions could be over-estimated if we instead used

a Euclidean norm using latitude and longitude.

I constructed a set of neighboring counties for every county in the continental United States.

This set of neighbors reduced the number of potential ways of directly joining counties by one

order of magnitude, an average of six neighbors per county in continental United States. I

have 9092 pairs of neighbors and the longest link is 283 miles long. Without the neighbors-only

restriction, the number of neighboring pairs would be quadratic in counties, not to mention the

real world ambiguity of having a 2580 mile link between San Francisco and New York that does

10



Figure 3.2: Population Centroids and County Neighbors

Note: Population centroids of the 3109 continental U.S. counties and the associated neighboring county
pairs.

not touch any other county in the middle. This simplification turns out to be useful. The size

of the problem has become manageable for a modern computer, because I choose between 9092

links instead of 4.6 million.

3.2 Combining data on railroad construction and county data

I have compiled, from different sources, an extensive dataset of the railroad construction projects

in the United States from 1827 to 1900. The dataset consists of geospacial data of 12,800 railroad

projects. A project consists of a series of ordered points indicating the latitude and longitude of

the railroads in the continental United States. For each project I also have the year it opened.

This classification chopped original railroads into short segments. Geospacial data for aban-

11



Figure 3.3: Simplification of railroads

Notes: Black-dotted: real railroad. Gray: the set of counties that the railroad touches. Red: simplified
railroad connecting all the counties the railroad touches.

doned, two-way, or incomplete railroad construction were not available for my data set and

add up to just over 9% of the total mileage of my data set, up to 1890.13

Using computational image-processing,14 I can determine the counties through which each

railroad project goes. Using this information, I create a simplified railroad data set containing

the set of links that constitute the shortest way to connect all the county centroids that the rail-

road project traverses, with the restriction that only neighboring links can be used to build the

railroad.15 By construction, a project that belongs to only one county will be dropped, because

by definition, counties are connected with themselves. As Figure 3.4 shows, the removal of

projects and the mismatch of lengths due to centroid simplification add up to very small er-

rors, both in the cross section and in the cumulative data. The most important information is

preserved. I then repeat the process of data simplification with rivers, oceans, and canals, as

seen in Figure 3.5. In this model, all water routes will follow coastlines and I am assuming that

travel times upstream and downstream are the same.

13There were 129,774 miles of constructed railroads up to 1890 according to Depew (1968) vs. 117,708 miles of
opened railroads in my data set, a difference of 9.3%

14See Appendix A for details on the procedure.
15This set of links is called the minimum spanning tree of the county population centroids. See Figure 3.3 for

details on this procedure.
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Figure 3.4: Real and simplified data over time

Miles of railroads opened each year Accumulated Opened Miles (Thousands)

Notes: Red: simplified data (3,343 lines, over a finite set of nodes). Black-dotted: real railroad
data (12,800 railroads over a continuum space),

Labeling train transportation as faster than water transportation, which in turn was faster

than wagon transportation, Figure 3.6 shows the fastest way to connect two adjacent counties.

Note that using direct links to go from one county to its neighbor (especially the red ones near

black ones) may violate the triangle inequality in travel time; that is, two adjacent counties can

be connected more quickly via a third county using trains than directly but using horse-pulled

wagons.

3.3 Using Dijkstra’s algorithm to find optimal travel times

I will define the matrix of optimal travel times for every decade, d(t)ij , as the fastest time to go

from county j to county i using any combination of wagon, boat, and railroad, for every pair

(i, j) ∈ {1, 2, ..., 3109} × {1, 2, ..., 3109} available during that time. I obtain the elements of the

matrix d(t)ij , which satisfy triangle inequality by construction, as follows: links that only use

horses and wagons are calibrated to have a speed of 30 miles per day.16 Boat transportation is

16According to Stover (1997), a wagon pulled by four horses, from New York City to Philadelphia (90 miles) in
three days. It became known as the “Flying Machine”.
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Figure 3.5: Simplification of the navigable water data set

Notes: Top: Navigable water transportation in 1830. Bottom: Simplified dataset of navigable water
transportation in 1830
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Figure 3.6: Fastest route to connect two adjacent counties using only one link.

1830 1835 1840

1845 1850 1855

1860 1865 1870

1875 1880 1885

1890 1895 1900

Notes: Black links: horse-pulled wagon. Blue links: boat. Red links: railroad.
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calibrated to travel 120 miles per day.17 Train speed is calibrated to 350 miles per day.18 As-

suming no switching costs, I use Dijkstra’s algorithm to obtain the length of the fastest route

between county centroids, which gives a matrix of 3109 by 3109 freight times, each entry be-

ing the solution of an optimization problem with 9092 unknown variables. Figure 3.7 shows

one row of the matrix of d(t)ij , the row corresponding to New York County (Manhattan). Also

note the 1860 sub-figure in Figure 3.7 appears to the casual eye very similar to Stover (1999),

who digs into an enormous amount of archival data on route logs. This sub-figure also almost

matches the most important cities in the raster data from Paullin and Wright (1932). This simi-

larity indicates switching transportation did not represent a large hold-up problem in terms of

time, and that travel speeds were homogenous throughout the territory.19

4 Calibrating Gains from Trade

This section sets up the model of trade, and explains an innovative method for parameter iden-

tification (which can be extended to a large family of trade models without loss of generality)

to obtain gains from trade of every county for every census year between 1840 and 1900.

4.1 The Trade Model

The representative consumer in county n at time t has CES preferences for consumption over a

continuum of goods c(t)n (j) with j ∈ (0, 1) and constant elasticity of substitution σ > 1:

U(t)
n =

(ˆ 1

0
c(t)n (j)

σ−1
σ dj

) σ
σ−1

17As documented in Depew (1968).
18Trains traveled at a maximum at 20 miles per hour during most of the 19th Century, and the average shipment

that involved exclusively train transportation traveled between 300 and 400 miles per day (documented by Stover
(1999)).

19See Fogel (1962) and Donaldson and Hornbeck (2012) for estimates on transshipment costs when different
types of transportation methods are used.
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Figure 3.7: Length of time to travel from New York City

1830 1835 1840

1845 1850 1855

1860 1865 1870

1875 1880 1885

1890 1895 1900

Notes: Destinations are every population centroid in the continental United States, using the fastest
combination of wagon, boat, and railroad in the simplified dataset.
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The representative consumer in county n has income Y(t)
n and spends it all in the county where

she lives. The unit price of each good c(t)n (j) in county n at time t is p(t)n (j). The environment

will be perfectly competitive. The representative consumer in county n will only purchase from

the cheapest source of good j.

Goods are traded between counties at a cost. Goods that need to travel farther from source

to destination will have a larger per-unit trade cost. Let δni ≥ 1 be the iceberg cost of shipping

goods from county i to county n. It equals the units of good j that must be shipped from location

i in order for one unit of j to arrive to location n. I normalize δnn = 1 for all n = {1, 2, ..., 3109}.

Iceberg costs satisfy triangle inequality; that is, δni ≤ δnmδmi for any value of m.

Let κ
(t)
i (j) be the cost in county i = {1, 2, ..., 3109} to produce good j ∈ (0, 1) at time t. Then

by arbitrage, the per-unit price of good j in location n will equal pn (j) = mini

{
κ
(t)
i (j) δ

(t)
ni

}
.

County n has a fixed endowment of the single factor of production Ln. Every county has,

for every good j ∈ (0, 1), productivity draws which have a Frechet distribution with productiv-

ity parameter Tn and dispersion parameter θ.20 All computational methods developed in this

section (i.e. before the counter-factuals are defined) can relax the identification of this input of

production. Specifying whether a single factor or multiple factors of production produce out-

put is not necessary, as long as the production function is assumed to be Cobb-Douglass with

constant returns to scale.

The representative consumer in county n has income Y(t)
n and solves:

max
c(t)n (j)

U(t)
n

s.t.
ˆ 1

0
p(t)n (j) c(t)n (j) dj ≤ Y(t)

n

20See Eaton and Kortum (2002) for details on this technology specification.
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the solution is cn (j) =

(
p(t)n (j)

)−σ

´ 1
0

(
p(t)n (x)

)1−σ
dx

Y(t)
n . In equilibrium, factor markets clear. Because of lack

of data, I assume trade balance. Finding the factor returns that balance trade is equivalent to

solving for the factor-clearing conditions. In equilibrium, county n’s income equals the sum of

all 3109 counties’ expenditures in goods from n:

w(t)
n L(t)

n =

3109∑
i=1

T(t)
n

(
w(t)

n δ
(t)
in

)−θ
w(t)

i L(t)
i∑3109

m=1 T(t)
m

(
w(t)

m δ
(t)
im

)−θ

Even though income is an endogenous variable, I can condition on it and obtain the equilibrium

by finding the source effects S(t)
n = T(t)

n

(
w(t)

n

)−θ
that satisfy the system of equations, given

income Y(t)
n = w(t)

n L(t)
n :2122

Y(t)
n =

3109∑
i=1

S(t)
n

(
δ
(t)
in

)−θ
Y(t)

i∑3109
m=1 S(t)

m

(
δ
(t)
im

)−θ
(4.1)

In the next subsection, I will explain how to obtain the source effects S(t)
n that clear factor mar-

kets from 19th century U.S. census data without trade data but with income and geographic

data on railroads, rivers, oceans, and canals.

4.2 Calibrating the parameters of the model

I model iceberg costs between two counties to be linear in the length of time the freight took

to travel between the two counties, and to be relative to the unit price of the good to be trans-

ported. The functional form of iceberg costs is

δ
(t)
ni = 1 + λd(t)ni

21The term “source effect” comes from Eaton and Kortum (2002)
22See Appendix B for details on these calculations
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where λ is a constant representing the percentage costs of an additional day of transportation

per unit of any good compared to its source price, and dni is the time in days for the fastest

route from county i to county n. The parameter λ was calibrated to be equal to 0.05 from

archival data on freight costs from the Midwest to the East Coast taken from Depew (1968),

using my own calculations on travel times from the results of Subsection 3.3, and using spot

prices from the “Wholesale Prices of Selected Commodities: 1784-1998” table in Carter, Gartner,

Haines, Olmstead, Sutch, and Wright (2006).

Given the functional form of δ
(t)
in , and because λ = 0.05, the remaining parameters to be

calibrated are S(t)
n for all t and n, as well as θ. From census data (corresponding to t={1840,

1850, 1860, 1870, 1880, 1890, 1900}), I have the value of agricultural and manufacture output

(I call this value GNP) of every county in the United States. These values are obtained at the

county level. The data are presented in current dollars, and were calculated using local prices,

except in the few cases where regional prices were used instead (see Carter, Gartner, Haines,

Olmstead, Sutch, and Wright (2006) for the few exceptions).

To let present counties and old counties match geographically, I assume counties that had

no data collected in the census had no factors of production. For example, take Milam county

in Texas over time, pictured in Figure 4.1. In 1860, a total of 14 counties had more than 50%

of their territory in what used to constitute Milam in 1850. In 1860, Milam produced 24% of

the total value of output of those 14 counties, and its two immediate neighbors another 20%

each. It is likely, then, that in 1850 most of the value of output of Milam county was produced

in a short vicinity of what constituted Milam in 1860. In 2010, the territory of Milam almost

coincides with the territory of Milam in 1860.

This story is repeated throughout the whole territory of the United States over time. The

way data is simplified in this paper is as follows: a point located in Milam’s 2010 population

centroid produced all the output of Milam 1850, the population centroids of 2010 of the 14

counties that used to be Milam produced the output of the counties in 1860 and so on.
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Figure 4.1: Milam county over time

Notes: County territory changed over time, but county names tended to preserve the location of the
output value. Black polygon: Territory of Milam county in 1850. Colored polygons: territories of 14
counties in 1860, including Milam in red. Black stripes: Territory of Milam county in 2010. Colors of the
14 counties represent the share of their value of output in 1860.

In the census of 1840, I have the value of GNP in 1840 for 1257 U.S. counties, which means

I am assigning a value of Y(t)
n = 0 to the 1852 counties with no reported income. In 2010

U.S. dollars, among the counties with a positive value of output, the mean county GNP was

$20.11 million and only 30 counties had GNP over $100 million (Figure 4.2), with the 5 largest

accounting for more than 7% of the GNP of the United States by 1840 (Table 1). In the next

subsection, I will suppress the time (t) superscript notation, because all the calculations will be

static.
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Table 1: The five counties with the largest GNP in 1840

County GNP in 1840
Philadelphia, PA $517.77
Middlesex, MA $397.08
New York, NY $369.72
Worcester, MA $243.31
Providence, RI $217.96

Notes: Millions of 2010 U.S. dollars. The 5 counties with the largest GNP add to 7.05% of the GNP of
the United States. There are 1257 counties with available data.

Figure 4.2: Histogram of U.S. county GNP in 1840

Notes: Quantities are in millions of 2010 U.S. Dollars. Data are truncated to $100 million for illustrative
purposes.
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4.3 Identifying Trade Shares

I will obtain the GNP in every county from the census and define it to be Yn. This value will be

taken as given. We have that Equation 4.1 can be expressed in matrix notation as

Y = Π′Y (4.2)

with Y = (Y1, Y2, ..., Y3109)
′ and Π is a 3109-by-3109 matrix whose position (i, n) is πin =

Sn(δin)
−θ∑3109

m=1 Sm(δim)
−θ . The number πin, is the fraction of county i’s income spent on goods from county

n, also known as county n′s trade share on i. We have that Equation 4.2 is a system of 3109

equations and 3109 unknowns: the components of the vector S = (S1, S2, ..., S3109)
′. The rows

of Π add to 1 for any value of S. This last fact implies that one equation is redundant: if some

vector S satisfies Equation 4.2, then εS with ε 6= 0 also satisfies it, because Π has one eigenvalue

equal to 1. Normalizing the vector S to add up to 1 gives a unique solution.

The fact that the system of equations (4.2) has a solution does not mean it is easily attainable

numerically. In fact, any numerical method that directly wants to find the solution of the system

will tend to be unstable from any initial point because the gradient is almost flat: the denomi-

nator in each of the 3109 summands of the 3109 equations is itself a sum of 3109 elements, so,

given any initial point, the direct search will have increments that are two orders of magnitude

larger than the elements of S and will tend to get negative values for some elements of S.

Because of this issue, I use an iterative algorithm that is both fast and numerically stable.

It is an adaptation of the Alvarez and Lucas (2007) algorithm. To the best of my knowledge,

it has never been used in this context, neither in Eaton and Kortum (2002) setting nor in a

general gravity setting. The elements πin of the matrix Π can be decomposed into source effects

and a function of trade costs, a functional form that appears in a wide range of trade models

(such as Armington settings). This decomposition will be key in identifying changes in the

equilibrium outcome when only trade costs vary. As explained in Subsection 4.5, the simplicity
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Figure 4.3: Value of interstate trade as share of GNP in 1890 as a function of θ and λ

Notes: In 1890, Depew (1968) found this share to be 75%. The value θ = 7 is assumed to be constant for
the whole period 1840-1900

of the algorithm and its reach are encouraging for future research in this area, as long as trade

costs are assumed to be observed.

4.4 The Iterative Algorithm

The values of the vector Y are obtained from the census. The values of the 3109-by-3109 matrix

of optimal distances d, are obtained from the railroad and geographic and topographic data as

described in Subsection 3.3. The value of λ = 0.05 is calibrated from the Commodity Prices

of the Statistics of the United States, as explained before. The rounded up value of the θ = 7

parameter is calibrated with interstate banking data from Depew (1968) and it almost fits the

volume of trade of the census of 1890, which was 75% of GNP, as seen in Figure 4.3. Note the

value θ = 7 is also obtained in the Eaton and Kortum (2002) literature, where bilateral trade

is usually available, but not the trade costs. I will now explain how to obtain the trade shares

with an iterative algorithm.
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Initialize the iterator k = 0 and start with a vector Sk such that 1′Sk = 1 and (Si)
k > 0 for all

i with Yi > 0. A good guess is Sk = Y
1′Y . This vector will uniquely characterize the matrix Πk.

Then I follow the iterative process until convergence:

Sk+1 = H
(

Tk
)
= Sk + η

[
Y−

(
Πk
)′

Y
]

(4.3)

with η > 0 and sufficiently small so as not to have any entries of Sk+1 negative for any k.

The term Y −
(
Πk)′ Y is a vector of “excess supply”, that is, the difference between the ob-

served county income and the total expenditure of other counties in products sourced from

some county that is predicted by the vector of source effects. If county n spends more dol-

lars Yn than what the current vector of source effects
(
Πk

n
)′

Y predicts, then it must be the case

that county n has a larger weight as a source of output. Note the function H takes the space

of vectors of length 3109 that add up to 1, to itself.23 The fixed point of this iterative process

satisfies the balanced trade equilibrium condition and implies that for those source effects, the

factor market clears. Numerically, the benefits of railroad construction policy, given county

incomes, are independent of the selection of factor of production, even if the factor changes

constantly over time. Counter-factual analysis, as the one in Dekle, Eaton, and Kortum (2007)

23Proof:

1′H
(

Tk
)

= 1′
(

Tk + η

[
Y−

(
Πk
)′

Y
])

= 1 + η1′
(

Y−
(

Πk
)′

Y
)

= 1 + η

(3109∑
n=1

wnLn −
3109∑
n=1

3109∑
i=1

Tn (wnδin)
−θ∑3109

m=1 Tm (wmδim)
−θ

wiLi

)

= 1 + η

(3109∑
n=1

wnLn −
3109∑
i=1

wiLi

3109∑
n=1

Tn (wnδin)
−θ∑3109

m=1 Tm (wmδim)
−θ

)

= 1 + η

(3109∑
n=1

wnLn −
3109∑
i=1

wiLi

)
= 1
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follows trivially once the matrix Π is given and transportation costs do not affect productivity

parameters.

4.5 Alternate implementations of the iterative algorithm

This iterative algorithm is not specific to this model. If trade costs are assumed to be observed,

then this “excess supply” iterative algorithm to find trade balances without loss of generality.

Trade shares are functions of factor rents and productivity in an Eaton and Kortum (2002) set-

ting, but similar equilibrium conditions arise in other model specifications or when other types

of data are available for the researcher.

4.5.1 When the only factor of production is observed

For this paper, if labor is assumed as the only factor of production, and if labor in every county

is observed, then the factor rent is the GNP per worker, and I can define Sn = Tn

(
Yn
Ln

)−θ
as the

vector of source effects, and still start with Sk such that 1′Sk = 1 for k = 0. Then the process in

Equation 4.3 still converges, and finds normalized values of productivity Tn. Productivity is a

sufficient statistic for welfare under autarky, and getting these parameters allows to observe the

dispersion of ideas and technology over time, as well as the spatial correlation of productivity

shocks on census years, such as droughts or financial crises.

4.5.2 Armington Preferences

Another example in which this setting can be useful is with Armington preferences.24 For

example, an endowment economy-Armington model with N regions and balanced trade with

24See Arkolakis, Costinot, and Rodriguez-Clare (2009) for an extensive discussion on trade share equation equiv-
alences among several trade models.
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preferences defined by

Un =

( N∑
i=1

α
1
σ
i c

σ−1
σ

ni

) σ
σ−1

where σ is the elasticity of substitution and αi is the preference parameter for goods from region

i (common across all regions), the market clearing condition is given by

Yn =

N∑
i=1

αn (pnδin)
1−σ Yi∑3109

m=1 αm (pmδim)
1−σ

where pn is the price per unit of endowment good in region n. In that case, the source effect is

just Sn = αn (pn)
1−σ and the iterative equation is

Yn =

N∑
i=1

Sn (δin)
1−σ Yi∑3109

m=1 Sm (δim)
1−σ

Again, the intuition behind the reasons for convergence is similar as the productivity. Fixing

the price per unit of endowment goods, an excess supply in a region implies that overall the

preference for the goods of that region must be larger than the current vector of preferences

predicts.

4.6 Using the results of the iterative algorithm

An important contribution of the paper is that it deals with a high dimensional income data

set in which trade data do not exist, but are inferred from a model, and the family of models

from which it can be inferred is large. The algorithm finds trade shares πin and so finds gains

from trade for a general setting of trade models. From Eaton and Kortum (2002) we know that

“own shares” define for gains from trade with respect to autarky, and from Donaldson (2008)
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we know this is also a sufficient statistic for gains from trade in an intertemporal setting. The

vector of own shares is πnn, for all n = {1, 2, ..., 3109}. In Figure 4.4, results of the calculated

own-trade shares are pictured for all the existing counties during all U.S. census years between

1840 and 1900, given the railroad construction up to the time of the census. Low values imply

large gains from trade. Gains from trade increased through time and spread along the whole

U.S. territory. However, the impact of railroads on these gains is not seen here. It can only be

seen doing a counter-factual exercise. During the 1840s, trade was expensive and the rich coun-

ties of the Northeast could not benefit from trade, because at the time, the regions connected

with railroads were all high-income regions too, unable to exploit low wages in other regions.

The number of counties with which to trade for a low cost, for almost any county, was small.

Note also the Louisiana region did not benefit much as the railroad network kept expanding.

They stopped being part of the fastest route from the South to the Northeast, thus stagnating

their benefits from the trains in the area. This might be an overstatement of my model, mainly

because I assume symmetric travel times over the Mississippi River, which was not the case.

Nevertheless, as seen in Figure 2.1 and Figure 2.2, the GNP of the counties in that region de-

creased substantially as the railroads to the West kept expanding. Being located next to a river

gave two advantages to rural counties during the first half of the 19th century: it made land

(and labor) productive, and kept trade relatively cheap. As the freight costs were reduced,

the advantage of low cost trade vanished, and the relative importance of high productivity

vanished compared to the geographic advantage of being part of the optimal transportation

routes.

5 Counter-Factuals

I have identified the source effects and the gains from trade due to railroads of every county in

the United States for every census between 1840 and 1900 by finding the fixed point in a simple
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Figure 4.4: U.S. counties’ estimated own share of sales from 1840 to 1900

1840 1850

1860 1870

1880 1890

1900

Notes: Low values indicate large gains from trade. Gray: counties with no data
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iterative algorithm. Let x′ be the equilibrium counter-factual value of some variable x after

changes in the railroad network. We know that changes in the railroad network will change the

whole matrix if δni into δ′in but do not change factor endowments or productivity, so the new

factor returns will satisfy:

w′nLn =

3109∑
i=1

Tn
(
w′nδ′in

)−θ∑3109
m=1 Tm

(
w′mδ′im

)−θ
w′i Li

But production factors are not observable, so now I make use of the Dekle, Eaton, and Kortum

(2007) setup to calculate the instantaneous effect of changing the railroad, assuming they do

not change county productivity. This is a similar exercise as Caliendo and Parro (2009), who

calculate changes in real wages in a multi-sector framework. Define counter-factual propor-

tional change in variable x to be x̂ = x′/x. I am assuming that factors are fixed, so I get that

w′nLn = ŵnwnLn = ŵnYn. The counter-factual factor returns satisfy

ŵnYn =

3109∑
i=1

πni

(
ŵnδ̂in

)−θ

∑3109
m=1 πnm

(
ŵmδ̂im

)−θ
ŵiYi (5.1)

whose solution can be easily found with the Alvarez and Lucas (2007) algorithm, up to a nor-

malization. Such normalization is
∑3109

n=1 Yn =
∑3109

n=1 ŵnYn and is a useful one because the

railroad construction cost data is available for every decade, so this cost will be measured, in-

stead of in dollars, as a fraction of the nominal GNP of the United States of the baseline case.

All the gains from the railroads will be measured by the percentage real gains in output, which

do not depend on the normalization. Also, this process does not depend on the observation of

the productivity variables or on the factor of production, so it can be generalized. Note that the
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price indices in every county will satisfy the equality:

P̂n =

(
3109∑
i=1

πni

(
ŵi δ̂ni

)−θ
)− 1

θ

On the other hand, the output and counter-factual output in county n is given respectively by

Un =
wnLn

Pn
=

Yn

Pn
= Γ

1
σ−1

(
θ − (σ− 1)

θ

)(3109∑
m=1

Sm (δnm)
−θ

) 1
θ

Yn

U′n =
w′nLn

P′n
=

ŵn

P̂n

Yn

Pn
=

ŵn

P̂n
Un

so, the percentage change in total output in the United States will be given by

∑3109
n=1 U′n∑3109
i=1 Ui

=

∑3109
n=1 Un

ŵn
P̂n∑3109

i=1 Ui
=

3109∑
n=1

αn
ŵn

P̂n

where αn = Un∑3109
i=1 Ui

is the share of total output of the United States coming from county n.

Note that this percentage change is independent of the normalization of the source effects, and

that it is not necessary to identify the level of factor endowments per county. In other words,

nominal GNP and transportation costs are all that is needed to calculate changes in output due

to changes in the railroad network.

In the next subsections I do counter-factuals. In Subsection 5.1, I estimate the impact of

recent railroad construction on output by finding the counter-factual output that would have

been produced if instead of using the current railroads, the railroad network built up to another

year in the past was used instead. In Subsection 5.2 I estimate the upper bound of the impact

of future railroads by finding the change in output if the railroads that were constructed in the

next decade were made suddenly available at no cost. In Subsection 5.3, I estimate the impact

of railroad construction of any year on every census.
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Table 2: Output losses for removing the railroads built during the past decade

Census Year
Miles opened

in past
decade

Percentage
Losses

1840 3,013* 0.21%*
1850 4,708 0.35%
1860 16,239 1.43%
1870 14,410 1.91%
1880 28,119 2.04%
1890 48,849 1.82%
1900 16,616 0.13%

Notes: Losses are measured as percentage of GNP. Railroad length is calculated from the geographic
data of the railroad openings data set. (*) Output and railroad construction are compared to not having
any railroads.

5.1 The impact of recent railroad construction on output

In this subsection, I estimate the impact of recent railroad construction by calculating changes

in output if the railroads opened in the past are made suddenly unavailable. I do two counter-

factuals. First, I calculate the output reduction if railroads built up to 10 years before every

census are removed. The results are in Table 2.

It is interesting to see that the construction of the railroads to the Pacific had a similar ef-

fect on output to the railroads constructed in the next decade, which mainly interconnected

routes, and a smaller effect than the construction of the other two railroads to the Pacific, dur-

ing the decade of 1880. As a rough estimate of efficiency, during these 60 years, an average

of 3% of GNP was invested on railroads, which would have made most of these decades of

constructions non efficient on net output if productivity and factors remained constant for a

decade. Note that the increase in construction of the railroads coincides with large gains from

the transportation cost reductions associated with them, and that when these gains ended, so

did railroad construction.
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Table 3: Output losses for removing all the railroads

Census Year Miles opened Percentage
Losses

1840 3,013 0.21%
1850 7,721 0.62%
1860 23,960 2.34%
1870 38,370 4.76%
1880 66,489 7.67%
1890 115,338 9.61%
1900 131,954 8.97%

Notes: Losses are measured as percentage of GNP. Railroad length is calculated from the geographic
data of the railroad openings data set.

Table 4: Estimates for losses for removing the railroads in 1890

Model Losses
Fogel (1962) 2.7%

Donaldson and Hornbeck (2012) 6.3%
Pérez (2013) 9.61%

Notes: Losses are measured as percentage of 1890’s GNP.

In a second counter-factual exercise, I estimate the impact of railroads on U.S. output by

obtaining the output reduction if all railroads are removed. The results are in Table 3, where

the row corresponding to the census of 1890 is a similar exercise to the classic Fogel (1962) cal-

culation of the benefits of railroad construction (an estimate also done recently by Donaldson

and Hornbeck (2012)). Interesting things to be noted include that the railroads were more im-

portant for output in 1890 than in 1900, and that removing railroads in any of the two decades

of construction of the three railroads to the Pacific (1860 and 1800) has a huge impact on out-

put, which means that there could have been some migration to the west in preparation to the

construction, and that this migration could have taken more than a decade to happen. Com-

paring the output losses of 1890 with similar exercises in the literature in Table 4, this analysis

gets a larger estimate for the impact of the railroads. The fact that it is much larger than previ-
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ous work has to do more with the nature of the nodal location of factors of production in the

model, an issue also found in Donaldson (2008) for the case India, where he finds that railroads

increased output by 16%. In particular, Donaldson and Hornbeck (2012) also have a Ricardian

model of trade, and assume population to be spread throughout the counties, so the benefits

of connecting counties to the railroad network are not uniform throughout the territory, which

explain why they get a smaller number than this analysis gets.

The Dekle, Eaton, and Kortum (2007) setup allows to measure how much of the change

in output can be attributed exclusively to faster transportation routes using railroads (see Fig-

ure 5.1). In line with the trade literature, reducing transportation costs imply less gains to rich

regions, which are more self sufficient. In Figure 4.4 it is possible to see changes in gains from

trade over time, and Figure 5.2 shows that the gains from trade due to railroads are much

smaller in regions with larger GNP.

5.2 Calculate the impact of future railroad construction on output

In this subsection, I calculate changes in output if the railroads opened during the next 10 years

are immediately made available for no cost, to approximate the upper bound of the impact of

railroad construction on current factors of production. The results are in Table 5. The impact of

adding the railroads of the decade is smaller than the impact of removing the railroads on the

next decade for the six census years studied, and output did not increase by more than 1.2%

in any of the cases, which means that the sources of the observed growth were not exclusively

transportation costs.

5.3 Change in output for every census year when any railroads are available

Finally, I want to calculate the change in output if every census year factors of production use

the means of transportation available up to any other year, past or future. That is a total of
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Figure 5.1: U.S. counties’ change in output if railroads were removed, census years 1840-1900

1840 1850

1860 1870

1880 1890

1900

Notes: Percentage change in output if railroads were made suddenly unavailable. Gray:
counties with no data. Notice how the crisis during the decade of 1890 reduced the importance of
railroads throughout the territory. 35



Figure 5.2: U.S. counties’ estimated own share of sales from 1840 to 1900 if railroads were
removed.

1840 1850

1860 1870

1880 1890

1900

Notes: Low values indicate large gains from trade. Gray: counties with no data
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Table 5: Output gains for adding the railroads built during the next decade for no cost

Census Year
Miles opened

in the next
decade

Percentage
Gains

1840 4,708 0.28%
1850 16,239 1.12%
1860 14,410 1.01%
1870 28,119 1.17%
1880 48,849 1.16%
1890 16,616 0.12%

Notes: Losses are measured as percentage of GNP. Railroad length is calculated from the geographic
data of the railroad openings data set.

420 counter-factual equilibrium calculations for the 3109 county factor returns and 9.6 million

pairs of trade costs. The results of using the railroads in 1840-1900 are in Figure 5.3, with past

railroads in solid lines, and future railroads in dotted lines.

There are many things to be noted from Figure 5.3, but I want to highlight two. The first one

is that in 1850, once California became part of the territory of the United States, the construction

of the railroads to the Pacific, together with all the major network improvements in the Mid-

west, would have created huge gains from connecting East and West. The state of California

had a total of just about 92,000 residents according to the 1850 census (only 0.4% of the 23.2

million people in the United States), but its counties were so highly productive, that reducing

trade costs would have had a huge impact on the overall welfare of the East. The project, how-

ever, would not have been profitable. If building railroads to the West had cost the same per

mile as in the East, just the construction a railroad from Chicago to San Francisco would have

cost around 4% of the GNP of 1850. All the other construction in the Midwest during those

20 years adds at least eight times as much to that cost. Also, by the time of the next census,

the population had spread so much (without any real connection between the Atlantic and the

Pacific) and the productivity of the land had decreased in such a way that the same trade cost
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Figure 5.3: Percentage change in output with railroads built up to any year using census-year
data

Notes: Factors of production are fixed, and output is calculated using trade shares of present
available means of transportation at every census year. The dotted lines represent railroads
built in the future.

reduction would have had only a fraction of the impact. This analysis concludes that a railroad

to the Pacific would have been a worse investment in the census year of 1860 than in 1850. This

conclusion, which uses a lower bound for marginal costs (because it uses the costs of construc-

tion only from observed railroads), contrasts with White (2011) and with Fogel et al. (1960),

who find that the railroad to the Pacific was constructed at least a couple decades earlier than

needed.

The second thing to be noted is that future railroads create much less growth than the very

most recently opened railroads. Comparing the census of 1890 and 1900, removing the railroads

in 1890 would have created a larger loss than removing the railroads in 1900. That decade, major

events happened in the railroad industry. First, the economic and financial crisis known as “The

Panic of 1893” stopped the construction of any major new routes. When railroad revenue went

down, events like the “Pullman Strike”, which happened when wages were lowered, caused

railroad workers to collapse the transportation routes west of Michigan. The reliability of the

railroad became an issue, and people migrated back to the regions that were less dependent
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on railroads. During this decade, the automobile was invented, maybe as an answer to the

struggle that the transportation industry was starting to create.

6 Conclusion

I have developed a 3 step procedure to find the impact of the railroads on output. Each of the 3

steps is a contribution to the existing literature, and its results can be extended to various areas

of research, and generalized to a large family of trade models. The first step –the construc-

tion of the dataset– contains precise geographic information of almost 13,000 railroad tracks,

the historical value of output for counties in the United States, and information on possible

transportation routes to connect counties via wagons, boats, or trains. All this information was

simplified at the county level, but it can still be used in its raw form, or simplified into other

geographical levels.

The second step, an iterative method to find non-existing trade data using only the nominal

GNP and transportation costs, allows for the calculation of counter-factual percentage changes

in equilibrium variables, even if the factors of production are not identified and trade data is

not available. If factors of production are defined and their endowments are available, then

also the original levels can be measured. This is an important steps for studying inter-regional

trade, where usually bilateral trade data is not available. The most important requirement in

this model is trade costs, which are usually known at the regional level, so this process also

allows to increase the amount of trading regions in trade models by an order of magnitude

without increasing the computational burden of the problem. Usually, the number of trading

regions in models of trade is low because of lack of data, so the iterative method described on

this paper allows to get rid of this obstacle.

Finally, I make use of this model and construct counter-factuals, using the actual timeline

of railroad construction. By the end of the 19th century, I find that railroads increased output
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by 9%. Comparing the results to what others have done in the past, the flexibility of the model

allows to improve on the estimate of the gains from trade of railroads to be at least 9.6%. Finally,

I estimate that the impact of the railroads, letting factors of production fixed, has a stronger

impact going backwards in time than forward.
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A Computational Image Processing

A.1 Single Channel Computational Image Processing

The method I used to determine if two counties were neighbors and if a railroad, river, or lake

goes through a county was Single Channel Computational Image Processing. This method

is simple arithmetic of white light, applied to the images that geographical data create when

drawn with the computer.
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Figure A.1: How the counties actually look in a regular map

The basic theory is the following. Every gray level of color that is readable by a computer

can be expressed as a number x ∈ [0, 1], where x indicates the level of white light. A value of

x = 0 is the black color, and x = 1 is pure white. Two colors can be added, subtracted and

multiplied, with the only restriction being that if the result goes above 1, then it is truncated to

1, and if the result goes below 0, then it is truncated to 0.

In order to determine if two counties are neighbors, what I do is to draw both counties

individually in dark gray color (x = 1
4 ) with white background (x = 1), and add the images. If

the result is a completely white image (verified by obtaining the minimum value of color in the

drawing to be equal to 1), then the counties are not neighbors. If, on the other hand, it contains

at least one pixel different from white (and in this particular case one whose color equals to

1
2 ), then the two counties intersect. The procedure needs fairly detailed maps in order to be

reliable, that is why the maps from the U.S. Census were used. Figures A.1,A.2, and A.3 show a

visual example of how it was determined that two counties in Illinois (Cook and Du Page) are

neighbors, while Kane and Lake, also in Illinois, are not neighbors. .

Then I do the same to find the neighboring counties or every railroad, river, lake, and canal

in the United States, at every moment in time. The process is extremely efficient, and much
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Figure A.2: Image Processing: Cook and Du Page are neighbors

Figure A.3: Image Processing: Kane and Lake are not neighbors

faster than computational geometry methods, such as the Point-In-Polygon algorithm. Figures

A.4 and A.5 show an example of a railroad that is added with the map of Cook county in Illinois,

and since not all the pixels ad up to 1, it is determined that the railroad touches Cook County.

A.2 Multichannel Image Processing

The method I used to combine the U.S. topological maps and the railroad maps is multichannel

computational image processing. The idea is analogous to the single channel image processing,

but with three colors instead of one (red, green, and blue instead of white). Every color that

is readable by a computer can be expressed as a vector x = (x1, x2, x3) ∈ [0, 1]3, where x1

indicates the level of red light, x2 indicates the level of green light, and x3 indicates the level of

blue light. A value of x = (0, 0, 0) is the black color, x = (1, 0, 0) is red, x = (0, 1, 1) is yellow,

and x = (1, 1, 1) is white, just to name a few examples. The same as with single channel image

processing, two colors can be added, subtracted and multiplied element by element. If, for each
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Figure A.4: A section of the Berkshire Hathaway line, built in 1873

Figure A.5: Image Processing: That section of the Berkshire Hathaway line, built in 1873

Notes: This railroad goes through Cook County.
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Figure A.6: Multichannel Image Processing: How the 1870 railroad map was drawn

element, the result goes above 1, then it is truncated to 1, and if the result goes below 0, then it

is truncated to 0.

The maps shown in Figure 2.1 are the result of taking a topological map of the United States

and erasing all the light that corresponds to the railroads. Then the red lines are added and

everything that lies outside of the United States is deleted by adding white light, as seen in

Figure A.6.
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B Overview of Eaton and Kortum

In equilibrium, the balanced trade conditions are the usual: county n’s income equals the sum

of all the 3109 counties’ expenditure in goods from n. We have that

w(t)
n L(t)

n =
3109∑
i=1

{county i’s expenditure on goods from county n}

=
3109∑
i=1

w(t)
i L(t)
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i
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The second equality comes from the fact that the origin-specific price index component is the

same for every destination county. The price paid in county n for goods satisfies the following
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Price Index identity:
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Notice how the average price paid in county n for goods imported from some other county i is

just an expected value, it is independent of i and satisfies

E
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The fourth equality is comes from the Law of Large numbers; and the fifth equality is a property

of independent Fréchet random variables.
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