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1 Introduction

Most social and economic indicators concerning finite populations using survey data, and

empirical studies derived from them, rely on design-based methods. See Thompson (1997).

Those indicators typically require the estimation of totals or averages of the whole popula-

tion, or sub-groups of the population, which are commonly computed using weight-based

methods. Sample weights are built and used to make inference on the unsampled part of

the population using the information collected in the survey sample data. This procedure

relies only on the randomization process from which the survey sample data was collected

and not on the range of possible outcomes that each unobserved individual characteristic

may take. Sample weights are theoretically conceived as the inverse of the probability of

selection of individuals in the sample, according to a well defined sampling design. Rele-

vant examples of weight-based estimators are the Horvitz-Thompson estimator (Horvitz

and Thompson, 1952), the Hájek estimator (Hájek, 1971), and the post-stratified estimator

(Holt and Smith, 1979).

However, in practice, sample weights are not necessarily built upon a well defined

sampling design, i.e. data may be collected from a non or partially informative sampling

scheme.1 That is an implication of working with imperfect population frames, imple-

menting corrections for missing data, or some other reasons. In those cases, weighting

individual survey data may lack of a formal conceptual meaning.

In this paper we propose an intuitive model-based framework to make inference on

totals and averages of a finite population, which also relies on some sort of weighting.

1An informative sampling scheme is that in which the data is collected using a selection scheme based

on randomization in which the sampled units are associated with known unequal probabilities of being

selected. In terms of modelling, the distribution or model of the outcome of interest is conditioned on

the sampling process. The informativeness of the sample implies that this distribution differs from the

population’s model (Pfeffermann and Sverchkov, 2009). We understand by a partially informative sampling

scheme as that where individuals are sampled with unequal probability of selection among strata or planned

domains, but assuming that the units are uniformly sampled within them. In the latter case, the selection

probabilities may not be known with entire precision.
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However, in our formulation the sample weights are conceived differently and reflect the

frequencies of individual outcomes in the sampled data, combined with some prior knowl-

edge of the population.

Related model-based methods to inference on finite populations are explained in Särndal

et al. (1992) and Chambers and Clark (2012). Here, we do not make use of additional

information, as Särndal et al.’s approach does. Rather, we restrict ourselves to make use

only of the information contained in the sampled data. Our main assumption is that

unobserved individual outcomes are random and that the underlying distribution for such

outcomes is Bayesian nonparametric, specifically in the class of species-sampling models

(Pitman, 1996). Thus, structural assumptions are relaxed to the minimum possible.

Predictions are made accordingly to a preconceived segmentation of the population,

assuming that the underlying composition of the population among that segmentation

is known. Such a segmentation is referred in the survey data argot as stratification or

partitioning based on planned domains. Additionally, we derive a framework to make

inference on unplanned segmentations of the population, i.e. a segmentation of the popu-

lation for which the underlying composition of the population is unknown. The latter is

commonly referred as partitioning induced by unplanned domains. See Lehtonen and Vei-

janen (2009) for a revision of the current state-of-the-art concerning inference on planned

and unplanned domains of finite populations. It is worth mentioning that traditional

weight-based estimators get overwhelmed when dealing with estimation on unplanned do-

mains; see e.g. Meeden (2005). Moreover, both frameworks are easily extended to make

prediction on population averages as well, irrespective if the referred number of individu-

als used to compute the population average is known or unknown. In all cases, we show

that the predictive distribution of the characteristic of interest is easily recovered through

simulation methods.

1.1 Structure of the paper

The introduction is completed with notation used and relevant assumptions. Section 2

provides a review of species-sampling models and some of their most relevant properties.
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Section 3 develops an integrated Bayesian nonparametric model-based framework to in-

ference on totals of finite populations segmented in planned domains. Section 4 extends

our formulation in order to make inference on the composition of the population across

unplanned domains, and their associated sub-totals. Section 5 explains how our formu-

lation can be adapted to make predictions on population averages. Section 6 develops a

simulation study illustrating the inferential coverage of our method on the basis of samples

that progressively cover up the whole population. Section 7 develops an evaluation of the

uncertainty surrounding the gender wage gap in Mexico using data from a national survey

on employment. Section 8 concludes with a brief discussion.

1.2 Notation and assumptions

The population of interest is denoted by P, and the total number of individuals in P is de-

noted by N . It is assumed that the population is divided into J planned domains, {Pj}Jj=1,

for which Nj = #{Pj} is assumed known. Accordingly, the total of the population, T ,

can be decomposed as the sum of partial totals for planned domains,

(1.1) T =
J∑

j=1

Tj ,

where Tj =
∑Nj

l=1 Yjl. Here, Yjl stands for the observed characteristic in the l-th individual

of the planned domain Pj . That characteristic is assumed to be continuous and random

for each individual, if not being observed. We also assume that the individuals are ex-

changeable with respect to the unknown underlying distribution for each Pj . Notice that

similar notions of symmetry are assumed as well on stratified and post-stratified design-

based methods, but in those cases such an assumption regards only with the designed

sampling-distribution. Here we assume that the sampling design is not informative or

that it is partially informative, in the sense that it only takes into account that the data

is being randomly collected according to the partition induced by the planned domains.

Therefore, we place our attention to the relationship between individual measurements

and their underlying distribution. Additionally, let Sj stand for the sampled part of Pj ,

and let S̃j be its unsampled complement; i.e., Sj ∪ S̃j = Pj and Sj ∩ S̃j = ∅. Also, let
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NSj = #{Sj} and N S̃j = #{S̃j}. It is also assumed that individuals belonging to each Sj

are uniformly sampled.

2 Species-sampling models

The model-based framework we develop is flexible in that structural assumptions related

to the form of the underlying distribution for each planned domain are being relaxed

to the minimum possible. The particular component that we take into account is taken

from the class of species-sampling models (henceforth SSM); see Pitman (1996). SSMs

define a flexible class of countable random distribution functions that has deserved a lot

of attention among the Bayesian nonparametric community over the recent years. Some

relevant properties of SSMs have been studied by Hansen and Pitman (2000) and Lee

et al. (2013), among others. We relate SSM’s to the finite population framework assuming

that the Yjl’s in Pj are conditionally i.i.d. given Fj , and that each Fj belongs to the class

of SSMs. The most relevant property of SSMs in our context relates to its marginalization

property, which we shall discuss below.

For the sake of exposition allow us for now to disregard the index j. It is said that a

random distribution function, F , belongs to SSMs if it can be represented as,

(2.1) F (·) =
∞∑
k=1

ρk · δZk
(·) +

(
1−

∞∑
k=1

ρk

)
·G0(·),

where (ρk)∞k=1 is a sequence of random positive variables, and (Zk)∞i=1 is a sequence of

i.i.d. random variables with (absolutely continuous) distribution G0. It is assumed that

both F and G0 share a common support. In our context, we have considered that this

support is the positive real line. Additionally, SSMs assume that both random sequences,

(ρk)∞k=1 and (Zk)∞k=1, are stochastically independent. Particular cases of SSMs include the

Dirichlet process (Ferguson, 1973), the normalized inverse-Gaussian process (Lijoi et al.,

2005), and the geometric weight prior (Mena, 2012), among others. Basically, SSMs differ

from each other in terms of the prior specification for the random weights (ρk)∞k=1. A

SSM is being completed with the specification of independent prior distributions on the

sequences (ρk)∞k=1 and (Zk)∞k=1, which typically satisfy that E{F} = G0.

4



2.1 Marginalization property

The marginalization property of SSMs has been extensively used as a simulation devise

in Bayesian nonparametric procedures. In a general setting, the marginalization property

basically expresses the predictive distribution of unknown individual characteristics as a

weighted-sum of sampled measurements and a prior judgment of possible values that the

unobserved characteristic can take. This property also guaranties that prediction becomes

free of the infinite-dimensional object F when relevant information is being incorporated.

Hence, all the uncertainty surrounding the auxiliary random variable F gets vanished once

we incorporate relevant data. This property is very important in our context, as we shall

expose it below. A general expression for the predictive distribution attained to SSM has

been studied by Hansen and Pitman (2000) and Lee et al. (2013), among others, which

basically rely on the Pólya urn model. We shall revisit this formula later on in the paper.

3 Totals on planned domains

It is crucial to observe that the total of the population can be decomposed as the sum of

partial totals for each planned domain, and each of them can be treated independently. Let

us notice that stratified and post-stratified weight-based methods take this decomposition

into consideration, as well. Let us explore what happens at the interior of each planned

domain Pj .

Once the sampled units in Sj are being observed, i.e. the set yj = {yjl : l = 1, . . . ,mj}

is known, the partial total Tj is decomposed as the sum of sampled and unsampled parts,

Tj =
∑
l∈Sj

yjl +
∑
l∈S̃j

Yjl.(3.1)

Inference is then to be made on the unobserved part of the sum, i.e.
∑

l∈S̃j Yjl. Chambers

(1986) and Ghosh (2008) used a similar decomposition as we do here. Let us recall that

the Yjl’s are assumed to be exchangeable within the planned domain Pj . Hence, under
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the square-root loss function, the predictive estimate of Tj would be given by

T̂j =
∑
l∈Sj

yjl +
∑
l∈S̃j

E {Yjl|Sj} ,(3.2)

where E {Yjl|Sj} is the individual predicted characteristic attained to the jth planned

domain, given the information contained in the sample. This expectation is computed

with respect to the predictive distribution induced by the SSM, which takes the form

Ĝj(·) = EP

{
Fj(·)|y∗j1,mj1, . . . , y

∗
jUj
,mjUj

}
=

Uj∑
k=1

ρk(mj) · δy∗jk(·) + φ(mj) ·Gj0(·),(3.3)

where Uj is the number of sample ties in Sj , y∗j = {y∗jk : k = 1, . . . , Uj}, mj =

(mj1, . . . ,mjUj ), is the vector of sample frequencies attained to y∗j , i.e. mjk = #{yjl ∈

Sj : yjl = y∗jk}, for k = 1, . . . , Uj , and Gj0 is the distribution function that represents our

prior judgment about the possible values that each Yjl can take. The functions {ρk(·)}Uj

k=1

and φ(·) are positive and satisfy that the sum,
∑Uj

k=1 ρk(mj) + φ(mj) = 1, holds for any

sample Sj .

Let us point out that predictive point estimates of totals for any desired aggregation

of planned domains are obtained as the sum of predicted estimates of the disaggregate

planned domains involved. But, before getting into details about making predictions on

the population total, let us introduce some thoughts about the meaning of the function

φ(mj) in (3.3). This function represents one’s strength of belief in Gj0 with respect to

what has been observed in the sample. In general, this function is defined in terms of

the sample size, frequencies of the sample ties, and a set of parameters that represents

one’s priors belief in Gj0. In the finite population context, uncertainty on the range of

possible individual outcomes that are still unobserved in the population is inversely related

to the sample size. The limit case would be obtained when the sample fully covers up the

whole population. In that limit case, there is no uncertainty about the possible individual

measurements of the population, everything is known. The opposite limit case is obtained,

of course, in the absence of sample data. There, all prior knowledge about the population
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values is concentrated on Gj0. In order to reflect the above mentioned balance attained

to finite population inference, we suggest to elicit the prior parameters related to φ(·)

(which intrinsically gives importance to Gj0) in an empirical Bayes framework (see, e.g.

Casella, 1985). Thus, this parameter can be set as a function of the number of individuals

in the population and the expected or planned sample size, in such a way to guaranty that

φ(mj) would decrease monotonically toward zero as the sample size increases. By means

of eliciting this parameter in this way we give a more intuitive and interpretable meaning

to the inferential framework that we are proposing in the finite population context.

Now, setting φ(mj) up is strictly related with the amount of credible information that

we might have concerning prior knowledge about the possible values that the unobserved

outcomes may take, i.e. concerning Gj0. In the light of a credible opinion of a single or a

group of experts, the procedure would require to set Gj0 according to a prior elicitation

scheme. That task is not necessarily simple, as it has been discussed in Gelfand et al.

(1995) and French (1985) in detail. Alternatively, as it happens with recursing samples,

we might have the chance of using data collected in previous samples to elicit a sensible

choice for Gj0 among a careful set of alternatives, which would not reflect any prior

subjective opinion. This task is not an easy one either, as it lies right in the core of the

problem of model comparison and selection (for parametric models, in this case). However,

empirical methods as the one described in Gelman et al. (1996) can be of great use for

this purpose. Now, in the absence of prior knowledge of experts of data from previous

samples, the role of Gj0 would be irrelevant for inference. In that case, we can set φ(mj)

arbitrarily close to 0. In that case, our approach may resemble traditional weight-based

methods; see Appendix A.

Despite of the above mentioned heuristic rules for setting up φ(·) and Gj0, it should

be acknowledged that setting both of these parameters up is actually case particular to

the problem one would be aiming to solve. But that is the case for any frequentist or

Bayesian inferential procedure in practice.
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3.1 Bayesian estimate of totals

Under the square-root loss function, the predictive point estimate of Tj that we have

sketched above can be written as

T̂j =
∑
g∈Sj

yjg +N S̃j ·

 Uj∑
k=1

(
ρk(mj) · y∗jk

)
+ φ(mj) · µ̂j0

 ,(3.4)

where µ̂j0 = EGj0{Yjl|θj0}, and θj0 is the index parameter of Gj0.

A canonical example of (3.4) is given by a particular SSM model called the Dirichlet

process (DP), see Ferguson (1973). The Dirichlet process has associated a prior dis-

tribution for (ρk)∞k=1 that is characterized by a single positive parameter, αj,DP. This

parameter represents our prior degree of belief on Gj0; it also represents how disperse the

random function Fj can be around Gj0. In this case, the updated functions associated

with (3.3) are given by φ(mj) = αj,DP/(αj,DP + nj) and ρk(mj) = mjk/(αj,DP + nj), for

k = 1, . . . , Uj , where nj =
∑Uj

k=1mjk. Notice that the parameter αj,DP plays the role of

tunning parameter to set one’s prior strength of belief in Gj0. Following the reflection

concerning φ(·) we introduced above, the elicitation for the parameter αj,DP can be set as

a function of Nj and the sample size, nj , such that αj,DP(Nj , nj)→ 0 as nj → Nj . Hence,

the predictive distribution (3.3) would converge to the censual distribution function of

individual measurements, and the contribution of Gj0 would get vanished.

Notice that traditional weight-based estimates of Tj correspond to the particular case

of using the DP as the SSM for Fj ; see Binder (1982) and Appendix A. Despite the

resemblance of both approaches, our framework is more flexible in that the randomness

involved in individual measurements is taken into consideration. Therefore, it is possible

to produce robust predictive inferences for Tj . In the next section, we highlight that

recovering the predictive distribution for Tj , and the one for the whole total T , is actually

straightforward, by means of obtaining the predictive distribution of the corresponding

partial sum via Monte Carlo simulation methods (Robert and Casella, 2004), and for the

sub-totals of the planned domains involved.
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3.2 Predictive inference through convolution

Our approach allows to produce full posterior inferences on Tj through a shifted N S̃j -fold

convolution distribution induced by Ĝj , i.e.

(3.5) P(Tj ≤ t|Sj) = Ĝ
∗N S̃j
j

(
T S̃j ≤ t− TSj

)
,

where T S̃j =
∑

l∈S̃j Yjl is the unsampled part of the total in Pj , and TSj =
∑

g∈Sj yjg is the

sampled part of the total, which plays the role of the shifting constant. Here, Ĝ∗Nj stand

for the N -fold convolution of Ĝj .

3.3 Simulation algorithm for planned domains

The predictive distribution (3.5) is analytically intractable, due in part that it is generated

by a mixed-type distribution. However, one can handle it through simulation methods.

Here we sketch a simple simulation procedure to draw an arbitrarily large collection of

samples from the target distribution (3.5). The algorithm is designed for the Dirichlet

process, but its adaptation to any other SSM is straightforward. The general steps of the

algorithm are given as follows.

Step 0. Start by setting up the parameters of the model and the sampler, i.e. αj,DP

and Gj0, for j = 1, . . . , J .

Step 1. Generate N S̃j i.i.d. random samples, (y
(i)
jl : l = 1, . . . , N S̃j ), from the predictive

distribution Ĝj .

Step 2. Compute the unsampled part of the total, T
S̃,(i)
j =

∑
l y

(i)
jl .

Step 3. Add up the sampled part of the total, TSj .

Step 4. Compute T
(i)
j = TSj + T

S̃,(i)
j .

Steps 1 to 4 are repeated in each iteration of the algorithm. It is worth mentioning

that any summary statistic and inferences of interest related to Tj can be produced us-

ing Monte Carlo methods using the simulated data produced with the steps described

above. Similarly, simulated draws from the predictive distribution of any aggregate total

of planned domains are produced as well by simply adding-up the simulated draws of the
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involved planned domains at each iteration. We must warn the reader that despite the

simplicity of this algorithm, its implementation may require heavy computations resources

if the computation of the target population is relatively large, or if the sample size is also

large.

4 Totals on unplanned domains

In this section we extend the formulation described in Section 3 in order to make inference

on disaggregated totals associated with unplanned domains. Our formulation takes into

consideration the randomness involved in the underlying composition induced by the un-

planned domains, together with the compositional nature of the associated disaggregated

sub-totals.

Let D = {D1, . . . ,DD} stand for the partition of the population induced by the cate-

gories of D unplanned domains. Such a partition is over imposed to that induced by the

planned domains, {Pj}Jj=1. That is to say, each planned domain is being partitioned into

D unplanned subsets {Pj ∩ Dd : d = 1, . . . , D}. Therefore, for inferential purposes, we

can look at the unplanned domains of the whole population through the over imposition

of the unplanned partition on each particular planned domain. As before, we shall focus

our attention to what happens at the interior of a given planned domain. Aggregating the

results turns out to be straightforward.

As we have discussed before, the key issue regarding the study of unplanned do-

mains is that the composition of the population across them is unknown, i.e. the vector

(ND1
j , . . . , NDD

j ), where NDd
j = #(Pj ∩ Dd), is intrinsically unknown. However, the num-

ber of individuals in the planned domain, Nj , it is know. Thus, the vector of composition

should satisfy,

(4.1) Nj = ND1
j + . . .+NDD

j .

In a similar manner, the total Tj of the planned domain can also be decomposed in
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the sum of partial totals associated with each unplanned domain,

Tj = TD1
j + . . .+ TDD

j .(4.2)

However, in that case, Tj is intrinsically unknown, as well.

Once the sample is being observed, each element of the vector of composition of the

population Pj satisfying (4.1) is decomposed as the sum of two components,

NDd
j = NS∩Dd

j +N S̃∩Dd
j ,

where

NS∩Dd
j = #(Sj ∩ Dd), and N S̃∩Dd

j = #(S̃j ∩ Dd),

for d = 1, . . . , D.

Similarly, each element of the sum (4.2) can be spread into the sum of sampled and

unsampled parts,

TDd
j = TS∩Dd

j + T S̃∩Dd
j ,

where

TS∩Dd
j =

∑
g∈S∩Dd

yjg, and T S̃∩Dd
j =

∑
l∈S̃∩Dd

Yjl,

for d = 1, . . . , D.

In the above decompositions of the number of individuals and totals of the population,

the sampled parts, {(TS∩Dd
j , NS∩Dd

j )}Dd=1, are completely known. The complementary

unsampled parts, {(T S̃∩Dd
j , N S̃∩Dd

j )}Dd=1, remain unknown, which inference is needed to

be made. Notice that inference on the unsampled part of the composition of Nj across

unplanned domains must satisfy,

(4.3) Nj =
D∑

d=1

NS∩Dd
j +

D∑
d=1

N S̃∩Dd
j ,

for any j.
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Therefore, inference on totals of unplanned domains within Pj requires to extend

the scope of uncertainty in order to include the underlying unknown composition of the

population between unplanned domains. Accordingly, inference can be made in two steps.

First, making inference on the underlying composition induced by the unplanned domains.

And, second, making inference on the induced partial totals, given the inference on the

underlying composition induced by the unsampled domains. In what follows we detail

that inferential framework.

4.1 Prior on the composition of unplanned domains

We assume that the composition induced by unplanned domains in Pj is random. Given

the sample, Sj , only the unsampled part of that decomposition,

(4.4) N S̃∩Dj = (N S̃∩D1
j , . . . , N S̃∩DD

j ),

remains unknown. Thus, it is reasonable to think of the vector N S̃∩Dj as a realization of

a multinomial distribution, with

(4.5) N S̃∩Dj |pDj ∼ Mult(N S̃∩Dj |N S̃j ,pDj ),

where N S̃j = Nj − NSj , is the number of unsampled individuals in S̃j , which is known,

and the vector of latent proportions of the composition across unplanned domains is

pDj = (pD1
j , . . . , p

DD−1

j ). That vector is defined on the (D − 1)-dimensional simplex, with

pDD
j = 1−

∑D−1
d=1 p

Dd
j . Notice that each pDd

j can be interpreted as the probability that an

individual in S̃j belongs in the unplanned domain Dd, for d = 1, . . . , D.

According to the paradigm we have been using, inference on (4.4) requires the specifica-

tion of a probability distribution on the vector pDj . For that we use the natural conjugate

(D − 1)-dimensional Dirichlet prior, with some vector parameter αj = (αj,1, . . . , αj,D),

such that αj,d > 0, for d = 1, . . . , D. That is to say,

(4.6) pDj ∼ Dir(pDj |αj).

It is well known that (4.5) and (4.6) form a conjugate pair of distribution functions. See

Gutiérrez-Peña and Smith (1997) for a comprehensive review on conjugate and exponential
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families of distribution functions. Therefore, posterior inference and predictions on N S̃∩Dj

are produced after updating (4.6) with data in the sample.

4.2 Predictive estimates on unplanned domains

We make predictive inference on domain totals and their composition across unplanned

domains in two steps, without using additional information. However, we anticipate that

introducing additional relevant information is do-able using multinomial-regression mod-

els, for example. We first propose to make inference on the composition attained to the

unplanned domains, and then to make inference on the partial totals induced by the

partition of the unplanned domains.

Under the multinomial-Dirichlet model, the posterior distribution of pDj is also Dirich-

let, with an updated vector parameter given by

(4.7) αj(Sj) = (αj,1 +NS∩D1
j , . . . , αj,D +NS∩DD

j ).

Therefore, the predictive estimate of the vector of compositions for the unplanned domains

in Pj is being defined as the integer part of the D-dimensional vector with entries given

by,

(4.8)
̂
N S̃∩Dd

j = N S̃j ·
αj,d +NS∩Dd

j∑D
i=1(αj,i +NS∩Di

j )
,

for d = 1, . . . , (D − 1), and

(4.9)
̂
N S̃∩DD

j = N S̃j −
D−1∑
d=1

̂
N S̃∩Dd

j ,

where N S̃j is known. For the above estimates, we take compute their integer part.

Notice that the prior specification (4.5) and (4.6) complement the prior specification

on the total Tj , for each planned domain Pj , that we have discussed in Section 2. Just

as it happens with Tj , our uncertainty about N S̃∩D vanishes as long as the sample size

increases, and all relevant information concentrates in the sampled frequencies. Following

the ideas we discussed in Section 3, concerning the prior specification of the SMM, we
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suggest to define each vector parameter of the Dirichlet distribution as a function of the

planned sample size, nj , such that αj(nj) → 0 as nj → Nj . In this way, αj(Sj) shall

converge to the population composition of Pj across D.

Now, similarly to the derivations exposed in section 3, predictive estimates for each

partial total associated with a given unplanned domain, Dd, is written as

T̂Dd
j =

∑
g∈Sj∩Dd

yjg +
̂
N S̃∩Dd

j ·

 Uj∑
k=1

ρk(mj)y
∗
jk + φ(mj)µ̂j0

 ,(4.10)

with µ̂j0 given as above. Consequently, the posterior estimate of the number of individuals

in Pj that belong to the unplanned domain Dd is given by the sum of sampled part of the

composition and the predicted estimate of the unsampled part,

(4.11) N̂Dd
j = NS∩Dd

j +
̂
N S̃∩Dd

j ,

for any d.

As before, it is also possible to produce more general inferences on the unplanned

domains totals via the computation of the joint predictive distribution of the composition

of the population and totals.

4.3 Inference through a vector of convolutions

Posterior estimates for TDj and NDj , given in (4.10) and (4.11), respectively, are derived

from a conditional dependence structure between the blocks of variables of totals and

composition on unplanned domains. Accordingly, posterior inference about this quantities

is summarized in terms of the predictive distribution,

P{TDj ,NDj |Sj} = P{TDj |NDj ,Sj} × P{NDj |Sj}.(4.12)

Through out this joint distribution, it is possible to make inference on the composition

and totals attained to the unplanned domains D within each planned domain Pj , simul-

taneously.

In the above representation, P{NDj |Sj} is completely determined by the predictive

distribution of the multinomial-Dirichlet conjugate component for the unsampled part of
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the vector of compositions, N S̃∩Dj , i.e.

(4.13) P{NDj ≤ n|Sj} =

∫
Mult(N S̃∩Dj ≤ n−NS∩Dj |N S̃j ,pDj ) Dir(dpDj |αj(Sj)),

where N S̃∩Dj is the vector of compositions of S̃j across the unplanned domains, and

NS∩Dj = (NS∩D1
j , . . . , NS∩DD

j ),

is the vector of compositions of Sj across the D-unplanned domains. This vector plays

the role of a shifting constant.

Similarly, the conditional predictive distribution of the vector with partial totals for

the unplanned domains, P{TDj |NDj ,Sj}, is being completely determined by the predictive

distribution of the vector of the unsampled parts associated with the unplanned domains,

T S̃∩Dj , which is defined as a N S̃∩Dj -fold D-dimensional vector of convolutions, i.e.

(4.14) P{TDj ≤ t|N S̃∩Dj ,Sj} =

=

(
Ĝ∗N

S̃∩D1
j

(
T S̃∩D1
j ≤ t1 − TS∩D1

j

)
,

, . . . ,

, Ĝ∗N
S̃∩DD
j

(
T S̃∩DD
j ≤ tD − TS∩DD

j

)
,

where T S̃∩Dd
j and T S̃∩Dd

j are given as above, for d = 1, . . . , D. Notice that the vector of the

sampled composition, (TS∩D1
j , . . . , TS∩DD

j ), plays the role of the shifting vector constant

for the predictive distribution of the composition of the whole planned domain.

As before, it is quite difficult to derive an analytic expression for the joint predictive

distribution P{TDj ,NDj |Sj} in a closed form. However, we can circumvent that problem

through simulation methods. In the next subsection we sketch an algorithm to drawing

samples from (4.14) and, therefore, from the predictive distribution of composition and

totals of unplanned domains over imposed to any aggregation of planned domains.

4.4 Simulation algorithm for planned and unplanned domains

Here we sketch the simulation steps designed to draw samples from the joint predictive

distribution (4.14). The algorithm is designed for the Dirichlet process, but its adaptation
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to any other SSM is straightforward. The basic steps are given as follows.

Step 0. Start by setting up the parameters of the model and the sampler, i.e. αj,DP ,

Gj0 and αj , for j = 1, . . . , J .

Step 1. Generate a D-dimensional vector, p
D,(i)
j , from the updated Dirichlet distribu-

tion with parameter αj(Sj).

Step 2. Generate a random sample of the vector of composition across unplanned

domains, N
S̃∩D,(i)
j , from the multinomial distribution with updated parameters N S̃j and

p
D,(i)
j .

Step 3. Compute a sample of the composition vector across unplanned domains, where

N
D,(i)
j = NS∩Dj +N

S̃∩D,(i)
j

for j = 1, . . . , J

Step 4. Generate a collection of N S̃j individual characteristics, (y
(i)
jl : l = 1, . . . , N S̃j ),

from the predictive distribution Ĝj .

Step 5. Distribute the collection of the simulated individual characteristics, (y
(i)
jl ),

across the D unplanned domains, accordingly to the vector of compositions N
S̃∩D,(i)
j .

Step 6. Generate the vector of partial totals across unplanned domains, as TD,(i) =

T S∩D + T
S̃∩D,(i)
j . Note that TS∩Dd

tmar and T S̃∩Dd
j are given as before.

As before, steps 1 to 6 are repeated in each iteration of the sampler. Notice that all

the simulation steps involved there are relatively simple to implement. However, slight

complexities may show-up when considering different types of SSMs. It is worth mention-

ing that the algorithm may demand heavy computational resources either when dealing

with either relatively large samples or when the composition of the target population is

relative large.

5 Population averages

Most finite population studies also concern with average characteristics of the population,

i.e. η = T/N , where T represents the population total and N represents the number
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of individuals in the target population. Weight-based estimates of population averages

are expressed as the ratio η =
∑

g∈S wgyg/
∑

g∈S wg, where (wg)g∈S corresponds to the

sample weights. Well controlled design-based weights are built in such a way that N =∑
g∈S wg is fixed and known. However, when the target population makes reference to

unplanned domains, the sum
∑

g∈S wg would merely be an estimation of the composition

of the target population, and the traditional estimator of µ would be written as a ratio

estimator µ̂ = T̂ /N̂ ; see Hájek (1971). Following this idea, when dealing with unplanned

domains, a proper assessment of a ratio estimator for averages on unplanned domains

would require a joint assessment of the estimated compositional vector of the population,

or its marginal distribution. Recall that this problem remains active in the literature;

see, e.g. Aronow and Lee (2013). For the best of our knowledge, a proper assessment

of ratio estimators is still difficult to perform using traditional weight-based methods.

The later problem is another reason why weight-based estimators get overwhelmed when

dealing with unplanned domains. The methodology proposed in this paper allows to

make predictive distributional inference on η, disregarding if we are dealing with planned

or unplanned domains. For doing so, it is convenient to take into account the cases of

whether N is known or unknown. Thus, we can produce inferences on η beyond point

estimates. Refer to Ghosh and Meeden (1997) and Hammer et al. (2001) for related

approaches to the one presented in this paper.

5.1 Case N known

For the sake of simplicity, allow us to describe the inferential procedure an the interior

of a given planned domain. Let Tj be defined as before, and let Nj be the total number

of individuals in Pj . The average mean for j is then given by ηj = Tj/Nj . Hence, the

predictive distribution for the population average on the planned domain j would be given

in terms of the convolution distribution (3.5), as

(5.1) P(ηj ≤ t|Sj) = Ĝ
∗N S̃j
j

(
T S̃j ≤ Nj · t− TSj

)
where Nj corresponds to a constant term, with the remaining components given as above.
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Therefore, full posterior inferences on ηj are obtained from (5.1). As sketched in Sub-

section 3.3, those inferences can rely on simulation results. Draws from (5.1) are computed

from draws from (3.5) by means of transforming the draws (T
(i)
j )i≥1 into (η

(i)
j )i≥1, with

η
(i)
j = T

(i)
j /Nj . Thus, complementary to Algorithm 3.3, it would only be required to add

the follow step:

Step 5. Compute η
(i)
j = T

(i)
j /Nj , for any i ≥ 1.

5.2 Case N unknown

The case N unknown we are interested here is the one derived from the interest of com-

puting population averages of unplanned domains. Let us focus in what happens within a

planned domain Pj . As described above, the computation of population averages across

unplanned domains in Pj must be computed as a vector of averages, ηDj = (ηD1
j , . . . , ηDD

j ),

where ηDd
j = TDd

j /NDd
j for any d. The distribution associated with ηj is induced, by trans-

formation, from (4.14). We can deal with that distribution via simulation, as well. That

would require to transform the simulated outcomes from the joint distribution (4.14) into

(η
D,(i)
j )i≥1. That can be achieved by means of adding up the follow step into the Algo-

rithm 4.4:

Step 7. Compute η
Dd,(i)
j = T

Dd,(i)
j /N

Dd,(i)
j , for d = 1, . . . , D and any i ≥ 1.

Similarly, draws from the distribution of averages over unplanned domains derived

from aggregations of planned domains are obtained by means of aggregating the draws

produced with the algorithm sketched in Sub-section 4.4 in each iteration, accordingly. For

example, if the aim is to produce the vector of averages for the whole population across

unplanned domains, it would be necessary to transform the draws for each iteration, i.e.

(T
D,(i)
j ,N

D,(i)
j )Jj=1, into the vector ηD,(i). That can also be done by means of including

the additional step into the Algorithm 4.4:

Step 8. Compute ηDd,(i) =
∑J

j=1 T
Dd,(i)/

∑J
j=1N

Dd,(i), for any i ≥ 1.

It is worth mentioning that computing steps 5, 7 and 8 that we described in this Section

do not require to run Algorithms 3.3 and 4.4 over and over, it only require to transform

the outcomes produced from previous runs of those algorithms.

18



6 Simulation study

For the simulation study, we have generated a fictitious population of 2 thousand indi-

viduals grouped in two planned domains. Domain A is formed of 800 individuals, and

domain B is composed of 1.2 thousand individuals. Each planned domain of the popula-

tion has been split, as well, into the three unplanned domains. The composition of the

population across planned and unplanned domains is summarized in Table 1. Individual

measurements were simulated using the log-normal and Weibull distributions with differ-

ent parameterizations for each combination of planned and unplanned domains. Table 2

summarizes the distributions from which the data were generated.

Table 1: Composition of the simulated population across planned and unplanned domains.

Planned
Unplanned

Total
Domain I Domain II Domain III

Domain A 200 400 200 800

Domain B 780 400 20 1,200

Total 980 800 220 2,000

In Figures 1(b) and 1(c) we display the outcomes for the simulated population, which

we take it as the population of reference in the simulation study. Sub-figure 1(a) displays

the distribution of the aggregate population, whereas that Sub-figures 1(b) and 1(c) display

the disaggregate distributions for the planned domains A and B, respectively. The asso-

ciate disaggregation for the three unplanned domains is being displayed in Figures 2(a),

2(b) and 2(c). Individual simulated measurements of the reference data were also drawn

from the distributions summarized in Table 2. Notice that some of this distributions ex-

hibit slight heavy tails, which resemble the behavior of some actual measurements in real

life problems.

The simulation exercise reported in this Section, consists in extracting a random sample

of five percent of the population, in the first instance. Taking that sample as a reference,

we gradually cover up the whole population by adding up a random sample of the same
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Table 2: Distributional origins of individual measurements for the simulated population.

Planned
Unplanned

Domain I Domain II Domain III

Domain A
µ σ µ σ λ φ

6.198 0.840 6.801 0.701 1.850 1646.4

Domain B
µ σ µ σ µ σ

6.152 0.830 6.670 0.614 6.987 0.698

Note: All measurements were generated from log-normal distributions, with exception of domain

A-III, which were generated from a Weibull distribution. The parameters µ and σ correspond to

the mean and standard deviation of the log-normal distribution, whereas λ and φ correspond to

the shape and scale parameters, respectively, of the Weibull distribution.

size extracted from the rest of the unsampled population at each time. In this way, we are

able to produce 20 random samples, which gradually cover up the whole population. Now,

on each one of those samples we implement our proposed methodology, using the Dirichlet

process as the particular SSM. In each implementation, we elicit the parameter αj,DP in

terms of the sample size, as a linear decreasing function according to the ideas discussed in

Section 3. We follow the same idea for eliciting the three-dimensional vector parameters αj

for the multinomial-Dirichlet component. As reference data for eliciting the two baseline

distribution functions, Gj0’s, for the two planned domains, we use an additional simulated

population of 250 individual measurements distributed across planned and unplanned

domains consistently with the distribution in Table 1.

Prior elicitation of each Gj0 is based on a predictive model comparison and selection

among four alternative parametric distributions: Weibull, log-normal, gamma and inverse-

Gaussian distribution.2 We also explored the generalized extreme value distribution and

the generalized Pareto distribution, because some data groups are extreme values validated

data Chambers (1986), but we could not found a suitable fit to the data in the two cases.

Additionally, the generalized gamma distribution was tested as an alternative. We found

2Some of these distributions were fitted using algorithms related to Yee (2010).
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suitable the generalized gamma distribution because the distribution encompasses cases

such as the gamma, Weibull and exponential distributions, which includes the log-normal

as a limit case. The challenge involving the use of the generalized gamma distribution is

the estimation of the shape parameters. We resort to the application of a maximization

iterative algorithm to estimate the parameters of the distribution, proposed by Noufaily

and Jones (2013). However, our database did not allow to identify a proper optimization of

the likelihood. In the end, we preferred to use only functions of the following distributions:

Weibull, log-normal and gamma distributions. Finally, we decided to consider the inverse-

Gaussian distribution, because it is used in finance and insurance, and the distributional

families included in the simulation exercise would be more exhaustive to model data with

extreme value.

The results are computed with 30,000 Monte Carlo simulations for each sample size.

Figure 3 shows trends and predictions of the population totals for aggregate and dis-

aggregate planned domains, as a function of the sample size. Figure 3(a) displays the

trajectories for the predictive estimates of the aggregate total, whereas that figures 3(b)

and 3(c) do the same for the totals attained to the planned domains A and B, respectively.

These figures display the trajectories of traditional weight-based estimates (the dotted-

lines), näıve estimates (dotted and solid lines) and actual totals (solid constant lines).3 As

we can observe, the behavior of traditional estimates and predictive means of our proposed

methodology is similar. However, it is bluffing the apparent erratic behavior of traditional

weight-based estimator in relatively small sample sizes. Our conjecture for that result is

that weight-based estimators are extremely sensible to extreme values. Planned domain B

does not exhibit extreme measurements as planned domains A does. Thus, its estimates

in small sample sizes are less erratic.

This simulation study exhibits the erratic behavior that traditional weight-based esti-

mators may have in the presence of representative extreme measurements or outliers (see,

Chambers, 1986), particularly for relatively small sample sizes. That is not a surprising

result, as it has been widely documented in the literature that weight-based estimators

3See Appendix B for further references.
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are highly sensitive to those cases. See, for instance, Chambers (1986) and Ghosh (2008).

It is worth to noting that recent approaches to handle with extreme measurements re-

sort on model-based methods to either calibrate the sample weights or to make inference

directly with the model. See Beaumont and Rivest (2009) and Beaumont et al. (2013),

for example. In that respect, our methodology gives some insights to the problem and

handles with extreme measurements within an integrated inferential framework. But, we

shall point out that informative and relevant reference information is needed to properly

elicit the baseline parameters of the SSM required in our formulation.

On the other hand, Figure 4 displays predictive trajectories for the composition and

partial totals associated with the three unplanned domains. Figures 4(a), 4(c) and 4(e)

make reference to the predictive composition of the population across the three unplanned

domains in terms of the random samples. As we can observe, the evolution of the com-

position of the three unplanned domains evolves consistently. Figures 4(b), 4(d) and 4(f)

display the trajectories of the predictive distributions for the partial totals of each one of

the three unplanned domains. As it was expected, those trajectories display an erratic

behavior. The trajectories of traditional weight-based estimators are displayed in dotted

lines. Differently to what happened with planned domains, in unplanned domains we ob-

serve a discrepant evolution of the estimators, particularly in domains I and II. However,

in domain III both methods produce consistent results for any sample size. We believe

that what we observe in these trajectories is a consequence of the way that the composition

and the extreme measurements in the sample combine. We acknowledge that the com-

position of the population across unplanned domains plays an important role, and even

more when the sub-populations have extreme measurements, as it happens with domains

I and II. Even thought, when the subpopulation measurements range more uniformly in a

narrower interval, as in domain III, both approaches converge quickly consistently to the

actual measurement.
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7 Uncertainty surrounding the gender wage gap in Mexico

In this section, we illustrate the usefulness of our method for the study of the uncertainty

surrounding the OECD definition of wage differentials by gender in Mexico.4 In doing

that, we use data from the Encuesta Nacional de Ocupación y Empleo (ENOE, for its

abbreviation in Spanish), the largest national household survey in Mexico. It is worth

mentioning that our illustration does not attempt to elaborate an exhaustive analysis on

the possible explanatory factors that may cause such differences, as Meza González (2001)

and Popli (2013), for example, do. Such an aim would require a more elaborate analysis

based on matched micro-data. Instead, we develop our illustration as a descriptive exercise

in which we give some insights about the uncertainty surrounding this statistic, and the

way the proposed methodology can be applied to a real life problem. For that, we adopt

a predictive distributional approach, which goes in line with related work developed by

DiNardo et al. (1996).5

The ENOE is nowadays the largest national household survey in Mexico. This survey

was preceded by a national survey on urban labor. The agency responsible for admin-

istering and producing results for this survey is the Instituto Nacional de Estad́ıstica y

Geograf́ıa (INEGI, for its abbreviation in Spanish). The ENOE uses stratified and cluster

sampling schemes in two stages to make the survey data representative nationally and

at some other levels of disaggregation, such as rural and urban areas, but it is not rep-

resentative of wages by gender. The ENOE is collected in quarterly basis since 2005.

Each quarterly edition of the survey comprises over 120 thousand households measure-

ments. The data is intended to make reference to a target population of approximately

46 millions of individual employees. For the sake of illustration, we restrict this exercise

4We make reference to the official definition of unadjusted gender wage gap used by the OECD, which

summarizes the difference between male and female earnings relative to male earnings. This statistic is

computed using median or average gross hourly earnings of full time employees (see OECD, 2012).
5By distributional approach, we mean that the aim is at reproducing the underlying distribution of this

statistic. Thus, relevant aspects of the uncertainty surrounding this statistics can be assessed.
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to analyze data corresponding to the third quarter of 2011.6 Micro-data obtained from

the ENOE are accompanied with sample weights, which are defined consistently with the

survey design. See INEGI (2007) for further details.

Official computations on wage statistics in Mexico produced by INEGI make reference

to the employed population, 15 years old and older, whose monetary earnings were strictly

positive. The computation of official statistics on wages by gender typically uses weight-

based estimators. Since gender groups are not considered during the sample design, they

are treated as unplanned domains. Official statistics on earnings are computed as medians

or averages; in our illustration we make reference to average earnings. Here, we illustrate

the computations that can be produced using the proposed methodology, which allows us

to evaluate the predictive distribution underlying the gender wage gap. According to the

OECD definition, the gender wage gap based on average earnings is computed as

(7.1) wage.gapt = 100× wagemalet − wagefemalet

wagemalet

,

where wagemalet and wagefemalet denote the population average wage per hour for male and

female at quarter t, respectively. Following the proposed methodology, the distribution

underlying the gender wage gap can be reproduced from Monte Carlo samples generated

for wagemalet and wagefemalet , which are obtained according to the algorithm described in

Section 4 and the extensions presented in Section 5.

Figure 5 summarizes the uncertainty surrounding the gender wage gap in Mexico

through its predictive distribution. There it can be seen that the gender wage gap in

Mexico is likely to be concentrated between -0.5 and 2.8 percent, with respect to the

male average earnings per hour for the period of analysis, with approximately 0.95 of

probability mass. It is worth to noting that assessing the dispersion of the gender wage

gap using traditional weight-based methods is quite challenging, due that this statistic

is expressed as a double ratio estimator for complex survey samplings (see, Meng, 1993,

6The results presented here were produced using data published before the recent adjustment for pop-

ulation predictions, and their retrospective adjustments, that INEGI carried out in the second quarter of

2013.

24



and the references therein). To clarify, weight-based methods and the proposed method-

ology take into account different sources of uncertainty, as it has been described in the

core of this document. Accordingly, the way in which both methods (weight-based and

proposed) assess the uncertainty surrounding the type of statistic under study is differ-

ent, but complementary.7 However, with the aim of having a benchmark for comparison

with traditional methods of estimation, it can be pointed out that the estimated gender

wage gap using the weight-based methods (which is approximately equal to 2.3 percent)

is contained in the region of highest concentration of the predictive distribution derived

from the proposed method. This result illustrates that the proposed methodology may

provide a complementary view at the uncertainty surrounding this type of statistics for

finite populations.

8 Discussion

In this paper we develop an intuitive and simple framework to inference on totals and aver-

ages of finite populations, assuming that the population is segmented in planned domains.

We take into consideration that unobserved individual characteristics are continuous and

random, and that the sampling scheme from which the outcomes are obtained is non or

partially informative. Assuming that unobserved individual measurements are random

allows for the possibility of providing a more robust reading of the uncertainty surround-

ing the inferential process. The predictive distribution of the characteristic of interest is

recovered as a convolution-type distribution, which is evaluated using Monte Carlo meth-

ods. That is a key distinction of our framework with regard to traditional weight-based

alternatives. It is worth mentioning that the structural assumptions on the model used to

produce predictions are being relaxed to the minimum possible by means of incorporating

a Bayesian nonparametric component.

Another contribution of this paper consists in the formulation of a procedure to make

7Traditional weight-based methods focus on estimating variances of estimators (mean, median, etc.).

The proposed method, on the contrary, aims at assessing the uncertainty of the population variable (in

this case, the gender wage gap). Thus, these methods are complementary.
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inference on totals segmented in unplanned domains. In our formulation, the notion of un-

certainty is spanned by means of incorporating the random composition of the population

induced by the unplanned domains, together with their underlying sub-totals. Therefore,

predictive inferences are simultaneously obtained on the composition of the population

and on sub-totals across unplanned domains, and they are consistent with the inferences

produced for planned domains, as well. To the best of our knowledge, this is the first

approach in the literature achieving this aim.

Our framework also allows for the incorporation of relevant additional prior informa-

tion, in the form of Gj0, which reflect knowledge from reference data or from subjective or

expert opinions concerning the underlying distribution attained to each planned domain.

In the absence of any type of prior information, the contribution of Gj0 may be forced

to be vanished away by means of setting φ(nj) close enough to 0. In that case, no prior

opinion would be taken into consideration for making prediction. Of course, in practice,

we must look for sensible ways of incorporating prior knowledge when setting Gj0, if such

prior information exists. It is our belief that there is no standard guideline for doing

that, it is mostly case-specific. The incorporation of prior information also brings up new

elements to control for the presence of extreme representative measurements by means of

controlling the weights associated with the sample frequencies, and by means of balancing

prior and sample information through φ(·), the tuning parameter of the species-sampling

model.
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A Connection with traditional weight-based estimators

Our predictive estimates for totals on planned domains encompass traditional weight-based

estimators. For instance, it is straightforward to see that the predictive point estimate of

the total (3.4), based on the Dirichlet process, encompasses the Horvitz-Thompson esti-

mator as a particular case. Following the notation we used above, the Horvitz-Thompson

estimator for Tj can be rewritten in terms of the collection of sampled ties and frequencies,

as

T̂HT
j =

∑
g∈Sj

(
Nj

nj

)
yjg

=

Uj∑
k=1

(
Nj

nj

)
mjk · y∗jk,(A.1)

where nj = NSj , with Uj and {(mjk, y
∗
jk) : k = 1, . . . , Uj} are given as in the document.
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Additionally, by taking the parameter αj,DP arbitrarily close to 0 it follows that for

any sample the function φ(mj) would be arbitrarily close to 0, as well. Hence, in the

limit, our predictive point estimate for Tj can be written as

T̂j =
∑
g∈Sj

yjg +N S̃j ·
Uj∑
k=1

ρk(mj) · y∗jk

=

Uj∑
k=1

(
1 +

N S̃j
nj

)
mjk · y∗jk

=

Uj∑
k=1

(
1 +

Nj − nj
nj

)
mjk · y∗jk,(A.2)

from which, it can be seen that (A.1) is a particular case. Note that this result does not

necessarily hold for other specifications of species-sampling models, apart of the aforemen-

tioned Dirichlet process.

B Review of traditional estimators for replicate samples

The simulation study reported in Section 6 is build upon a progression of 20 samples,

chosen randomly without replacement from the referred population, which cover up the

population in blocks of five percent of the population. Each sample in that progression is

denoted by S [h], for h = 1, . . . , 20, such that their sample size is nS
[h]

= N · (h/20). Let

us recall that each sample is balanced across planned domains, i.e. nS
[h]

j = Nj · (h/20) for

each jth planned domain. However, they are not necessarily balanced across unplanned

domains, as it happens in practice.

Concerning weight-based estimators, each outcome observed in the sample S [h] is being

assigned a sample weight given by w
[h]
jl = (nS

[h]

j /Nj)
−1, for l = 1, . . . , nS

[h]

j , according to

whether the ith observed outcome belongs to the jth planned domain. Thus, the weight-

based estimate of the total for each jth planned domain is given by T̂
[h]
j =

∑nS
[h]

j

l=1 w
[h]
jl ·yjl.

Additionally, the weight-based estimate of the total for unplanned domains, within planned

domains, is given by T̂
[h],Dd

j =
∑nS

[h]

j

l=1 w
[h]
jl · yjl · I(l ∈ Dd), for d = 1, . . . , D.8

8Here, I(A) stands for the indicator function which is equal to 1 is the condition A holds, and 0
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Concerning näıve estimators, they are computed as the product of the population size

and the (unweighted) sample mean, i.e. ˆ̂T
[h]
j = Nj · ȳj , where ȳj = (1/nS

[h]

j ) ·
∑nS

[h]

j

l=1 yjl.

It is trivial to see that across planned domains weight-based and näıve estimators are

the same. However, discrepancies are found when computing the estimates for unplanned

domains. In that case, the näıve estimate for the total across unplanned domains is given

by ˆ̂T
[h],Dd

j = ˆ̂N j · ȳj , where ˆ̂N
Dd
j = Nj ·

∑nS
[h]

j

l=1 I(l ∈ Dd)/nS
[h]

j is the näıve estimate of the

composition of the unplanned domain Dd within the jth planned domain, for d = 1, . . . , D.

C Additional material

predfinitepop. This is a package written in R (R Core Team, 2012) which implements

the methodology introduced in this paper and replicates the simulation results presented

in Section 6. The package is available from the authors upon request.

otherwise.
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(a) Whole population

(b) Planned domain A

(c) Planned domain B

Figure 1: Distribution of individual measurements for the whole simulated population and

the two planned domains.
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(a) Unplanned domain I

(b) Unplanned domain II

(c) Unplanned domain III

Figure 2: Distribution of individual measurements for the three unplanned domains.
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(a) Whole population

(b) Domain A (c) Domain B

Figure 3: Predictive distributions for totals in terms of the twenty progressive samples.

Constant solid lines represent actual totals and dotted lines represent the trajectories of

traditional weight-based and näıve estimates (dotted lines).
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(a) Domain I - Composition (b) Domain I - Total

(c) Domain II - Composition (d) Domain II - Total

(e) Domain III - Composition (f) Domain III - Total

Figure 4: Predictive distributions for the composition and partial totals of the three un-

planned domains in terms of the twenty progressive samples. Constant solid lines represent

actual totals, dotted lines represent traditional weight-based, and dotted and solid lines

represent näıve estimates.
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Figure 5: Predictive distribution for the gender wage gap in Mexico.
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