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Abstract
The focus of this paper is to analyze the effect that ambiguity will have on the buyer’s
reservation price and the value of the option to purchase the durable good with an embedded
option to resell it. The agent is assumed to be risk neutral and ambiguity averse. The problem
is formulated as an optimal stopping problem with multiple priors in continuous time with
infinite horizon. Uncertainty comes from prices, which is summarized in a state variable that
follows a Brownian motion. Preferences have a multiple-prior utility representation where
the set of priors consist of a family of Brownian motions with unknown drift and common
variance. We show that the direction of the change in the buyer’s reservation price depends
on the parametrization of the model and that the value of the embedded option is decreasing
in the perceived level of ambiguity.
Keywords: Ambiguity, optimal stopping, embedded option, durable goods.
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Resumen
El objetivo de este documento es analizar el efecto que tiene la ambigüedad sobre el precio
de reserva de un comprador y sobre el valor de la opción de adquirir un bien durable con
una opción de reventa impĺıcita (embedded). El agente se supone neutral al riesgo y adverso
a la ambigüedad. El problema es formulado como un problema de suspensión óptima con
múltiples distribuciones previas en tiempo continuo con un horizonte infinito. La incerti-
dumbre proviene de los precios futuros, la cual está resumida en una variable de estado que
sigue un movimiento browniano. Las preferencias poseen una representación de utilidad con
múltiples distribuciones previas donde el conjunto de distribuciones consiste en una familia
de movimientos brownianos con tendencias no observables y varianza común. Mostramos
que la dirección del cambio en el precio de reserva del comprador depende de la parametri-
zación del modelo y que el valor de la opción impĺıcita es decreciente en el nivel percibido
de ambigüedad.
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1 Introduction

One of the most important decisions for a household is the purchase of a durable good.

Consider, for example, the decision of buying a car; in this case, the decision maker usually

devotes a significant amount of time and contemplates a relatively large amount of infor-

mation before making a decision. In addition to the current price and the utility derived

from the consumption of the good, the agent needs to consider future spot prices as well as

the possibility of reselling the good in order to make an optimal choice. However, as orig-

inally argued by Knight (1921), the agent may not have enough information to assess the

distribution of future prices precisely. This lack of information can be the result of relatively

few data available in a new market, unobservable characteristics of the good, or any other

irreducible uncertainty idiosyncratic to the good in question. In this paper, we approach

the problem of consumption of a durable good with the option to resell it at any moment

as an optimal stopping problem where the agent chooses the time of purchase and resale of

the good in order to maximize her expected present value at time zero. Furthermore, we

develop the model in an environment where the decision maker is subjected to ambiguity or

Knightian uncertainty. We are mostly concerned with the effect that changes in the level of

perceived ambiguity have on the buying reservation price and the corresponding timing of

the purchase. In this type of decisions, the resale motive will play an important role when

choosing a probability measure when forming expectations about future prices and, thus,

affecting both the resale and buying reservation prices.

In order to give some intuition about the problem analyzed, allow us to frame the dis-

cussion around two particular markets where the resale option is of relevance when making

purchase decisions. First, let us return to our example of the decision to buy a vehicle1.

When considering to buy a car a consumer will prefer a lower price, ceteris paribus. Thus,

there is an incentive to “delay” the purchase and wait for the price to fall sufficiently low.

However, the possibility of reselling the car makes higher prices more attractive as the re-

sale value is, usually, a function of the spot market price of the good. The resale motive

adds value to owning the car, which increases the price the consumer is willing to pay for

it and “rushes” the purchase decision, relative to the timing without resale. When we add

ambiguity to this problem, the agent is ex ante unable to form a unique belief about the

distribution of price increments. Ambiguity aversion will create a discrepancy between the

distribution of prices used to evaluate the resale and purchase decisions. The combined effect

that ambiguity has on the incentives to rush and delay the purchase of this good is the main

1The possibility of reselling a car is so important that some companies even use the resale values as
advertising strategies
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topic of the paper.

A second type of markets where the option to resell the good is of particular relevance

is housing. When considering to buy a house, consumers face the same incentives to rush

or delay the purchase as in the car example. We make particular notice of the decision to

buy a house since it is, perhaps, the most important economic decision made by households

and the rise and burst of price bubbles in these markets have proven to be an important

source of economic instability. Furthermore, one of the main results of the paper can be

easily interpreted in the context of price bubbles, for which house prices have become the

canonical example. In our model we show that it is possible to observe an increase in prices

due to an increase in ambiguity. Thus even if the possibility of a bursting bubble would

imply a decrease in market prices, consumers could increase their reservation price as long

as processes with high price increments remain a possibility.

It is not hard to motivate the presence of ambiguity in this type of decisions. In fact,

Giboa (2013) argues that this particular information structure is more common than the

unique prior used in traditional decision making models. In our two examples, the partic-

ular distributions of future prices depend on many factors including aggregate behavior of

the economy, particularities of the market in question and even characteristics of individ-

ual goods. Requiring the agent to incorporate all this information in a unique probability

measure might be asking too much, even if she is an expert. The sources of ambiguity can

be easily exemplified in the housing market where price dynamics depend on the economic

cycle, particular patterns of migration due to changes in labor markets, housing policies

implemented at all government levels, etc. The same argument can be easily made for the

car example. Furthermore, the sources of ambiguity can be also related to idiosyncratic

characteristics of the good such a quality or particular attributes that may become more

or less valuable in the future. As we will discuss latter in the article, we model the resale

price as a fraction of the current spot price, thus any ambiguity present in the distribution

of future prices will prevail in the process for the resale price as well.

The idea of modeling economic problems as timing problems is not new. In fact, optimal

timing has been used extensively to analyze a wide variety of economically relevant questions

such as the firm’s entry and exit decisions, and policy implementation of a planner. This

stopping time approach, or Real Options as introduced by McDonald and Siegel (1986) and

Dixit and Pindyck (1994) since it relies on the methods developed to price financial options,

can be applied to a broad class of problems sharing three main characteristics: some degree

of irreversibility of the decision, ongoing uncertainty, and freedom over the timing of the

decision. These characteristics are present in our problem of consumption of durable goods,

allowing us to exploit the vast literature on optimal stopping times.
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The solution to this type of models takes the form of a reservation value for the state

variable, called the exercise threshold, at which the decision maker is indifferent between the

termination payoff – received at the moment the option is exercised – and the continuation

payoff – the value associated with the possibility of exercising the option in the future. In our

case, the solution is characterized by two exercise thresholds: the buying threshold, i.e. the

exercise threshold for an agent considering to buy the durable good, and the resale threshold,

i.e. the exercise threshold for an agent considering to sell the good, where the state variable

is a transformation of the market price. The optimal time to buy (resell) the durable good

is the first time the spot price crosses the buyer’s (seller’s) reservation price.

In order to model ambiguity averse preferences we use the multiple-prior expected utility

representation developed by Gilboa and Schmeidler (1989). In general, under this utility rep-

resentation, the agent calculates the expectation of future payments using the worst possible

probability measure in a set of priors. The set of priors is constructed using the κ-ignorance

specification proposed by Chen and Epstein (2002) in their analysis of the multiple-prior rep-

resentation in continuous time within the context of investment and consumption in an asset

pricing model. In particular, this set is built by generating equivalent probability measures

perturbed by a bounded stochastic process. The resulting set satisfies the requirements of

the Gilboa-Schmeilder representation as well as the important rectangularity condition that

guarantees time consistency. Additionally, each probability measure in the set corresponds

to an underlying Brownian motion with unknown drift term and common variance. For a

treatment of this utility representation in discrete time see Epstein and Wang (1994) and

Epstein and Schneider (2003).

Developing a theoretical framework for optimal stopping with multiple-priors has been an

active research topic in recent years. Riedel (2009) and Miao and Wang (2011) are concerned

with a theory of optimal stopping in discrete time while Bayraktar and Yao (2011), Trevino-

Aguilar (2012), and Cheng and Riedel (2013) present alternative models in continuous time.

In our work we borrow a crucial result from Cheng and Riedel that allow us to find the

worst-case scenario for the buyer’s problem in a fairly simple way.

This paper is related to the work of Miao and Wang (2011), Nishimura and Ozaki (2004),

Nishimura and Ozaki (2007), and Schroder (2011) who also examine the effect of ambiguity

on the exercise thresholds. Nishimura and Ozaki (2007) and Schroder (2011) use the multiple-

priors representation in continuous time to analyze the investment decision of a firm who

is subjected to ambiguity regarding the returns on investment. In their results, ambiguity

decreases the value of the option to invest and delays investment. In Schroder (2011), the

firm uses both the worst and best case scenarios when calculating the optimal stopping time

using a generalization of the Gilboa-Schmeilder representation (see Ghirardato et al. (2004)).
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Nishimura and Ozaki (2004) apply the Choquet expected utility model (see Schmeidler

(1989)) in a discrete time job search model. They show that ambiguity expedites the exercise

of the option, shortening the time the agent engages in search. Miao and Wang (2011)

reconcile these seemingly contrasting results using a multiple priors model in discrete time.

They analyze the firm’s entry and exit decisions and show that ambiguity affects the exercise

thresholds differently, depending on whether or not uncertainty is resolved after exercising

the option. If uncertainty is not resolved at the moment of exercise, as in the investment

problem, the optimal exercise time is delayed. Alternatively, if uncertainty is fully resolved

after the option exercise the presence of ambiguity rushes the exercise of the option.

All the applications we have discussed so far focus on simple financial options, i.e. Amer-

ican call and put options, or their equivalent interpretation in the Real Options context.

Recent papers, however, have turn their attention into more exotic options. Cheng and

Riedel (2013) apply their model to the barrier option and the American straddle.2 They

show that ambiguity makes the agent change the probability measure used to evaluate the

options. For the barrier option the lowest mean return is used to evaluate the option before

it knocks in and the highest mean return is used afterwards. For the American straddle the

agent constantly changes the probability measure as the underlying moves in the interval

between two exercise thresholds. Chudjakow and Vorbrink (2009) analyze several types of

exotic options in discrete time that can be constructed by embedding simple options. As in

Cheng and Riedel (2013), the worst-case measure can vary over time as the agent transitions

from one simple option into the other.

There are alternative approaches to incorporate ambiguity, of course. Hansen and Sargent

(2001) and Barillas et al. (2009), for example, propose a method based on robust control

theory. Instead of using a multiple-prior representation, they introduce a zero-sum game

where a malevolent player chooses a bounded level of entropy that distorts the decision

maker beliefs. As a result, they obtained a Bellman equation with a correction term that

accounts for model misspecifications. For a discussion comparing the two approaches see

Epstein and Schneider (2003) and Hansen et al. (2006). Ju and Miao (2012) and Klibanoff

et al. (2009) use a recursive smooth ambiguity model where the utility function is represented

by the composition of two functions, one characterizing the risk preferences and the other

the ambiguity preferences.

We follow a procedure similar to Chudjakow and Vorbrink (2009) (for exotic financial

options under ambiguity) and Boyarchenko and Levendorskii (2010) (for a firm’s entry prob-

2In a barrier option the contract is only implemented when the underlying hits a predetermined price,
otherwise it remains worthless. In the American straddle the contract is implemented over the difference
between the underlying and the strike price, regardless of the sign.
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lem with and embedded option to exit with known drift) and decompose our buying and

reselling problem into two simpler embedded options. Our embedded option, however, is

more complex than the stradle and barrier options analyzed by Chudjakow and Vorbrink

(2009), thus requiring a simplifying assumption on the way ambiguity is resolved discussed

in detail in Section 3.3 Specifically, the resale decision is modeled as an option to abandon a

stream of payoffs including the utility generated by the consumption of the durable good and

the opportunity cost of selling it at a fraction of the spot price. First, we solve this problem

for an arbitrary drift parameter, which is revealed to the agent at the moment of purchase,

and obtain the value of the resale option by evaluating it at the worst-case scenario, i.e. the

most unfavorable drift parameter for the seller. Then, we solve the problem for an option

to acquire a one time payment equal to the value of the resale option minus the price of

the good and find the worst-case scenario to evaluate the option. We find that the agent

evaluates the embedded option using two different drifts, the resale value of the good and

its optimal resale price is computed using the lowest possible drift in the ignorance interval

generated by the κ-ignorance specification, while the optimal buyer’s reservation price is

computed using the highest possible drift in a similar way to Cheng and Riedel (2013) and

Chudjakow and Vorbrink (2009).

Additionally, we examine the effect that an increase in ambiguity has on the buyer’s

reservation price. This analysis, however, is done numerically since the lack of a closed form

solution to the optimal buyer’s reservation price prevent us to obtain analytic expressions

for the derivatives. We show that the direction of the change in the buyer’s reservation price

depends on the particular parametrization of the model and provide some intuition on the

relevant determinants of the effect. Our result is consistent with Miao and Wang (2011)

who find an indefinite effect in the optimal exercise threshold as a response to an increase in

ambiguity. However, Miao and Wang (2011) use two different sources of ambiguity, while in

our model the source of qualitatively different effects is that, as a result of the change in the

drift considered to evaluate the embedded options, the positive effect of ambiguity on the

buyer’s reservation price can be dominated by a negative effect product of lower expected

resale values. Intuitively, the benefit of owning the durable good has two sources: the utility

generated from the use of it and its resale value. When the expected mean increments used

to evaluate the resale decision is ”too low”, the resale motive plays a smaller role in the ex

ante purchase decision as the agent considers a relatively pessimistic process to calculate

the seller’s reservation price. Therefore, further reductions on these originally low mean

3Consider, for example, the barrier option where a standard American option “kicks in” the first time
the price of the underlying hits a predetermined level. In this case, the stopping time at which the option
becomes valuable is not an endogenous decision of the agent as it is specified in the contract.
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increments will be dominated by higher expected price increments used to evaluate the

buying decision, also due to the increase in ambiguity. This intuition is similar to the case

when the fraction of the spot market price at which the good can be resold is close to zero,

where the resale motive plays a lesser role as well. In this case, the effect of an increase of

ambiguity in the resale decision gets smaller and it is dominated by increases in the expected

price increments used to evaluate the buying decision. Furthermore, we found that higher

levels of perceived ambiguity decrease the value of the embedded option. This last result is

consistent with what has been previously found in the literature.

The rests of the paper is organized as follows. In the next section we formalize the

stopping time problem described above and solve for the exercise thresholds and value of the

options for the unique prior case. Section 3 discusses in detail the construction of the set of

priors, elaborates on the solution concept used to obtain the buyer’s reservation price and

value of the option under ambiguity, and states our main result. Finally, section 4 concludes.

All proofs are collected in the appendix.

2 The basic model

In this section we analyze the buying decision of a durable good that can be resold at any

point in time as an optimal stopping problem. First, we elaborate on the basic setting for the

case of a unique prior and introduce some regularity conditions as well as general definitions

and previous results that will be used throughout the paper. We then extend the model to

allow for multiple priors in section 3.

Consider an infinite-horizon optimal stopping problem in continuous time where a risk

neutral agent faces the option to buy a durable good which provides a discounted utility

at the time of purchase denoted by U . We assume for simplicity that the good does not

depreciate over time. Additionally, it is possible to resell the good at a fraction, ϕ, of the

spot market price with 0 < ϕ ≤ 1. The agent discounts future payoff flows using the discount

rate q > 0 and preferences are represented by a time-additive expected utility.

Let (Ω, P,F , (Ft)t≥0) be a filtered probability space, and (Xt)t≥0 be a Brownian motion

on R with respect to P for its filtration (Ft)t≥0 – satisfying the usual properties – that solves

the stochastic differential equation

dXt = µdt+ σdWt;

where µ is the drift parameter, σ2 is the diffusion parameter and dWt is the increment of a
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standard Wiener process.4 We use the stochastic process Xt to characterize the uncertainty

about future prices for the durable good with pt = ext . Equivalently, we could specify the

stochastic process in terms of pt. In this case pt follows a geometric Brownian motion with

drift (µ+ 1
2
σ2) and diffusion parameter σ2.

The agent’s problem is to determine both the timing of purchase and resale of the durable

good in order to maximize her expected present value at time zero. Moreover, the expected

resale value must be taken into account when considering the purchase of the good. There-

fore, the agent is presented with two binary choices. The first choice is whether to stop and

exercise the option to buy the durable good at the current price obtaining the discounted

utility U and the embedded resale option or continue for one more period and face the same

decision in the future. The second choice corresponds to the problem once the agent has

ownership over the durable good; whether to stop and resell the good at a fraction ϕ of the

current market price, hence forgoing the utility provided by the durable good, or continue

and face the same choice in the future.

We start our analysis of the solution to the problem stated above in the following way:

First, assuming that the good has been purchased already, we find the optimal resale thresh-

old x∗, i.e. the value of x at which the agent is indifferent between selling the good and

continue to hold it, which allow us to calculate the value of the resale option. Then, we

proceed to calculate the optimal buyer’s threshold, i.e. the value of x at which the agent is

indifferent between continue waiting and purchasing the durable good with the embedded

resale option, and the value of the embedded option.

2.1 The Resale Decision

Once the good has been purchased, at each time t the agent receives a constant stream

of payoffs from holding the good equal to qU . However, by holding the durable good, the

agent forgoes the payment received from selling it, therefore incurring an opportunity cost

equal to the stream of payments whose expected present value is ϕext . In order to calculate

the stream of payoffs let us introduce the following notation for the expected present value

operator 5: for any function f , let

εf(x) = Ex

(∫ ∞
0

e−qtf(Xt)dt

)
.

4The analysis can be extended to more general Levy processes with some extra assumptions (see Bo-
yarchenko and Levendorskii (2007)).

5This operator is known in the theory of stochastic processes as the resolvent of the process.
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It is possible to obtain the stream of payoffs whose EPV is ϕext using the previous equation

and the moment generating function of the Brownian motion described above. However, it is

convenient to use the equality εf(x) = (q−L)−1f(x), where L is the infinitesimal generator

of the Brownian motion defined as:

L =
σ2

2
∂2 + µ∂.

Using the EPV -operator we can get the stream of payments, g(x), associated to the resale

price by g(x) = (q − L)(ϕext). The profit flow generated from holding the durable good at

time t can now be obtained by subtracting g(x) from the consumption payoff received. Let

denote this profit flow by:

π(x) = qU − (q − ψ(1))ϕex, (1)

where ψ(z) = σ2

2
z2 + µz is the Levy exponent of the process Xt.

Let β+ and β− be the positive and negative roots of q − ψ(z), respectively. In order to

guarantee that the solution to our problem is well defined we need we need to set a restriction

on the drift and diffusion terms of the Brownian motion such that β+ > 1. Using standard

algebraic manipulations it can be shown that this condition is satisfied as long as

µ < q − σ2

2
. (2)

For the remainder of the paper we will assume that the relationship between µ, σ and q

stated above holds.6

6This restriction comes from the need to guarantee that the function (eζ
−x + eζ

+x)−1π(x) is bounded.
Formally, there exist a constant C such that∣∣∣(eζ−x + eζ

+x)−1π(x)
∣∣∣ ≤ C

a.e. for all x, for all z ∈ [ζ−, ζ+] such that q − ψ(z) > 0, for some ζ− ≤ 0 ≤ ζ+. This regularity condition
assures that the expected value operators used to calculate the optimal stopping time and option value are
bounded. In other words, we need π(x) not to grow too fast, with respect to the stochastic process, Xt, as
x approaches positive or negative infinity. Note that, as x tends to negative infinity, π(x) approaches the
constant term qU and is always possible to find C satisfying the regularity condition. As x tends to positive
infinity the absolute value of π(x) grows unbounded. However, it is easy to see that the left hand side of
the restriction remains bounded as long as ζ+ ≥ 1. Therefore, we need to restrict the parameters in the
model such that q−ψ(z) > 0 for all z ∈ [1, ζ+], or in other words, that the positive root of the characteristic
equation is greater than one.
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The stopping problem described above is then given by the following equation7:

V2(x) = max
τ≥0

E

(∫ τ

0

e−qtπ(x)dt

)
. (3)

To reiterate, the problem consists of choosing a random time, τ ≥ 0, at which the good

will be sold that maximizes the expected present value of the stream of payoffs π(x). The

solution to equation (3) comes in the form of a reservation value for the random variable x,

known in the Real Options literature as the exercise threshold, which divides the real line

into two regions. For values of x above its reservation value it is optimal for the consumer

to abandon the stream of payoffs, thus getting a utility of zero thereafter. We refer to this

region as the termination region. For values of x below the reservation value the agent finds

profitable to hold on to the durable good and receives the stream π(x) together with the

expected value of the option to sell the good further in the future. We refer to this region as

the continuation region. Note that, as the spot market price for the durable good increases,

i.e. the state variable x increases, the opportunity cost of holding the good becomes larger,

and the continuation payoff becomes negative. Should x rise sufficiently high, it may become

optimal to sell the good.

Denote the reservation value at which it is optimal to resell the good by x∗, and the

optimal stopping time τx∗ = inf{t ≥ 0|xt ≥ x∗} as the solution to equation (3). So it will be

optimal to resell the good the first time xt crosses x∗ from below.

The resale threshold and option value that solves for equation (3) can be obtained by ap-

plying Theorem 11.6.5 in Boyarchenko and Levendorskii (2007). Below we state a simplified

version of the theorem for our particular case and notation. Before applying this theorem,

however, we need to verify that our particular profit flow is decreasing in x and has a zero

at some x. First, ∂xπ(x) < 0 since the restriction on the parameters of the model imposed

by equation (2) is equivalent to q > ψ(1) and ϕ > 0 by assumption. Direct inspection of

equation (1) suffices to see that π(x) is negative for sufficiently large values of x and, as x

tends to negative infinity, π(x) approaches qU > 0 thus crossing zero at some point.

Theorem 2.1 (Boyarchenko-Levendorskii). For π(x) as defined in equation (1):

(a) equation F (x) = 0 has a unique solution at x∗ with

F (x) = −β−
∫ 0

−∞
e−β

−yπ(x+ y)dy;

7The subindex used for the value of the stream of payoffs with the option to resell it, V2(x), denotes the
second stage of a backward induction solution concept. In a similar fashion we use V1(x) in the next section
to refer to the value of the option to acquire this payoff as the first stage of the problem.
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(b) τx∗ is an optimal stopping time; and

(c) the value of the stream of payoffs with the option to abandon it is given by:

V ∗2 (x) = q−1β+

∫ x∗−x

0

e−β
+y (F (x+ y)) dy.

For a proof of this theorem see Theorem 11.6.5 in Boyarchenko and Levendorskii (2007).

Directly applying Theorem 2.1 to our stream of payoffs, π(x), give us the optimal resale

threshold, x∗, and the value of the option to resell the durable good. The result is presented

in the following corollary. Note that equation (4) is written in terms of ex
∗

which directly

give us the optimal seller’s reservation price.

Corollary 2.2. For π(xt) = qU − (q − ψ(1))ϕext, the optimal resale threshold, x∗, is given

by

ex
∗

=
qU (β− − 1)

ϕβ−(q − ψ(1))
. (4)

For x < x∗ the value of the stream with the option to resell is

V ∗2 (x) = U − ϕex +
U

(β+ − 1)
eβ

+(x−x∗), (5)

and V ∗2 (x) = 0 for x ≥ x∗.

2.2 The Buying Decision

With the optimal resale threshold and value of the stream of payoffs derived from owning

the durable good in hand we now turn to the agent’s buying decision. At the moment

of purchase, the decision maker is entitled to a stream of payoffs whose value is given by

V ∗2 (x) as defined in equation (5). Therefore, the agent faces the option of acquiring the

payoff V ∗2 (x) at a price ex. Define the instantaneous payoff of buying the durable good as

Π(xt) = V ∗2 (xt)− ex, or equivalently as

Π(xt) = U − (1 + ϕ)ext +
U

(β+ − 1)
eβ

+(xt−x∗). (6)

Similarly to the previous step we need to verify that Π(x) satisfies some regularity con-

ditions for our choice of parameters µ, σ and q. In particular, our solutions are well defined
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if for all N , there exist C such that∑
0≤s≤2

∣∣∣e−ζ−xΠ(s)(x)
∣∣∣ ≤ C (7)

on the interval (−∞, N ].

Since the instantaneous payoff function Π(x) is due when a certain boundary is crossed

from above – as it will be optimal to buy the good once the price falls sufficiently low – we need

to impose a bound in a neighborhood of negative infinity. However, a simple examination of

equation (6) suffices to verify that at negative infinity Π(x) is bounded by U , and the first

and second derivatives are bounded by zero so we do not need extra requirements on the

parameters of the model to guarantee that the solution to our problem is well defined.

The buying problem is formally characterize by the equation:

V1(x) = max
τ≥0

E
(
e−qτΠ(xτ )

)
. (8)

For the buying decision, in the termination region the agent acquires a instantaneous

payoff, Π(x), which includes the stream of utilities derived from the consumption of the

durable good and its embedded resale value. In the continuation region the agent receives

no payment, obtaining the expected value of waiting to exercise the option to buy the good.

Additionally, as the spot market price for the durable good decreases, i.e. the state variable

x decreases, the instantaneous payoff increases. Intuitively, a lower value of x reduces the

price that the agent needs to pay in order to acquire the durable good. Furthermore, a

reduction in x implies a lower expected resale value, reducing V ∗2 (x) as well. This result is

formalize in the following lemma. Therefore, should x fall sufficiently low it may become

optimal to acquire the instantaneous payoff Π(x). Denote the threshold at which it is optimal

to exercise this option by x∗, and its corresponding stopping time τx∗ = inf{t ≥ 0|xt ≤ x∗}.
Note that it is never optimal to buy the good for x ≥ x∗ since in this interval the acquired

value is zero, i.e. V ∗2 (x|x ≥ x∗) = 0, as stated in Corollary 2.2. Thus, it must be the case

that x∗ < x∗, and the value of the durable good with the option to resell is given by Π(x)

for all x < x∗.

Lemma 2.3. Π(x) as defined in equation (6) is a decreasing function of x for all x ≤ x∗.

In order to find the optimal buying threshold and option value that solves the problem

defined by equation (8) we make use of Theorem 11.5.6 in Boyarchenko and Levendorskii

(2007). Similarly as above, we present a simplified version of the Theorem relevant to our

particular case and notation.
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Theorem 2.4 (Boyarchenko-Levendorskii). Assume that there exists x∗ such that

(i) Π(x)− (β−)−1Π′(x) > 0 for all x < x∗, and

(ii) Π(x)− (β−)−1Π′(x) < 0 for all x > x∗.

Then

(a) x∗ is an optimal threshold;

(b) τx∗ is an optimal stopping time; and

(c) the value of the option with payoff Π(x) is given by

V ∗1 (x) = −β−
∫ x∗−x

−∞
e−β

−y(Π(x+ y)− (β−)−1Π′(x+ y))dy.

A proof is provided by Boyarchenko and Levendorskii (2007) Theorem 11.5.6. Unlike

the case of resale, the previous Theorem does not guarantee the existence of the optimal

threshold, x∗, so we need to verify that conditions (i) and (ii) are satisfied for our function

Π(x).

Lemma 2.5. Let G(x) = Π(x)− (β−)−1Π′(x), with Π(x) defined as in equation (6). Then,

G(x) has a zero at some x∗ < x∗. Furthermore, x∗ is unique and G(x) changes sign as x

passes x∗ with G(x) > 0 for all x < x∗.

Applying Theorem 2.4 and using the result in Lemma 2.5 we can obtain the optimal

buying threshold and value of the option to buy the durable good with embedded resale

option.

Corollary 2.6. For Π(xt) = V ∗2 (xt)−ext, the optimal buying threshold, x∗, is given implicitly

by

U − ex∗(1 + ϕ) (β− − 1)

β−
+
U (β− − β+)

(β+ − 1) β−
eβ

+(x∗−x∗) = 0. (9)

For x > x∗ the value of the option to buy the durable good is

V ∗1 (x) = Π(x∗)e
β−(x−x∗), (10)

and V ∗1 (x) = Π(x) for x ≤ x∗.
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Proof. Equation (9) is obtained using Lemma 2.5 and G(x) defined therein evaluated at x∗.

Equation (10) follows from directly calculating the integral in Theorem 2.4

V ∗1 (x) =

[
U − ex∗(1 + ϕ) +

U

(β+ − 1)
eβ

+(x∗−x∗)

]
eβ

−(x−x∗),

and recognizing the term in brackets as Π(x∗) in equation 6. �

The buyer’s reservation price, ex∗ , can be calculated numerically from equation (9). Fig-

ure 2.1 shows the value of the option to buy the durable good and the optimal buying

threshold. This concludes our analysis of the basic setup. We will come back latter to the

results obtained in this section and compare them with those of the multiple priors case,

which is the main focus of our work.

Figure 2.1: Value of the option to buy a durable good, V ∗1 (x)

3 The multiple-priors model

In this section we extend the previous model by adding ambiguity about the drift of the

underlying Brownian motion. First, we describe the structure of ambiguity in the model and

discuss the importance of our simplifying assumption. Next, we construct a suitable set of

probability measures to account for the uncertainty about the drift. We then elaborate on

our solution concept and present our main result.

In the previous section we assumed that the agent knows (at least subjectively) the

probability measure underlying the stochastic process Xt. Alternatively, we now allow the

agent to be uncertain about the particular measure governing the state space and considering,

instead, a set of probability measures denoted by P. It can be argued that this type of
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uncertainty is more common in realistic decision problems. We incorporate ambiguity to the

model by using the multiple-priors utility representation proposed by Gilboa and Schmeidler

(1989). Under the Gilboa-Schmeilder representation of preferences, and ambiguity averse

agent evaluates the expectation of future payments using the worst case scenario measure.

Formally,

Ef(xt) = inf
P∈P

(
EPf(xt)

)
.

for a suitable set of priors, P. In the following subsection we discuss in detail the structure

of P and the the technical reasons for our simplifying assumption of ambiguity resolving

once the durable good is bought.

3.1 The set of priors

The set of priors, P, is constructed using the κ-ignorance specification proposed by Chen

and Epstein (2002). In this type of models the agent is assumed to be uncertain about

the drift term of the underlying Brownian motion while the variance term is observable. In

order to account for ambiguity, the agent considers a family of Brownian motions whose drift

parameters take any value in the interval [ν−σκ, ν+σκ], thus ambiguity is parameterized by

a constant κ > 0 that generates an interval for the drift parameters centered at an arbitrary

value, ν, hence the name.

In particular, let (Ω, P ν ,F , (Ft)t≥0) be a filtered probability space, and (Xt)t≥0 be a

Brownian motion defined on (Ω,F , P ν) where (Ft)t≥0 is the filtration generated by Xt

satisfying the usual conditions augmented by the P ν-null sets of F . P ν is only used as a

reference measure to generate a set equivalent probability measures with respect to it (and

each other) and should not be interpreted as the true probability measure. We generate

P as the set of probability measures Q mutually absolutely continuous with respect to P ν ,

which is the probability measure characterizing a Brownian motion with drift ν and variance

σ2. Define Dκ as the set of all real-valued processes θ = (θt)0≥t≥T with |θt| ≤ κ. Let Bt be a

Brownian motion under P ν . Now define,

zt = exp

{∫ t

0

θsdBsds−
1

2

∫ t

0

θ2
sds

}
for some θ ∈ Dκ. For each T > 0, Qθ(F ) = EP (zT1F ) defines a probability measure a.c.

with respect to P ν . From Girasanov’s theorem

B̃t = Bt +

∫ t

0

θtds,
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where B̃t is a Brownian motion under Qθ with instantaneous drift (ν−σθt) and variance σ2.

The set of priors P is constructed as the set of Qθ for all θ ∈ Dκ.

In this way we can model uncertainty over the drift of the underlying Brownian motion,

and therefore the agent needs to consider any drift in the interval M = [ν − σκ, ν + σκ]

at all times, we will refer to this interval as the ignorance interval. In order to guarantee

that our solutions under ambiguity are well defined we need to impose a restriction on the

parameters in the ignorance interval similar to the one stated in equation (2). Namely, the

highest drift under κ-ignorance should satisfy

ν + σκ < q − σ2

2
. (11)

We can interpret κ as a measure of the degree of ambiguity. As κ tends to zero, the

interval of drifts considered by the agent shrinks around ν, and the drift used to evaluate

the expectations gets closer the the drift of the actual Brownian motion generating the state

process. As κ increases the set of drifts gets larger and the worst-case scenario drift can

be, in general farther away from the actual drift. Finally, Chen and Epstein (2002) showed

that a set of priors constructed in this manner satisfies the rectangularity condition, which

is sufficient for the dynamic consistency of the problem.8

For rectangularity to hold, however, it is important for the instantaneous drift of the

Brownian motion under Qθ to be time varying and stochastic whenever ambiguity is present.

Thus we need to restrict the time at which the agent is subjected to ambiguity in order to

be able to embed our two decisions and solve the problem in a way similar to the previous

section. In particular, we assume that ambiguity is only present at the time when the

decision maker is considering to buy the durable good, and once the good is purchased the

actual probability measure, denoted by Q ∈P, is revealed thus resolving ambiguity. When

facing the resale decision, the agent still experiences uncertainty over future prices, but this

uncertainty can be assessed using the now observed measure. We restrict Q even further

by requiring it to be the probability measure underlying a Brownian motion with constant

drift. We do not formally introduce any specific reason for which ambiguity is resolved in

this seemingly odd fashion. Nevertheless, one can find economic motivations that justify

this assumption. Consider, for example, the case where the price distributions depend on

the quality of the good. During the buying stage of the problem quality is unobservable,

thus giving room for ambiguity to arise. Once the buying decision is made, the quality of

8For a formal discussion on the rectangulariy condition see Epstein and Schneider (2003). In a nutshell,
this restriction requires that any possible measure describing beliefs about the “next step”, at any point in
time, must be included in the original set of priors. Thus, one can view this original set of priors as the set
generated by the one-step-ahead conditional measures.
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the good is known, allowing the agent to pin down the particular probability distribution of

market prices.

If we want to naturally fit our simplifying assumption on the way ambiguity is resolved

to the two examples discussed in the introduction, we would need all sources of ambiguity

to be related to idiosyncratic characteristics of the good, which will be immediately learned

once the good is “experienced”. Any other sources of ambiguity such as the macroeconomic

environment, in the housing example, or general perceptions of the quality of the good, in

the car example, will fail to resolve ambiguity in the way we assume it. This is, admittedly,

a weak spot in our analysis. However, we concentrate mostly on the effect that ambiguity

will have on the buyer’s reservation price and the value of the option to purchase the durable

good. These two effects take place before the purchase decision is made, when the agent

is ex ante subjected to ambiguity even for the resale decision. An alternative would be to

assume that ambiguity is not resolved after buying the good and the agent solves the resale

problem under ambiguity first; this solution, including the agent’s choice of the measure to

evaluate the resale decision, is embedded in the purchase decision which is solved taking the

“worst case measure” for the second stage as given. The solution to this problem would be

equivalent to the one presented in this paper. However, it is not clear that this behavioral

assumption is dynamically consistent nor that it is not. We chose to make the assumption so

it ensures dynamic consistency at the cost of losing generality. To the extent of the author’s

knowledge, there is yet no way to solve the problem in full generality, but we argue that the

solution presented here is a good candidate, or at least an approximation, for the general

solution.

To see why resolving ambiguity in this manner is so crucial to obtain a solution to

the model let Π(x|µ) be the ex post instantaneous payoff as defined in equation (6) for a

particular realization of the (constant) drift for the Brownian motion generated by Q at the

point of purchase, x. The ex ante value of the instantaneous payoff received at the moment

of buying the durable good can then be obtained by evaluating Π(x|µ) at each µ in the

ignorance interval and selecting the drift that minimizes it. That is

Π̃(x) = min
µ∈M

Π(x|µ). (12)

Let V (x) be the the value of the embedded stopping time problem. Under the Gilboa-

Schmeilder representation and assuming ambiguity fully resolves after the good is purchased

we have:

V (x) = max
τ≥0

min
P∈P

EP0

(
e−qτP Π̃(XP

τP
)
)
, (13)

Time consistency of the model is preserved since at the moment of purchase ambiguity is
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resolved, and the resale problem of the embedded option reduces to the standard case with

single priors discussed in subsection 2.1. Therefore, the buying decision can be modeled as

the multiple priors version of acquiring an instantaneous payoff Π̃(x).

3.2 The solution concept

Assuming that the agent observes the actual drift of the underlying Brownian motion gen-

erating the process Xt at the moment of purchase we can obtain the optimal value of the

stream π(x|µ) and the optimal resale threshold, x∗(µ), as in subsection 2.1. In order to make

the dependence of our solutions on the ex post value of the drift term evident, denote β+
(µ)

and β−(µ) as the positive and negative roots of the characteristic equation q − ψ(µ)(z). By

means of Corollary 2.2, the optimal resale threshold, x∗(µ), is characterized by:

ex
∗
(µ) =

qU
(
β−(µ) − 1

)
ϕβ−(µ)(q − ψ(µ)(1))

, (14)

and the value of the stream with the option to resell in the continuation region x < x∗(µ) is

given by:

V ∗2 (x|µ) = U − ϕex +
U(

β+
(µ) − 1

)eβ+
(µ)(x−x

∗
(µ)). (15)

As in the previous section, the ex post instantaneous payoff of buying a durable good with

an option to resell it is simply given by:

Π(x|µ) = V ∗2 (x|µ)− ex. (16)

The ex ante version of equation (16) is then constructed as the worst-case scenario for

Π(x|µ) over all possible vaues of µ in the ignorance interval as denoted in equation (12).

Lemma 3.1. Π(x|µ) as defined in equation (16) is a strictly increasing function of µ for all

µ ∈ [ν − σκ, ν + σκ].

Therefore, the problem stated in equation (12) has a corner solution at
¯
µ = ν − σκ, and

the ex ante value of the instantaneous payoff received at the moment of buying the durable

good is given by:

Π̃(x) = U − (1 + ϕ)ex +
U(

β+
(
¯
µ) − 1

)eβ+
(
¯
µ)

(
x−x∗

(
¯
µ)

)
. (17)

Now let us revisit the option to acquire an instantaneous payoff equal to Π̃(x) under

ambiguity. Using the Gilboa-Schmeilder representation of preferences, the optimal time to
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buy a durable good with the possibility of reselling it is given by the stopping time τ∗ that

solves for

V1(x) = max
τ

min
P∈P

EP
(
e−qτ Π̃(x)

)
. (18)

Cheng and Riedel (2013) produced a result that can be applied to solve the problem

in equation (18), provided Π̃(x) is monotone in the state variable. To put it in terms of

the discussion in Cheng and Riedel, what we have in equation (18) is a simple real option

problem with a put-like payoff. Below we present an abbreviated version of their result for

reference, but first let us establish a couple of properties of Π̃(x) that allow us to use this

result in our model.

Clearly, Π̃(x) is a continuous function of x. Additionally, the restriction on the parameter

values imposed by equation (11) guarantees that Π̃(x) is bounded in the sense of equation (7)

for all µ in the ignorance interval and in particular for
¯
µ. This restriction on the parameter

values is, in fact, stronger than the “growing condition” used by Cheng and Riedel. Lemma

2.3 established that Π(x) is decreasing for all x < x∗, independently of the value of µ, thus

Π̃(x) is also decreasing in x for said interval.

Theorem 3.2 (Cheng-Riedel). Denote by vκ the value function of the standard optimal

stopping problem with payoff function Π̃(x) under the measure P κ. Then the optimal stopping

time under κ-ignorance has value function Vt = vκ(t,Xt) where vκ is the value function of

the classical optimal stopping problem under the measure P κ with the least favorable drift of

the underlying process Xt.
9

For a proof see Theorem 4.1 in Cheng and Riedel (2013). The previous theorem states

that, for the case of the κ-ignorance specification, the solution to the optimal stopping

problem under ambiguity is the standard solution for a single prior evaluated at the worst

possible drift in the ignorance interval. Therefore, we can characterize the optimal buying

threshold and option value as in equations (9) and (10) evaluated at the drift that minimizes

V ∗1 (x).

Denote λ+
(η) and λ−(η) as the positive and negative roots of the characteristic equation

q − ξ(z) where ξ(z) = σ2

2
+ ηz and η is the drift of the Brownian motion characterized by

P κ, and define y∗ as the optimal buying threshold under ambiguity. Using Corollary 2.6 we

can directly establish that, for x > y∗ the value of the option to buy the durable good is

V ∗1 (x) = Π̃(y∗(η))e
λ−

(η)
(x−y∗(η)), (19)

9The original Theorem 4.1 in Cheng and Riedel (2013) is stated in terms of an increasing payoff function.
Here, we present the clearly analogous result for a decreasing function that fits better for our purposes.
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with y∗(η) given implicitly by

U −
ey∗(η)(1 + ϕ)

(
λ−(η) − 1

)
λ−(η)

+
U
(
λ−(η) − β

+
(
¯
µ)

)
(
β+

(
¯
µ) − 1

)
λ−(η)

e
β+

(
¯
µ)

(
y∗(η)−x∗(

¯
µ)

)
= 0. (20)

The only remaining step to have a complete characterization of the value of the option

and optimal buying threshold under ambiguity is to find η associated to the measure P κ

that minimizes V ∗1 (x). From an economic point of view, it seems natural to infer that the

highest possible drift is the most unfavorable since higher expected increments of the market

price are clearly not aligned with the interests of an agent considering to buy the durable

good. Our intuition is, in fact, correct and the result is formalized in the following Lemma.

Lemma 3.3. V ∗1 (x) as defined in equation (19) is a decreasing function of the drift term,

η, for all x > y∗.

Consequently, the value for the option to buy the durable good and the optimal buying

threshold under ambiguity are given by equations (19) and (20) with η̄ = ν + σκ, i.e. the

highest drift in the ignorance interval.

We now summarize the main result of the section and harmonize some notation to make

the dependence of the ex ante option value and optimal buying threshold on the level of

perceived ambiguity clear. Define β̃± = β±(
¯
µ) with

¯
µ = ν−σκ, and λ̃± = λ±(η̄) with η = ν+σκ.

Similarly, let ỹ∗ = y∗(η̄) and x̃∗ = x∗(
¯
µ).

Result 3.4. The optimal buying threshold under ambiguity, ỹ∗, is given implicitly by

U −
(1 + ϕ)

(
λ̃− − 1

)
λ̃−

eỹ∗ +
U
(
λ̃− − β̃+

)
(
β̃+ − 1

)
λ̃−

eβ̃
+(ỹ∗−x̃∗) = 0. (21)

For x > ỹ∗ the value of the option to buy the durable good is

V ∗1 (x) = Π̃(ỹ∗)e
λ̃−(x−ỹ∗), (22)

and V ∗1 (x) = Π̃(x) for x ≤ ỹ∗.

Intuitively, at time zero the pessimistic agent presumes that the ex post mean increments

of the resale price will be at its lowest. This is consistent with ambiguity aversion since the

utility received from consuming the good is constant and the only source of uncertainty after

purchase is the resale value of the durable good. Before purchasing the good, however, the

most unfavorable process for the agent is the one with the highest mean price increments,
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regardless of the realized process at the time of purchase. In this sense, at time zero – or

at any time before the good is bought – the agent uses two drifts to evaluate the embedded

option of buying a durable good with the possibility of reselling it at some point in the

future: (1) the highest possible drift when evaluation the option to buy the good, and (2)

the lowest possible drift to compute the resale value as well as the optimal resale threshold.

Chudjakow and Vorbrink (2009) and Cheng and Riedel (2013) find a similar change in the

drift used to evaluate their exotic options as the problem transitions from one simple option

to another.

3.3 Changes in the level of ambiguity

Now we analyze the effect that an increase in the level of ambiguity has on the optimal

buyer’s and seller’s reservation price, as well as on the value of the option to buy the durable

good. We start our analysis by determining the effect that a change on
¯
µ have on the buyer’s

and seller’s optimal reservation prices.

Proposition 3.5. The optimal resale threshold, x̃∗, is an increasing function of
¯
µ.

Intuitively, as
¯
µ increases the agent considers the option to resell the good using a process

with higher expected price increments. This has no effect on the termination payoff and in-

creases the value of the option to resell in its continuation region, thus increasing the value of

waiting to exercise the option. This in turn will increase the optimal resale threshold. Since

the durable good is going to be sold the moment the market price crosses the reservation

resale price from below, a higher resale threshold implies a longer waiting time (in expecta-

tion) to resell the durable good. From our Result 3.4 we have that, under ambiguity, the ex

ante drift used to evaluate the option to resell the good is given by
¯
µ = ν − σκ. Therefore,

an increase in the level of ambiguity, κ, will reduce
¯
µ and the seller’s reservation price, ex̃

∗
.

Let us now turn to the effect that an increase in κ has on the buyer’s optimal reservation

price, eỹ∗ , and the value of the option to buy the durable good, V ∗1 (x) in its continuation

region. Note that ỹ∗ is a function of both η̄ and
¯
µ. Thus, in order to evaluate the total effect

that a change in ambiguity has on the buyer’s optimal threshold we first need to establish

the partial effects of η̄ and
¯
µ on ỹ∗.

Proposition 3.6. The optimal buying threshold, ỹ∗, is an increasing function of both η̄ and

¯
µ.

In order to see the intuition behind Proposition 3.6 notice that for higher values of η̄

the agent uses the process with greater expected price increments to evaluate the decision

of buying the durable good. This perceived environment of increasing prices, relative to the
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price increments for lower ambiguity levels, makes optimal to increase the reservation price

for the good in question, thus increasing ỹ∗. On the other hand, a decrease in
¯
µ reduces the

value of the option in its termination region by lowering the prospect of a high resale price

for the durable good. The optimal reservation price will be lower due to the lower (expected)

resale value of the good, therefore reducing the optimal buying threshold, ỹ∗. An increase

in ambiguity will then have two contrasting partial effects: (1) an increase in the optimal

exercise threshold due to changes in η̄, and (2) a decrease in ỹ∗ through changes in µ̄.

Similar to previous results in the literature (see Miao and Wang (2011)), the direction

of the change in the buyer’s optimal reservation price as a response to an increase in ambi-

guity depends on the particular parametrization of the model. That is, the partial positive

effect of an increase in η̄ on ỹ∗ due to a change in ambiguity dominates the negative ef-

fect of an increase in
¯
µ only for a subset of parameters. Figure 3.1 presents two particular

parametrizations for which an increase in ambiguity has opposite effects on the optimal

buying threshold.

Characterizing the regions for the parameter values that will guarantee a particular di-

rection of the change in the optimal buyer’s reservation price is quite complicated due to the

lack of a close form solution for ỹ∗. However, we can identify some regularities by computing

the value of the optimal buying threshold numerically. In particular, we conjecture that ỹ∗ is

increasing in κ when
¯
µ is “low enough” with respect to the initial level of ambiguity. Figure

3.2 presents the region at which ỹ∗ is decreasing in κ for a particular set of parameter values.

In Appendix B, we vary the values of σ, ϕ, and q to examine the result at “extreme” values

of these parameters.

From an economic point of view, the total benefit of owning the durable good has two

sources: the utility generated from the use of it and its resale value. When
¯
µ is low, the resale

motive plays a smaller role in the ex ante purchase decision as the agent considers a relatively

pessimistic process to calculate the seller’s reservation price. Therefore, further reductions to

the originally low mean increments of the resale price will be dominated by higher expected

price increments used to evaluate the buying decision. This intuition is similar to the case

when the fraction of the spot market price at which the good can be resold, ϕ, is close

to zero. In this case, the effect of an increase of ambiguity in the termination region gets

smaller, and the decreasing pressure on ỹ∗ through changes in
¯
µ becomes less relevant. At

the extreme case, when ϕ = 0, our model collapses to that of Nishimura and Ozaki (2007)

and Miao and Wang (2011) where, in the absence of a resale option, the agent faces a simple

perpetual American put-like option with instantaneous payoff U − ext . Similarly, for a given

¯
µ, a higher initial κ implies a relatively higher η̄. If this η̄ is “too high”, further increases

will be dominated by the lower expected price increments used to compute the ex ante resale
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Figure 3.1: Change in ỹ∗ as a response to an increase in κ (σ = 1, q = 1, ϕ = 0.5).

value of the good, making ỹ∗ decreasing in κ.

To finalize this section, we examine the effects of an increase in ambiguity on the value of

the option to buy the durable good both in its termination and continuation regions. First,

in the termination region the value of the option is given by Π̃(x), which is independent

of η̄ by assumption. As shown in Lemma 3.1, Π̃(x) is increasing in
¯
µ, thus an increase in

ambiguity will reduce the value of the option in its termination region since an increase in κ

reduces the value of
¯
µ = ν − σκ.10

In order to analyze the effect of an increase in κ in the continuation region we first need

to establish the following result.

10The result in Lemma 3.1 holds for all µ in the ignorance interval, and in particular for
¯
µ.
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Figure 3.2: Region Plot for ∂κỹ
∗ < 0 (σ = 1, q = 1, ϕ = 0.5).

Proposition 3.7. The value of the option to buy a durable good, V ∗1 (x), is an increasing

function of
¯
µ for all x in the continuation region, x > ỹ∗.

Using our results from Lemma 3.3 and Proposition 3.7 we can see that the partial effects

that a change in the level of ambiguity has on the value of the option in the continuation

region coincide. That is, V ∗1 decreases as a result of increases in κ, since it is decreasing in

η̄ and increasing in
¯
µ. As the level of perceived ambiguity increases the agent uses a process

with higher expected price increments. This reduces the value of the option to buy the good

as the agent expects to pay more for a good whose utility derived from its consumption is

independent of the market price. The ex ante resale decision is made using lower expected

price increments which negatively affect the resale value of the good.

4 Conclusion

We have developed a model to analyze the option to buy a durable good with an embedded

option to resell it at any point in time at a fraction of the spot market price where the agent

is ambiguous regarding the drift of the Brownian motion characterizing the process of the

state variable before the moment of purchase. We assume that ambiguity is resolved after the

good is bought, and the resale decision is made with a well known probability distribution of

future prices. We find that while the agent is considering to buy the durable good she uses

two drifts to evaluate the embedded option: (1) the highest possible drift to compute the

value of the option to buy the good and the optimal buying threshold, and (2) the lowest

possible drift to calculate the ex ante resale value and optimal resale threshold. In addition

we use computational methods to analyze the effect that an increase in the perceived level
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ambiguity has on the buyer’s reservation price. We show that the direction of the change

in the buyer’s reservation price depends on the particular parametrization of the model.

Furthermore, the change in the buying threshold due to an increase in ambiguity is greater

as the fraction of the spot market price at which the agent can resell the good decreases,

and when this fraction gets closer to zero our problem gets closer to the perpetual American

put-like option. As the last result, an increase in ambiguity reduces the value of the option

in both its continuation and termination regions.

A common critique to any model that uses the utility representation proposed by Gilboa

and Schmeilder is that they do not allow for smoother attitudes towards ambiguity. In order

to assess this valid point, it would be necessary to extend the model by using the utility

representations proposed by Ju and Miao (2012) and Klibanoff et al. (2009). The results

in Cheng and Riedel (2013) and Boyarchenko and Levendorskii (2010) that we used in this

work can be applied to more general Levy processes, thus there is room to generalize our

model in that direction. Finally, another natural extension of the model is to remove the

assumption that ambiguity vanishes at the moment of purchase or to formally incorporate

it into the model by allowing the utility derived from the consumption of the durable good

to be a function of the state variable or even the drift of the Brownian motion directly.
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A Proofs of Lemmata and Propositions

Proof of Corollary 2.2

From the definition of π(x) in equation 1 we have:

∂π(x)

∂x
= −(q − ψ(1))ϕex.

With ψ(1) = σ2

2 + µ. Thus the derivative of π(x) with respect to x is negative, provided q > ψ(1),
which is the same restriction imposed by equation (2). π(x) changes sign as:

lim
x→∞

π(x) = −∞, and

lim
x→−∞

π(x) = qU > 0.

Equation (4) follows from direct evaluation of the integral defining W (x) in Theorem 2.1. By doing
a few simple manipulations and rearrangement we write

V ∗2 = U − Ueβ+(x−x∗) − ϕ
(
ex − eβ+(x−x∗)+x∗

) (q − ψ)

q

(
β−

β− − 1

)(
β+

β+ − 1

)
.

Using the fact that q
(q−ψ) =

(
β−

β−−1

)(
β+

β+−1

)
we can further simplify V ∗2 to

V ∗2 = U − Ueβ+(x−x∗) − ϕex + eβ
+(x−x∗)ϕex

∗

and equation (5) follows by substituting equation (4) in the previous expression. �

Proof of Lemma 2.3

From equation (6) we have:

∂xΠ(x) = −(1 + ϕ)ex +
Uβ+

β+ − 1
eβ

+(x−x∗) (23)

Using equation (4), rewrite equation 23 as:

∂xΠ(x) = −(1 + ϕ)ex
[

1

ex∗
qU(β− − 1)

ϕβ−(q − ψ(1))

]
+

Uβ+

β+ − 1
eβ

+(x−x∗).

From the fact that q
q−ψ(1) = β+

β+−1
β−

β−−1
, the previous expression can rewritten as:

∂xΠ(x) =
Uβ+

β+ − 1

(
Zβ

+ − 1 + ϕ

ϕ
Z

)
. (24)

with Z = ex−x
∗
. Since β+ > 1, Zβ

+
is a convex function of Z while 1+ϕ

ϕ Z is linear in Z. At x = x∗,
Z = 1 and (

Zβ
+ − 1 + ϕ

ϕ
Z

)
= 1− 1 + ϕ

ϕ
< 0

since ϕ > 0 by definition. Furthermore,

lim
x→−∞

(
Zβ

+ − 1 + ϕ

ϕ
Z

)
= 0

Since a convex function and a linear function cross in at most two points, it must be the case that(
Zβ

+ − 1+ϕ
ϕ Z

)
< 0 for all x ≤ x∗, which establishes the result from equation (24) �
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Proof of Lemma 2.5

Using equation (6), and after some manipulations we have

G(x) = U − ex(1 + ϕ) (β− − 1)

β−
+
U (β− − β+)

(β+ − 1)β−
eβ

+(x−x∗) (25)

Let x∗ be a candidate solution for G(x∗) = 0. Using equation (4) we can then write:

U − ex∗(1 + ϕ) (β− − 1)

β−

(
1

ex∗

)(
qU

(q − ψ)ϕ

(β− − 1)

β−

)
+
U (β− − β+)

(β+ − 1)β−
eβ

+(x∗−x∗) = 0,

which can be simplified to

U − (β− − 1)β+

β− (β+ − 1)

(
(1 + ϕ)U

ϕ

)
ex∗−x

∗
+
U (β− − β+)

(β+ − 1)β−
eβ

+(x∗−x∗) = 0.

The previous expression is equivalent to:

1− (β− − 1)β+

β− (β+ − 1)

(
(1 + ϕ)

ϕ

)
ex∗−x

∗
+

(β− − β+)

(β+ − 1)β−
eβ

+(x∗−x∗) = 0. (26)

Set δ = x∗ − x∗ and rewrite equation (26) in the form of eδF (δ) with

F (δ) = e−δ − (β− − 1)β+

β− (β+ − 1)

(
(1 + ϕ)

ϕ

)
+

(β− − β+)

(β+ − 1)β−
e(β

+−1)δ.

Note that F (δ) = 0 has a negative solution at δ∗ and changes sign as δ crosses δ∗ if and only if
G(x∗) = 0 at some x∗ < x∗ and changes sign at x∗.

Claim A.1. At δ = 0, F (0) < 0.

Proof. Evaluating F (δ) at zero,

1− (β− − 1)β+

β− (β+ − 1)

(
1 + ϕ

ϕ

)
+

(β− − β+)

(β+ − 1)β−
< 0

(β+ − 1)β− + (β− − β+)

(β− − 1)β+
<

1 + ϕ

ϕ

1 <
1 + ϕ

ϕ

Which is clearly satisfied for ϕ > 0. �

Hence F (δ) is negative in a left neighborhood of 0 since F is a continuous function. The
restriction in the parameters stated in equation (2) imply that β+ > 1 . Therefore

lim
δ→−∞

F (δ) = +∞.

Again, by continuity of the function, F (δ) must have a zero δ∗ < 0. Furthermore,

∂2F (δ)

∂δ2
= e−δ +

eδ(−1+β+) (β− − β+) (β+ − 1)

β−
> 0,

thus F (δ) is convex, which guarantees that F changes sign as it passes δ∗, and the uniqueness of
δ∗. �
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Proof of Corollary 2.6

Equation (9) is obtained using Lemma 2.5 and equation (25) therein evaluated at x∗. Equation
(10) follows from directly calculating the integral in Theorem 2.4

V ∗1 (x) =

[
U − ex∗(1 + ϕ) +

U

(β+ − 1)
eβ

+(x∗−x∗)

]
eβ

−(x−x∗),

and recognizing the term in brackets as Π(x∗) in equation (6). �

Proof of Lemma 3.1

First, let us establish the following result:

Claim A.2. ∂µx
∗
(µ) = −

∂µβ
+
(µ)(

β+
(µ)
−1

)
β+

(µ)

Proof. Using the fact that q
(q−ψµ(1)) =

β+
(µ)(

β+
(µ)
−1

) β−
(µ)(

β−
(µ)
−1

) rewrite equation (14) as:

e
x∗

(µ) =
Uβ+

(µ)

ϕ
(
β+

(µ) − 1
) (27)

Taking the derivative with respect to µ on both sides of the previous expression we have:

∂µx
∗(µ) = −

 1(
β+

(µ) − 1
)
 U∂µβ

+
(µ)

ϕ
(
β+

(µ) − 1
)e−x∗(µ)

The result follows from substituting e
−x∗

(µ) using equation (27) in the previous expression. �

Taking the derivative of equation (16) with respect to µ we obtain:

∂µΠ(x|µ) =

(x− x∗(µ)

)
∂µβ

+
(µ) − β

+
(µ)

∂µx∗(µ) +
∂µβ

+
(µ)(

β+
(µ) − 1

)
β+

(µ)

 Ue
β+

(µ)

(
x−x∗

(µ)

)
(
β+

(µ) − 1
)

From Claim A.2, the term in brackets is equal to zero and

∂µΠ(x|µ) =
((
x− x∗(µ)

)
∂µβ

+
(µ)

) Ueβ+
(µ)

(
x−x∗

(µ)

)
(
β+

(µ) − 1
) > 0

since the option to sell the durable good is evaluated in its continuation region, x < x∗(µ), β
+
(µ) > 1

by assumption, and it is easy to verify that ∂µβ
+
(µ) < 0 from its definition. �
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Proof of Lemma 3.3

Before proceeding with the proof, let us establish a useful result.

Claim A.3.
∂ηΠ(y∗)− λ−(η)Π(y∗)∂ηy∗ = 0. (28)

Proof. Combining equations (15) and (16)

Π(y∗) = U − (1 + ϕ)ey∗ +
U(

β+
(µ̄) − 1

)eβ+
(µ̄)

(y∗−y∗)
. (29)

Taking the derivative with respect to µ we have:

∂ηΠ(y∗) =

eβ+
(µ̄)

(y∗−y∗)
Uβ+

(µ̄)

β+
(µ̄) − 1

− (1 + ϕ)ey∗

 ∂ηy∗

Plugging it in equation (28)(
e
β+

(µ̄)
(y∗−y∗)Uβ+

(µ̄)

(β+
(µ̄) − 1)λ−(η)

− (1 + ϕ)ey∗

λ−(η)

−Π(y∗)

)
λ−(η)∂ηy∗ = 0.

Substituting Π(y∗) using equation (29), and after some basic algebra, we can write the previous
expression as:U − ey∗(1 + ϕ)

(
λ−(η) − 1

)
λ−(η)

+
U
(
λ−(η) − β

+
(µ̄)

)
(
β+

(µ̄) − 1
)
λ−(η)

e
β+

(µ̄)
(y∗−y∗)

λ−(η)∂ηy∗ = 0.

By equation (20) we can immediately see that the term in parenthesis is equal to zero. �

Rewrite V ∗1 in equation (19) as a function of an arbitrary drift η ∈ [ν − σκ, ν + σκ]

V ∗1 (x|µ̄) = Π(y∗)e
λ−

(η)
(x−y∗)

. (30)

Applying the chain rule to equation (30)

∂ηV
∗

1 (x|µ̄) = e
λ−

(η)
(x−y∗)

(
∂ηΠ(y∗) + Π(y∗)

(
(x− y∗)∂ηλ−(η) − λ

−
(η)∂ηy∗

))
= e

λ−
(η)

(x−y∗)
(
∂ηΠ(y∗)− λ−(η)Π(y∗)∂ηy∗) + (x− y∗)Π(y∗)∂ηλ

−
(η)

)
,

and using Claim A.3

∂ηV
∗

1 (x|µ̄) = e
λ−

(η)
(x−y∗)

(
(x− y∗)Π(y∗)∂ηλ

−
(η)

)
< 0

for all x > y∗. The latter follows from the fact that Π(y∗) > 0 since, by definition, it is the value of
the termination payoff evaluated at the exercise threshold and it will never be optimal to exercise
an option with negative instant payoff, and we can easily verify that ∂ηλ

−
(η) < 0. �
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Proof of Proposition 3.5

Equation (14) give us the close form solution for y∗. By taking the derivative with respect to µ̄ we
obtain:

∂µ̄y
∗ =

∂µ̄β
−
(µ̄)

β−(µ̄)

(
β−(µ̄) − 1

) +
1

(q − χ(1))
.

Using the definition β− = − µ
σ2 −

√
µ2+2qσ2

σ2 we can directly calculate the value of the derivative of
y∗, which is given by:

∂µ̄y
∗ =

σ2

2qσ2 + µ̄2 − µ̄
√
µ̄2 + 2qσ2 − σ2

√
µ̄2 + 2qσ2

,

We want to show that ∂µ̄y
∗ > 0, or equivalently that

2qσ2 + µ̄2 − µ̄
√
µ̄2 + 2qσ2 − σ2

√
µ̄2 + 2qσ2 > 0

2qσ2 + µ̄2 >
√
µ̄2 + 2qσ2

(
µ̄+ σ2

)√
µ̄2 + 2qσ2 >

(
µ̄+ σ2

)
.

If
(
µ̄+ σ2

)
< 0, the proof is complete as the right hand side of the previous equation must be

positive. On the other hand, if
(
µ̄+ σ2

)
is positive we can square both sides of the previous

equation and see that the condition is verified as long as 2q > 2µ̄ + σ2, which corresponds to the
restriction on parameters set by equation (2). �

Proof of Proposition 3.6

Before proving the statement in the proposition we establish a necessary and sufficient condition
on (ỹ∗ − x̃∗) for ∂η̄ỹ∗ > 0 and ∂

¯
µỹ∗ > 0.

Claim A.4. λ̃−−β̃+

λ̃−
eβ̃

+(ỹ∗−x̃∗) < 1.

Proof. From equation (21) we have:(
λ̃− − β̃+

)
λ̃−

eβ̃
+(ỹ∗−x̃∗) =

(1 + ϕ)
(
λ̃− − 1

)(
β̃+ − 1

)
Uλ̃−

eỹ∗ −
(
β̃+ − 1

)
Using equation (27) we obtain:(

λ̃− − β̃+
)

λ̃−
eβ̃

+(ỹ∗−x̃∗) =

(
1 + ϕ

ϕ

) β̃+
(
λ̃− − 1

)
λ̃−

eỹ∗−x̃
∗ −

(
β̃+ − 1

)
.

Let Z(y) = ey−x̃
∗
, and rewrite the previous expression as(
λ̃− − β̃+

)
λ̃−

(Z (ỹ∗))
β̃+

=

(
1 + ϕ

ϕ

) β̃+
(
λ̃− − 1

)
λ̃−

Z (ỹ∗)−
(
β̃+ − 1

)
(31)

Note that as y tends to negative infinity, Z(y) approaches zero, and Z(y) < 1 since the solution
to equation (21) must be less than x̃∗. Additionally, the left hand side of the equation (31) is a

31



convex function of Z, as β̃+ > 1, while the right hand side is a linear function of Z, and these
functions cross only once in the interval (0, 1) (see the proof of of Lemma 2.5). At Z = 0,(

λ̃− − β̃+
)

λ̃−
(Z)β̃

+

>

(
1 + ϕ

ϕ

) β̃+
(
λ̃− − 1

)
λ̃−

Z −
(
β̃+ − 1

)
.

Let Z ′ be the value of Z such that
(λ̃−−β̃+)

λ̃−
(Z ′)β̃

+
= 1. Then, if(

λ̃− − β̃+
)

λ̃−

(
Z ′
)β̃+

<

(
1 + ϕ

ϕ

) β̃+
(
λ̃− − 1

)
λ̃−

Z ′ −
(
β̃+ − 1

)
,

it must be the case that (Z (ỹ∗))
β̃+

< 1. Therefore, the proof will be complete if we can show that

(
1 + ϕ

ϕ

) β̃+
(
λ̃− − 1

)
λ̃−

(
λ̃−

λ̃− − β̃+

)1/β̃+

−
(
β̃+ − 1

)
> 1,

or equivalently: (
1 + ϕ

ϕ

)(
λ̃− − 1

λ̃−

)
>

(
λ̃− − β̃+

λ̃−

)1/β̃+

(32)

As β̃+ approaches 1, equation (32) reduces to(
1 + ϕ

ϕ

)(
λ̃− − 1

λ̃−

)
>
λ̃− − 1

λ̃−

which is satisfied for ϕ > 0. The left hand side of equation (32) is independent of β̃+, so all that
remains to verify is that the right hand side is decreasing in β̃+.

∂

∂β̃+

( λ̃− − β̃+

λ̃−

)1/β̃+
 = −

(
λ̃−−β̃+

λ̃−

)1/β̃+ [
β̃+ +

(
λ̃− − β̃+

)
log
(
λ̃−−β̃+

λ̃−

)]
(
β̃+
)2 (

λ̃− − β̃+
) ,

which is negative if and only if the term in brackets is less than zero, i.e. if

log

(
λ̃−

λ̃− − β̃+

)
<

β̃+

λ̃− − β̃+
. (33)

Assume β̃+ ≥ λ̃−(1 − e). Then
(

λ̃−

λ̃−−β̃+

)
≤ 1

e and log
(

λ̃−

λ̃−−β̃+

)
≤ −1. Since λ̃− < 0 and

β̃+ > 1, β̃+

λ̃−−β̃+
∈ (−1, 0) and equation (33) is satisfied. Assume β̃+ < λ̃−(1 − e). Since β̃+

λ̃−−β̃+
is

decreasing in β̃+,

lim
β̃+→(λ̃−(1−e))

−

(
β̃+

λ̃− − β̃+

)
= −1 +

1

e
, and

lim
β̃+→(λ̃−(1−e))

−

(
log

(
λ̃−

λ̃− − β̃+

))
= −1.
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Hence, equation (33) holds at the upper bound of β̃+. As β̃+ tends to 1, equation (33) approaches

log

(
λ̃−

λ̃− − 1

)
<

1

λ̃− − 1
.

In order to see that the previous condition is satisfied for all λ̃− < 0, define f(λ̃−) = log
(

λ̃−

λ̃−−1

)
−

1
λ̃−−1

. Clearly,

lim
λ̃−→−∞

f(λ̃−) = 0, and

df(λ̃−)

dλ̃−
=

1

λ̃−(λ̃− − 1)2
< 0.

Therefore, equation (33) also holds at the lower bound of β̃+. Finally, it suffices to show that

log
(

λ̃−

λ̃−−1

)
is decreasing in β̃+ to guarantee that equation (33) holds throughout the interval

(1, λ̃−(1− e)).
∂

∂β̃+

(
log

(
λ̃−

λ̃− − β̃+

))
=

1

λ̃− − β̃+
< 0.

�

Now we proof the statements in Proposition 3.6. First, we show that ∂η̄ỹ∗ > 0. Equation (21)
(implicitly) defines the exercise threshold ỹ∗. Taking the implicit derivative with respect to η̄ and
after some rearrangement of terms we obtain:eβ̃+(ỹ∗−x̃∗)Uβ̃+

(
λ̃− − β̃+

)
(
β̃+ − 1

)
λ̃−

−
eỹ∗(1 + ϕ)

(
λ̃− − 1

)
λ̃−

 ∂η̄ỹ∗ =

eỹ∗(1 + ϕ)
(
λ̃− − 1

)
λ̃−

−
β̃+eβ̃

+(ỹ∗−x̃∗)U
(
λ̃− − 1

)
(
β̃+ − 1

)
λ̃−

 ∂η̄λ̃
−

λ̃−
(
λ̃− − 1

)
Using equation (20) we can replace

(1+ϕ)(λ̃−−1)eỹ∗

λ̃−
in both sides of the previous expression which

allow us to rewrite the derivative of x̃∗ with respect to η̄ as:

∂η̄ỹ∗ =


(
λ̃− − β̃+

)
λ̃−

eβ̃
+(ỹ∗−x̃∗) − 1

−1 (
1− eβ̃+(ỹ∗−x̃∗)

) ∂η̄λ̃
−

λ̃−
(
λ̃− − 1

) (34)

The first term in the right hand side of the previous expression is negative from Claim A.4. Since
(ỹ∗ − x̃∗) < 0 and β̃+ > 1 the second term is positive. It can be easily verified that ∂η̄λ̃

− < 0 and
λ̃− < 0 by definition. Therefore ∂η̄ỹ∗ > 0.

Finally, we show that ∂
¯
µỹ∗ > 0. Taking the implicit derivative with respect to µ̄ and using the

same equation (21) to replace
eỹ∗

(
λ−

(η)
−1

)
(1+ϕ)

λ−
(η)

we can write the derivative of x̃∗ with respect to µ̄
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as:
(
λ̃− − β̃+

)
eβ̃

+(ỹ∗−x̃∗)

λ̃−
− 1

 ∂
¯
µỹ∗ =

(β̃+∂
¯
µx̃
∗ − ∂

¯
µβ̃

+ (ỹ∗ − x̃∗)
)(

λ̃− − β̃+
)

+

(
λ̃− − 1

)
∂

¯
µβ̃

+(
β̃+ − 1

)
 eβ̃

+(ỹ∗−x̃∗)(
β̃+ − 1

)
λ̃−

(35)

The term in brackets can be further reduce to ∂
¯
µβ̃

+(1−(λ̃−− β̃+)(ỹ∗− x̃∗)) by plugging in ∂
¯
µx̃
∗

as obtained in Claim A.2. ∂
¯
µỹ∗ > 0 if (1− (λ̃−− β̃+)(ỹ∗− x̃∗)) < 0, since ∂

¯
µβ̃+ < 0, or equivalently

if:

(ỹ∗ − x̃∗) <
1

λ̃− − β̃+
.

From Claim A.4 we know that λ̃−−β̃+

λ̃−
eβ̃

+(ỹ∗−x̃∗) < 1 which implies that

(ỹ∗ − x̃∗) <
1

β̃+
log

(
λ̃−

λ̃− − β̃+

)
<

1

λ̃− − β̃+

as shown in the proof of Claim A.4 �

Proof of Propositon 3.7

Taking the derivative of equation (22) with respect to
¯
µ we obtain:

∂
¯
µV
∗

1 (x) = −eλ̃−(x−ỹ∗)λ̃−

(
U − eỹ∗(1 + ϕ) +

e(ỹ∗−x̃∗)β̃+
U

β̃+ − 1

)
∂

¯
µỹ∗

+eλ̃
−(x−ỹ∗)

−eỹ∗(1 + ϕ)∂
¯
µỹ∗ −

U∂
¯
µβ̃

+e(ỹ∗−x̃∗)β̃+(
β̃+ − 1

)
2

+
Ue(ỹ∗−x̃∗)β̃+

(
β̃+
(
∂

¯
µỹ∗ − ∂

¯
µx̃
∗
)

+ (ỹ∗ − x̃∗) ∂
¯
µβ̃

+
)

β̃+ − 1


(36)

Taking the implicit derivative of equation (21) with respect to
¯
µ we can get

Ue(ỹ∗−x̃∗)β̃+
(
β̃+
(
∂

¯
µỹ∗ − ∂

¯
µx̃
∗
)

+ (ỹ∗ − x̃∗) ∂
¯
µβ̃

+
)

β̃+ − 1
=

eỹ∗
(
λ̃− − 1

)
(1 + ϕ)∂

¯
µỹ∗(

λ̃− − β̃+
) +

U ∂
¯
µβ̃

+eβ̃
+(ỹ∗−x̃∗)(

β̃+ − 1
)

 1(
β̃+ − 1

) +
1(

λ̃− − β̃+
)


Substituting the previous expression in equation (36) and using equation (21) to replace

U
(
λ̃− − β̃+

)
(
β̃+ − 1

)
λ̃−

eβ̃
+(ỹ∗−x̃∗) = −U +

(1 + ϕ)
(
λ̃− − 1

)
λ̃−

eỹ∗ .
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we can write ∂
¯
µV ∗1 (x) as

∂
¯
µV
∗

1 (x) =

∂
¯
µỹ∗

(
λ̃− −

(
λ̃− − β̃+

)
eβ̃

+(ỹ∗−x̃∗)
)

+
∂

¯
µβ̃

+(
β̃+ − 1

)eβ̃+(ỹ∗−x̃∗)

 Ueλ̃
−(x−ỹ∗)(

λ̃− − β̃+
) (37)

From Proposition 3.6, and Claim A.4 therein,
(
λ̃− −

(
λ̃− − β̃+

)
eβ̃

+(ỹ∗−x̃∗)
)
< 0 and ∂

¯
µỹ∗ > 0.

It is easy to verify that ∂
¯
µβ̃

+ < 0, thus ∂
¯
µV ∗1 (x) > 0 �

B Change in the buyer’s threshold for extreme parameter values

In this appendix we use numerical methods to evaluate the effect that a change in κ has on the
optimal buying threshold, ỹ∗. From our Result 3.4 we have that the ex ante drift used to evaluate
the option to resell the good is given by

¯
µ = ν − σκ while the drift used to compute the value of

the option to buy the good is η̄ = ν + σκ. An increase in κ will reduce
¯
µ and increase η̄. Formally,

∂κµ̄ = −σ and ∂κη = σ. The total change of ỹ∗ with respect to κ is

dy∗
dκ

= σ∂η̄ỹ∗ − σ∂
¯
µỹ∗. (38)

Using equations (34) and (35) we can evaluate the previous expression for a given set of pa-
rameters. To facilitate the exposition of the results we generate region plots highlighting the set
of parameters for which the dy∗

dκ < 0. We vary the values of σ, q and ϕ to examine the result at
“extreme” values of these parameters. In all the computations U was normalized to 1. Whenever
possible the region depicted in Figure 3.2 is included in the figures in this appendix for comparison.
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Figure B.1: Region Plot for ∂κỹ
∗ < 0 for extreme values of σ (q = 1, ϕ = 0.5)
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Figure B.2: Region Plot for ∂κỹ
∗ < 0 for extreme values of q (σ = 1, ϕ = 0.5)
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Figure B.3: Region Plot for ∂κỹ
∗ < 0 for extreme values of ϕ (σ = 1, q = 1)
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