Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/321606 
Year of Publication: 
2024
Citation: 
[Journal:] Cogent Economics & Finance [ISSN:] 2332-2039 [Volume:] 12 [Issue:] 1 [Article No.:] 2402893 [Year:] 2024 [Pages:] 1-15
Publisher: 
Taylor & Francis, Abingdon
Abstract: 
This study evaluates näive and advanced prediction models when applied to style rotation strategies on the Johannesburg Stock Exchange ('JSE'). We apply 1- and 3-month style momentum as näive predictors against three tree-based machine learning ('ML') algorithms (advanced predictors), namely Random Forest, XGBoost and LightGBM. Additionally, the study corrects for a shortcoming in the literature by incorporating trading costs into back-tested portfolio sorts. The results of the study are threefold. First, style rotation strategies based on advanced predictors achieve superior risk-adjusted returns when compared to näive momentum. Of the three ML models applied, XGboost is superior, followed by LightGBM, implying that gradient boosters are superior to less advanced ensemble methods (Random Forest) which are in-turn superior to style momentum. Second, short-term momentum results in the highest share turnover across style rotation strategies, resulting in the largest negative impact associated with trading costs. Third, contrary to similar studies, the incorporation of price momentum as an independent variable in factor spanning tests renders most time-series alphas statistically insignificant. This study considers the application of machine learning ("ML") for style rotation. The results indicate that ML based rotation signals generate excess performance relative to momentum based style rotation when applied on a cross-section of emerging market (South African) listed equities.
Subjects: 
emerging markets
equity factor
Machine learning
Machine Learning
Quantitative Finance
Statistics for Business, Finance & Economics
style rotation
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by Logo
Document Type: 
Article

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.