Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/320953 
Erscheinungsjahr: 
2024
Quellenangabe: 
[Journal:] Administrative Sciences [ISSN:] 2076-3387 [Volume:] 14 [Issue:] 7 [Article No.:] 138 [Year:] 2024 [Pages:] 1-26
Verlag: 
MDPI, Basel
Zusammenfassung: 
Recent advancements in Enterprise Information Systems (EISs) have transitioned from primarily supporting operational and tactical processes to enabling strategic decision-making through integrated analytics. This systematic review critically examines global literature from 2010 to 2023, focusing on the factors influencing the adoption of analytical components in EISs and assessing their impact on strategic decision-making in organizations. Following the PRISMA 2020 guidelines, we meticulously selected and reviewed articles from the Scopus database, employing a robust taxonomy based on the technology-organization-environment (TOE) framework to categorize findings. Our methodology involved a thorough screening of 234 studies, leading to a final analysis of 45 peer-reviewed articles that met our stringent criteria. These studies collectively underscore a significant gap in organizational capabilities, notably in the business ecosystems surrounding EISs, which hampers the effective adoption and utilization of advanced analytics. The results highlight a distinct need for improved understanding and implementation strategies for integrated analytics within EISs to enhance strategic decision-making processes. This review identifies critical factors for integrating analytics into Enterprise Information Systems (EISs), emphasizing technological, organizational, and environmental dimensions. It highlights a significant gap in models guiding ERP systems with Business Intelligence (BI) capabilities and underscores the need for robust research to enhance strategic decision-making through analytics.
Schlagwörter: 
adoption
analytic embedded
analytics
big data analytics
business analytics
business intelligence
CRM
data analytics
DOI
enterprise information system
enterprise system
ERP
SCM
TAM
TOE
TRA
use
UTAUT
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Erscheint in der Sammlung:

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.