Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/314978 
Year of Publication: 
2024
Citation: 
[Journal:] Mathematical Methods of Operations Research [ISSN:] 1432-5217 [Volume:] 100 [Issue:] 1 [Publisher:] Springer [Place:] Berlin, Heidelberg [Year:] 2024 [Pages:] 85-121
Publisher: 
Springer, Berlin, Heidelberg
Abstract: 
While branch and bound based algorithms are a standard approach to solve single-objective (mixed-)integer optimization problems, multi-objective branch and bound methods are only rarely applied compared to the predominant objective space methods. In this paper we propose modifications to increase the performance of multi-objective branch and bound algorithms by utilizing scalarization-based information. We use the hypervolume indicator as a measure for the gap between lower and upper bound set to implement a multi-objective best-first strategy. By adaptively solving scalarizations in the root node to integer optimality we improve both, upper and lower bound set. The obtained lower bound can then be integrated into the lower bounds of all active nodes, while the determined solution is added to the upper bound set. Numerical experiments show that the number of investigated nodes can be significantly reduced by up to 83% and the total computation time can be reduced by up to 80%.
Subjects: 
Multi-objective optimization
Multi-objective branch and bound
Integer programming
Hypervolume indicator
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by Logo
Document Type: 
Article
Document Version: 
Published Version

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.