Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/31147 
Erscheinungsjahr: 
2003
Schriftenreihe/Nr.: 
Discussion Paper No. 361
Verlag: 
Ludwig-Maximilians-Universität München, Sonderforschungsbereich 386 - Statistische Analyse diskreter Strukturen, München
Zusammenfassung: 
Extensions of the traditional Cox proportional hazard model, concerning the following features are often desirable in applications: Simultaneous nonparametric estimation of baseline hazard and usual fixed covariate effects, modelling and detection of time-varying covariate effects and nonlinear functional forms of metrical covariates, and inclusion of frailty components. In this paper, we develop Bayesian multiplicative hazard rate models for survival and event history data that can deal with these issues in a flexible and unified framework. Some simpler models, such as piecewise exponential models with a smoothed baseline hazard, are covered as special cases. Embedded in the counting process approach, nonparametric estimation of unknown nonlinear functional effects of time or covariates is based on Bayesian penalized splines. Inference is fully Bayesian and uses recent MCMC sampling schemes. Smoothing parameters are an integral part of the model and are estimated automatically. We investigate performance of our approach through simulation studies, and illustrate it with a real data application.
Persistent Identifier der Erstveröffentlichung: 
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
308.83 kB
1.15 MB





Publikationen in EconStor sind urheberrechtlich geschützt.