Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/310999 
Autor:innen: 
Erscheinungsjahr: 
2022
Quellenangabe: 
[Journal:] AStA Advances in Statistical Analysis [ISSN:] 1863-818X [Volume:] 107 [Issue:] 1 [Publisher:] Springer [Place:] Berlin, Heidelberg [Year:] 2022 [Pages:] 29-49
Verlag: 
Springer, Berlin, Heidelberg
Zusammenfassung: 
We present a data-driven approach to predict the next action in soccer. We focus on passing actions of the ball possessing player and aim to forecast the pass itself and when, in time, the pass will be played. At the same time, our model estimates the probability that the player loses possession of the ball before she can perform the action. Our approach consists of parameterized exponential rate models for all possible actions that are adapted to historic data with graph recurrent neural networks to account for inter-dependencies of the output space (i.e., the possible actions). We report on empirical results.
Schlagwörter: 
Soccer analytics
Football
Elite sports
Actions
Rate models
Game flow
GRNNs
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.