Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/310062 
Erscheinungsjahr: 
2018
Quellenangabe: 
[Journal:] Logistics [ISSN:] 2305-6290 [Volume:] 2 [Issue:] 1 [Year:] 2018 [Pages:] 1-16
Verlag: 
MDPI, Basel
Zusammenfassung: 
In the current economic, social and political environment, society demands a greater variety of outcomes from the public logistics sector, such as efficiency, efficiency of managed resources, greater transparency and business performance. All of them are an indispensable counterpart for its recognition and support. In case of port planning and management, many variables are included. Use of Bayesian Networks allows to classify, predict and diagnose these variables and even to estimate the subsequent probability of unknown variables, basing on the known ones. Research includes a data base with more than 40 variables, which have been classified as smart port studies in Spain. Then a network was generated using a non-cyclic conducted grafo, which shows port variable relationships. As conclusion, economic variables are cause of the rest of categories and they represent a parent role in the most of cases. Furthermore, if environmental variables are known, subsequent probability of social variables can be estimated.
Schlagwörter: 
Bayesian Networks
graph theory
sustainability
port management
artificial networks
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Erscheint in der Sammlung:

Datei(en):
Datei
Größe
1.94 MB





Publikationen in EconStor sind urheberrechtlich geschützt.