Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/309476 
Erscheinungsjahr: 
2023
Quellenangabe: 
[Journal:] Annals of Operations Research [ISSN:] 1572-9338 [Volume:] 338 [Issue:] 1 [Publisher:] Springer US [Place:] New York, NY [Year:] 2023 [Pages:] 407-428
Verlag: 
Springer US, New York, NY
Zusammenfassung: 
Serial-batch scheduling problems are widespread in several industries (e.g., the metal processing industry or industrial 3D printing) and consist of two subproblems that must be solved simultaneously: the grouping of jobs into batches and the sequencing of the created batches. This problem's NP-hard nature prevents optimally solving large-scale problems; therefore, heuristic solution methods are a common choice to effectively tackle the problem. One of the best-performing heuristics in the literature is the ATCS–BATCS(β) heuristic which has three control parameters. To achieve a good solution quality, most appropriate parameters must be determined a priori or within a multi-start approach. As multi-start approaches performing (full) grid searches on the parameters lack efficiency, we propose a machine learning enhanced grid search. To that, Artificial Neural Networks are used to predict the performance of the heuristic given a specific problem instance and specific heuristic parameters. Based on these predictions, we perform a grid search on a smaller set of most promising heuristic parameters. The comparison to the ATCS–BATCS(β) heuristics shows that our approach reaches a very competitive mean solution quality that is only 2.5% lower and that it is computationally much more efficient: computation times can be reduced by 89.2% on average.
Schlagwörter: 
Serial batching
Incompatible job families
Sequence-dependent setup times
Arbitrary sizes
Total weighted tardiness
Heuristics
Machine learning
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.