Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/307916 
Year of Publication: 
2022
Citation: 
[Journal:] AStA Advances in Statistical Analysis [ISSN:] 1863-818X [Volume:] 107 [Issue:] 4 [Publisher:] Springer [Place:] Berlin, Heidelberg [Year:] 2022 [Pages:] 693-712
Publisher: 
Springer, Berlin, Heidelberg
Abstract: 
We consider a linear measurement error model (MEM) with AR(1) process in the state equation which is widely used in applied research. This MEM could be equivalently re-written as ARMA(1,1) process, where the MA(1) parameter is related to the variance of measurement errors. As the MA(1) parameter is of essential importance for these linear MEMs, it is of much relevance to provide instruments for online monitoring in order to detect its possible changes. In this paper we develop control charts for online detection of such changes, i.e., from AR(1) to ARMA(1,1) and vice versa, as soon as they occur. For this purpose, we elaborate on both cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts and investigate their performance in a Monte Carlo simulation study. The empirical illustration of our approach is conducted based on time series of daily realized volatilities.
Subjects: 
Statistical process control
Measurement error
Control charts
Volatility modeling
JEL: 
C22
C44
C58
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by Logo
Document Type: 
Article
Document Version: 
Published Version

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.