Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/288939 
Erscheinungsjahr: 
2020
Quellenangabe: 
[Journal:] Optimization Letters [ISSN:] 1862-4480 [Volume:] 15 [Issue:] 4 [Publisher:] Springer [Place:] Berlin, Heidelberg [Year:] 2020 [Pages:] 1293-1302
Verlag: 
Springer, Berlin, Heidelberg
Zusammenfassung: 
Kurz and Napel (Optim Lett 10(6):1245–1256, 2015, https://doi.org/10.1007/s11590-015-0917-0) proved that the voting system of the EU council (based on the 2014 population data) cannot be represented as the intersection of six weighted games, i.e., its dimension is at least 7. This set a new record for real-world voting rules and the authors posed the exact determination as a challenge. Recently, Chen et al. (An upper bound on the dimension of the voting system of the European Union Council under the Lisbon rules, 2019, arXiv:1907.09711) showed that the dimension is at most 24. We provide the first improved lower bound and show that the dimension is at least 8.
Schlagwörter: 
Simple games
Weighted games
Dimension
Real-world voting systems
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.