Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/286938 
Year of Publication: 
2021
Citation: 
[Journal:] Optimization Letters [ISSN:] 1862-4480 [Volume:] 16 [Issue:] 6 [Publisher:] Springer [Place:] Berlin, Heidelberg [Year:] 2021 [Pages:] 1663-1673
Publisher: 
Springer, Berlin, Heidelberg
Abstract: 
et A be a real n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document} matrix and z,b∈Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z,b\in \mathbb R $$\end{document}. The piecewise linear equation system z-Ab\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z-A\vert z\vert = b$$\end{document} is called an absolute value equation. In this note we consider two solvers for uniquely solvable instances of the latter problem, one direct, one semi-iterative. We slightly extend the existing correctness, resp. convergence, results for the latter algorithms and provide numerical tests.
Subjects: 
Absolute value equation
Piecewise linear system
Sign-real spectral radius
Linear complementarity problems
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by Logo
Document Type: 
Article
Document Version: 
Published Version

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.