Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/267634 
Authors: 
Year of Publication: 
2019
Citation: 
[Journal:] Journal of Industrial Engineering International [ISSN:] 2251-712X [Volume:] 15 [Issue:] 3 [Publisher:] Springer [Place:] Heidelberg [Year:] 2019 [Pages:] 411-421
Publisher: 
Springer, Heidelberg
Abstract: 
The buffer allocation problem is an NP-hard combinatorial optimization problem, and it is an important design problem in manufacturing systems. The research proposed in this paper concerns a product line consisting of n unreliable machines with n − 1 buffers and a preventive maintenance policy. The focus of the research is to obtain a better trade-off between the buffer level and the preventive maintenance actions. This paper proposes a dynamic control of the buffers' level and the interval between two consecutive preventive actions. The set of the parameter of the proposed policy allows choosing the reduction in the costs or the increment of the throughput rate. A simulation model is developed to test the proposed model to the solution proposed in the literature. The proposed policy leads to better results in terms of total costs reduction keeping high production rate, while the design of a fixed level of buffer works better for lower production rates required.
Subjects: 
Buffer allocation
Unreliable machines
Preventive maintenance
Simulation
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by Logo
Document Type: 
Article

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.