Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/243685 
Year of Publication: 
2019
Citation: 
[Journal:] Energy Reports [ISSN:] 2352-4847 [Volume:] 5 [Publisher:] Elsevier [Place:] Amsterdam [Year:] 2019 [Pages:] 1445-1462
Publisher: 
Elsevier, Amsterdam
Abstract: 
The photovoltaic (PV) systems should operate at a maximum power point (MPP) to extract the maximum possible output power with high tracking efficiency under various operating conditions This paper discusses a new maximum power point tracking (MPPT) technique to extract the peak power from the PV panel/array during partial shaded conditions (PSCs). The proposed algorithm is based on bio-inspired Whale Optimization (WO) with reinitialization process when the PV system is subjected to change in shading pattern, and the algorithm tries to locate the global peak (GP) with a high convergence rate and high tracking efficiency. The proposed algorithm eliminates the computational burden faced by the hybrid MPPT algorithms as discussed in various literature and reduces the power oscillation during the change in operating conditions. The proposed technique is modeled and simulated under different test conditions using MATLAB/Simulink software. The performance of the proposed technique is compared with conventional perturb and observation (PO), Grey Wolf Optimization (GWO) and hybrid GWO (HGWO) techniques in terms of tracking time and tracking efficiency and the simulation result proves that WO technique displays high tracking efficiency (>95%) and less convergence time (<0.15sec) under PSCs with less power oscillations. Moreover, the performance assessment is carried out in terms of mismatching loss, fill factor, and relative power loss/gain.
Subjects: 
Convergence time
Global peak
MPPT
Partial shading
Performance assessment
WO
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by-nc-nd Logo
Document Type: 
Article
Appears in Collections:

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.