Please use this identifier to cite or link to this item: https://hdl.handle.net/10419/236785 
Authors: 
Year of Publication: 
2020
Citation: 
[Journal:] Statistics in Transition New Series [ISSN:] 2450-0291 [Volume:] 21 [Issue:] 4 [Publisher:] Exeley [Place:] New York [Year:] 2020 [Pages:] 144-158
Publisher: 
Exeley, New York
Abstract: 
We consider nonparametric estimation of a distribution function when data are collected from multiple overlapping data sources. Main statistical challenges include (1) heterogeneity of data sets, (2) unidentified duplicated records across data sets, and (3) dependence due to sampling without replacement from a data source. The proposed estimator is computable without identifying duplication but corrects bias from duplicated records. We show the uniform consistency of the proposed estimator over the real line and its weak convergence to a Gaussian process. Based on these asymptotic properties, we propose a simulation-based confidence band that enjoys asymptotically correct coverage probability. The finite sample performance is evaluated through a simulation study. A Wilms tumor example is provided.
Subjects: 
confidence band
data integration
Gaussian process
Persistent Identifier of the first edition: 
Creative Commons License: 
cc-by-nc-nd Logo
Document Type: 
Article

Files in This Item:
File
Size





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.