Please use this identifier to cite or link to this item: http://hdl.handle.net/10419/67127
Authors: 
Schmidt, Torsten
Vosen, Simeon
Year of Publication: 
2012
Series/Report no.: 
Ruhr Economic Papers 382
Abstract: 
Information about special events can improve economic forecasts substantially. However, due to the lack of timely quantitative data about these events, it has been difficult for professional forecasters to utilise such information in their forecasts. This paper investigates whether Internet search data can improve economic predictions in times of special events. An analysis of 'cash for clunkers' programs in four selected countries exemplifies that including search query data into statistical forecasting models improves the forecasting performance in almost all cases. However, the challenge to identify irregular events and to find the appropriate time series from Google Insights for search remains.
Abstract (Translated): 
Informationen über ungewöhnliche Ereignisse im Prognosezeitraum können die Prognosen ökonomischer Variablen erheblich verbessern. In vielen Fällen liegen aber quantitative Informationen über Ereignisse, wie Steuersatzänderungen oder konjunkturbedingte Ausgabenprogramme, erst mit erheblicher Verzögerung vor. Die Berücksichtigung solcher Ereignisse in der Prognose stellt daher eine große Herausforderung für den Prognostiker dar. In diesem Aufsatz wird untersucht, ob Daten über Suchanfragen im Internet, die zeitnah zur Verfügung stehen, verwendet werden können, um ungewöhnliche Ereignisse bei der Prognose zu berücksichtigen. Dazu werden Suchanfragedaten zu Abwrackprämien-Programmen in vier Ländern untersucht. Die Analyse veranschaulicht, dass Suchanfragedaten die Prognose des Privaten Konsums während der Laufzeit dieser Programme verbessern. Die Herausforderung für den Prognostiker bleibt allerdings, rechtzeitig die richtigen Suchanfragedaten zu finden.
Subjects: 
forecast adjustment
Google Trends
private consumption
JEL: 
C53
E21
E27
Persistent Identifier of the first edition: 
ISBN: 
978-3-86788-437-2
Document Type: 
Working Paper

Files in This Item:
File
Size
150.67 kB





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.