EconStor >
Humboldt-Universität zu Berlin >
Sonderforschungsbereich 373: Quantification and Simulation of Economic Processes, Humboldt-Universität Berlin >
Discussion Papers, SFB 373, HU Berlin >

Please use this identifier to cite or link to this item:

http://hdl.handle.net/10419/66244
  
Title:Plug-in semiparametric estimating equations PDF Logo
Authors:Gutierrez, Roberto G.
Carroll, Raymond J.
Issue Date:1995
Series/Report no.:Discussion Papers, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes 1997,13
Abstract:In parametric regression problems, estimation of the parameter of interest is typically achieved via the solution of a set of unbiased estimating equations. We are interested in problems where in addition to this parameter, the estimating equations consist of an unknown nuisance function which does not depend on the parameter. We study the effects of using a plug-in nonparametric estimator of the nuisance function (for example, a local-linear regression estimator) on the estimability of the parameter. In particular, we specify conditions on the functional estimator which ensure that the parametric rate of consistency for estimating the parameter of interest is preserved, and we give a general asymptotic covariance formula. We apply this theory to three examples.
Subjects:Nonparametric Regression
Missing Data
Generalized Linear Models
Local Linear Regression
Logistic Regression
Partially Linear Models
Semiparametric Regression
Persistent Identifier of the first edition:urn:nbn:de:kobv:11-10063736
Document Type:Working Paper
Appears in Collections:Discussion Papers, SFB 373, HU Berlin

Files in This Item:
File Description SizeFormat
72832427X.pdf181.54 kBAdobe PDF
No. of Downloads: Counter Stats
Download bibliographical data as: BibTeX
Share on:http://hdl.handle.net/10419/66244

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.